% tveq_newton.m % % Newton algorithm for log-barrier subproblems for TV minimization % with equality constraints. % % Usage: % [xp,tp,niter] = tveq_newton(x0, t0, A, At, b, tau, % newtontol, newtonmaxiter, slqtol, slqmaxiter) % % x0,t0 - starting points % % A - Either a handle to a function that takes a N vector and returns a K % vector , or a KxN matrix. If A is a function handle, the algorithm % operates in "largescale" mode, solving the Newton systems via the % Conjugate Gradients algorithm. % % At - Handle to a function that takes a K vector and returns an N vector. % If A is a KxN matrix, At is ignored. % % b - Kx1 vector of observations. % % tau - Log barrier parameter. % % newtontol - Terminate when the Newton decrement is <= newtontol. % % newtonmaxiter - Maximum number of iterations. % % slqtol - Tolerance for SYMMLQ; ignored if A is a matrix. % % slqmaxiter - Maximum number of iterations for SYMMLQ; ignored % if A is a matrix. % % Written by: Justin Romberg, Caltech % Email: jrom@acm.caltech.edu % Created: October 2005 % function [xp, tp, niter] = tveq_newton(x0, t0, A, At, b, tau, newtontol, newtonmaxiter, slqtol, slqmaxiter) largescale = isa(A,'function_handle'); alpha = 0.01; beta = 0.5; N = length(x0); n = round(sqrt(N)); K = length(b); % create (sparse) differencing matrices for TV Dv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ... reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N); Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ... reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N); % auxillary matrices for preconditioning Mdv = spdiags([reshape([ones(n-1,n); zeros(1,n)],N,1) ... reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N); Mdh = spdiags([reshape([ones(n,n-1) zeros(n,1)],N,1) ... reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N); Mmd = reshape([ones(n-1,n-1) zeros(n-1,1); zeros(1,n)],N,1); % initial point x = x0; t = t0; Dhx = Dh*x; Dvx = Dv*x; ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2); f = sum(t) - (1/tau)*(sum(log(-ft))); niter = 0; done = 0; while (~done) ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx); ntgt = -tau - t./ft; gradf = -(1/tau)*[ntgx; ntgt]; sig22 = 1./ft + (t.^2)./(ft.^2); sig12 = -t./ft.^2; sigb = 1./ft.^2 - (sig12.^2)./sig22; w1p = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt); wp = [w1p; zeros(K,1)]; if (largescale) % diagonal of H11p dg11p = Mdh'*(-1./ft + sigb.*Dhx.^2) + Mdv'*(-1./ft + sigb.*Dvx.^2) + 2*Mmd.*sigb.*Dhx.*Dvx; afac = max(dg11p); hpfun = @(z) Hpeval(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, afac); [dxv,slqflag,slqres,slqiter] = symmlq(hpfun, wp, slqtol, slqmaxiter); if (slqres > 1/2) disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; return end else H11p = Dh'*sparse(diag(-1./ft + sigb.*Dhx.^2))*Dh + ... Dv'*sparse(diag(-1./ft + sigb.*Dvx.^2))*Dv + ... Dh'*sparse(diag(sigb.*Dhx.*Dvx))*Dv + ... Dv'*sparse(diag(sigb.*Dhx.*Dvx))*Dh; afac = max(diag(H11p)); Hp = full([H11p afac*A'; afac*A zeros(K)]); %keyboard opts.SYM = true; [dxv, hcond] = linsolve(Hp, wp, opts); if (hcond < 1e-14) disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; tp = t; return end end dx = dxv(1:N); Dhdx = Dh*dx; Dvdx = Dv*dx; dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx)); % minimum step size that stays in the interior aqt = Dhdx.^2 + Dvdx.^2 - dt.^2; bqt = 2*(Dhdx.*Dhx + Dvdx.*Dvx - t.*dt); cqt = Dhx.^2 + Dvx.^2 - t.^2; tsols = [(-bqt+sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt); ... (-bqt-sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt) ]; indt = find([(bqt.^2 > 4*aqt.*cqt); (bqt.^2 > 4*aqt.*cqt)] & (tsols > 0)); smax = min(1, min(tsols(indt))); s = (0.99)*smax; % line search suffdec = 0; backiter = 0; while (~suffdec) xp = x + s*dx; tp = t + s*dt; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2); fp = sum(tp) - (1/tau)*(sum(log(-ftp))); flin = f + alpha*s*(gradf'*[dx; dt]); suffdec = (fp <= flin); s = beta*s; backiter = backiter + 1; if (backiter > 32) disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)'); xp = x; tp = t; return end end % set up for next iteration x = xp; t = tp; Dvx = Dvxp; Dhx = Dhxp; ft = ftp; f = fp; lambda2 = -(gradf'*[dx; dt]); stepsize = s*norm([dx; dt]); niter = niter + 1; done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter); disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e', ... niter, f, lambda2/2, stepsize)); if (largescale) disp(sprintf(' SYMMLQ Res = %8.3e, SYMMLQ Iter = %d', slqres, slqiter)); else disp(sprintf(' H11p condition number = %8.3e', hcond)); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Implicit application of Hessian function y = Hpeval(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, afac) N = length(ft); K = length(z)-N; w = z(1:N); v = z(N+1:N+K); Dhw = Dh*w; Dvw = Dv*w; y1 = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhw + sigb.*Dhx.*Dvx.*Dvw) + ... Dv'*((-1./ft + sigb.*Dvx.^2).*Dvw + sigb.*Dhx.*Dvx.*Dhw) + afac*At(v); y2 = afac*A(w); y = [y1; y2];