% l1eq_pd.m % % Solve % min_x ||x||_1 s.t. Ax = b % % Recast as linear program % min_{x,u} sum(u) s.t. -u <= x <= u, Ax=b % and use primal-dual interior point method % % Usage: xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter) % % x0 - Nx1 vector, initial point. % % A - Either a handle to a function that takes a N vector and returns a K % vector , or a KxN matrix. If A is a function handle, the algorithm % operates in "largescale" mode, solving the Newton systems via the % Conjugate Gradients algorithm. % % At - Handle to a function that takes a K vector and returns an N vector. % If A is a KxN matrix, At is ignored. % % b - Kx1 vector of observations. % % pdtol - Tolerance for primal-dual algorithm (algorithm terminates if % the duality gap is less than pdtol). % Default = 1e-3. % % pdmaxiter - Maximum number of primal-dual iterations. % Default = 50. % % cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. % Default = 1e-8. % % cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored % if A is a matrix. % Default = 200. % % Written by: Justin Romberg, Caltech % Email: jrom@acm.caltech.edu % Created: October 2005 % function xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter) largescale = isa(A,'function_handle'); if (nargin < 5), pdtol = 1e-3; end if (nargin < 6), pdmaxiter = 50; end if (nargin < 7), cgtol = 1e-8; end if (nargin < 8), cgmaxiter = 200; end N = length(x0); alpha = 0.01; beta = 0.5; mu = 10; gradf0 = [zeros(N,1); ones(N,1)]; % starting point --- make sure that it is feasible if (largescale) if (norm(A(x0)-b)/norm(b) > cgtol) disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); AAt = @(z) A(At(z)); [w, cgres, cgiter] = cgsolve(AAt, b, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('A*At is ill-conditioned: cannot find starting point'); xp = x0; return; end x0 = At(w); end else if (norm(A*x0-b)/norm(b) > cgtol) disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); opts.POSDEF = true; opts.SYM = true; [w, hcond] = linsolve(A*A', b, opts); if (hcond < 1e-14) disp('A*At is ill-conditioned: cannot find starting point'); xp = x0; return; end x0 = A'*w; end end x = x0; u = (0.95)*abs(x0) + (0.10)*max(abs(x0)); % set up for the first iteration fu1 = x - u; fu2 = -x - u; lamu1 = -1./fu1; lamu2 = -1./fu2; if (largescale) v = -A(lamu1-lamu2); Atv = At(v); rpri = A(x) - b; else v = -A*(lamu1-lamu2); Atv = A'*v; rpri = A*x - b; end sdg = -(fu1'*lamu1 + fu2'*lamu2); tau = mu*2*N/sdg; rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)]; resnorm = norm([rdual; rcent; rpri]); pditer = 0; done = (sdg < pdtol) | (pditer >= pdmaxiter); while (~done) pditer = pditer + 1; w1 = -1/tau*(-1./fu1 + 1./fu2) - Atv; w2 = -1 - 1/tau*(1./fu1 + 1./fu2); w3 = -rpri; sig1 = -lamu1./fu1 - lamu2./fu2; sig2 = lamu1./fu1 - lamu2./fu2; sigx = sig1 - sig2.^2./sig1; if (largescale) w1p = w3 - A(w1./sigx - w2.*sig2./(sigx.*sig1)); h11pfun = @(z) -A(1./sigx.*At(z)); [dv, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; return end dx = (w1 - w2.*sig2./sig1 - At(dv))./sigx; Adx = A(dx); Atdv = At(dv); else w1p = -(w3 - A*(w1./sigx - w2.*sig2./(sigx.*sig1))); H11p = A*(sparse(diag(1./sigx))*A'); opts.POSDEF = true; opts.SYM = true; [dv,hcond] = linsolve(H11p, w1p, opts); if (hcond < 1e-14) disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; return end dx = (w1 - w2.*sig2./sig1 - A'*dv)./sigx; Adx = A*dx; Atdv = A'*dv; end du = (w2 - sig2.*dx)./sig1; dlamu1 = (lamu1./fu1).*(-dx+du) - lamu1 - (1/tau)*1./fu1; dlamu2 = (lamu2./fu2).*(dx+du) - lamu2 - 1/tau*1./fu2; % make sure that the step is feasible: keeps lamu1,lamu2 > 0, fu1,fu2 < 0 indp = find(dlamu1 < 0); indn = find(dlamu2 < 0); s = min([1; -lamu1(indp)./dlamu1(indp); -lamu2(indn)./dlamu2(indn)]); indp = find((dx-du) > 0); indn = find((-dx-du) > 0); s = (0.99)*min([s; -fu1(indp)./(dx(indp)-du(indp)); -fu2(indn)./(-dx(indn)-du(indn))]); % backtracking line search suffdec = 0; backiter = 0; while (~suffdec) xp = x + s*dx; up = u + s*du; vp = v + s*dv; Atvp = Atv + s*Atdv; lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2; fu1p = xp - up; fu2p = -xp - up; rdp = gradf0 + [lamu1p-lamu2p; -lamu1p-lamu2p] + [Atvp; zeros(N,1)]; rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau); rpp = rpri + s*Adx; suffdec = (norm([rdp; rcp; rpp]) <= (1-alpha*s)*resnorm); s = beta*s; backiter = backiter + 1; if (backiter > 32) disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)') xp = x; return end end % next iteration x = xp; u = up; v = vp; Atv = Atvp; lamu1 = lamu1p; lamu2 = lamu2p; fu1 = fu1p; fu2 = fu2p; % surrogate duality gap sdg = -(fu1'*lamu1 + fu2'*lamu2); tau = mu*2*N/sdg; rpri = rpp; rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)]; resnorm = norm([rdual; rcent; rpri]); done = (sdg < pdtol) | (pditer >= pdmaxiter); disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e, Primal res = %8.3e',... pditer, tau, sum(u), sdg, norm(rdual), norm(rpri))); if (largescale) disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); else disp(sprintf(' H11p condition number = %8.3e', hcond)); end end