% l1decode_pd.m % % Decoding via linear programming. % Solve % min_x ||b-Ax||_1 . % % Recast as the linear program % min_{x,u} sum(u) s.t. -Ax - u + y <= 0 % Ax - u - y <= 0 % and solve using primal-dual interior point method. % % Usage: xp = l1decode_pd(x0, A, At, y, pdtol, pdmaxiter, cgtol, cgmaxiter) % % x0 - Nx1 vector, initial point. % % A - Either a handle to a function that takes a N vector and returns a M % vector, or a MxN matrix. If A is a function handle, the algorithm % operates in "largescale" mode, solving the Newton systems via the % Conjugate Gradients algorithm. % % At - Handle to a function that takes an M vector and returns an N vector. % If A is a matrix, At is ignored. % % y - Mx1 observed code (M > N). % % pdtol - Tolerance for primal-dual algorithm (algorithm terminates if % the duality gap is less than pdtol). % Default = 1e-3. % % pdmaxiter - Maximum number of primal-dual iterations. % Default = 50. % % cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. % Default = 1e-8. % % cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored % if A is a matrix. % Default = 200. % % Written by: Justin Romberg, Caltech % Email: jrom@acm.caltech.edu % Created: October 2005 % function xp = l1decode_pd(x0, A, At, y, pdtol, pdmaxiter, cgtol, cgmaxiter) largescale = isa(A,'function_handle'); if (nargin < 5), pdtol = 1e-3; end if (nargin < 6), pdmaxiter = 50; end if (nargin < 7), cgtol = 1e-8; end if (nargin < 8), cgmaxiter = 200; end N = length(x0); M = length(y); alpha = 0.01; beta = 0.5; mu = 10; gradf0 = [zeros(N,1); ones(M,1)]; x = x0; if (largescale), Ax = A(x); else Ax = A*x; end u = (0.95)*abs(y-Ax) + (0.10)*max(abs(y-Ax)); fu1 = Ax - y - u; fu2 = -Ax + y - u; lamu1 = -1./fu1; lamu2 = -1./fu2; if (largescale), Atv = At(lamu1-lamu2); else Atv = A'*(lamu1-lamu2); end sdg = -(fu1'*lamu1 + fu2'*lamu2); tau = mu*2*M/sdg; rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); rdual = gradf0 + [Atv; -lamu1-lamu2]; resnorm = norm([rdual; rcent]); pditer = 0; done = (sdg < pdtol)| (pditer >= pdmaxiter); while (~done) pditer = pditer + 1; w2 = -1 - 1/tau*(1./fu1 + 1./fu2); sig1 = -lamu1./fu1 - lamu2./fu2; sig2 = lamu1./fu1 - lamu2./fu2; sigx = sig1 - sig2.^2./sig1; if (largescale) w1 = -1/tau*(At(-1./fu1 + 1./fu2)); w1p = w1 - At((sig2./sig1).*w2); h11pfun = @(z) At(sigx.*A(z)); [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; return end Adx = A(dx); else w1 = -1/tau*(A'*(-1./fu1 + 1./fu2)); w1p = w1 - A'*((sig2./sig1).*w2); H11p = A'*(sparse(diag(sigx))*A); opts.POSDEF = true; opts.SYM = true; [dx, hcond] = linsolve(H11p, w1p,opts); if (hcond < 1e-14) disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; return end Adx = A*dx; end du = (w2 - sig2.*Adx)./sig1; dlamu1 = -(lamu1./fu1).*(Adx-du) - lamu1 - (1/tau)*1./fu1; dlamu2 = (lamu2./fu2).*(Adx + du) -lamu2 - (1/tau)*1./fu2; if (largescale), Atdv = At(dlamu1-dlamu2); else Atdv = A'*(dlamu1-dlamu2); end % make sure that the step is feasible: keeps lamu1,lamu2 > 0, fu1,fu2 < 0 indl = find(dlamu1 < 0); indu = find(dlamu2 < 0); s = min([1; -lamu1(indl)./dlamu1(indl); -lamu2(indu)./dlamu2(indu)]); indl = find((Adx-du) > 0); indu = find((-Adx-du) > 0); s = (0.99)*min([s; -fu1(indl)./(Adx(indl)-du(indl)); -fu2(indu)./(-Adx(indu)-du(indu))]); % backtrack suffdec = 0; backiter = 0; while(~suffdec) xp = x + s*dx; up = u + s*du; Axp = Ax + s*Adx; Atvp = Atv + s*Atdv; lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2; fu1p = Axp - y - up; fu2p = -Axp + y - up; rdp = gradf0 + [Atvp; -lamu1p-lamu2p]; rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau); suffdec = (norm([rdp; rcp]) <= (1-alpha*s)*resnorm); s = beta*s; backiter = backiter + 1; if (backiter > 32) disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)') xp = x; return end end % next iteration x = xp; u = up; Ax = Axp; Atv = Atvp; lamu1 = lamu1p; lamu2 = lamu2p; fu1 = fu1p; fu2 = fu2p; % surrogate duality gap sdg = -(fu1'*lamu1 + fu2'*lamu2); tau = mu*2*M/sdg; rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); rdual = rdp; resnorm = norm([rdual; rcent]); done = (sdg < pdtol) | (pditer >= pdmaxiter); disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e',... pditer, tau, sum(u), sdg, norm(rdual))); if (largescale) disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); else disp(sprintf(' H11p condition number = %8.3e', hcond)); end end