diff options
Diffstat (limited to 'Optimization/tveq_logbarrier.m')
-rw-r--r-- | Optimization/tveq_logbarrier.m | 118 |
1 files changed, 118 insertions, 0 deletions
diff --git a/Optimization/tveq_logbarrier.m b/Optimization/tveq_logbarrier.m new file mode 100644 index 0000000..617bf2e --- /dev/null +++ b/Optimization/tveq_logbarrier.m @@ -0,0 +1,118 @@ +% tveq_logbarrier.m +% +% Solve equality constrained TV minimization +% min TV(x) s.t. Ax=b. +% +% Recast as the SOCP +% min sum(t) s.t. ||D_{ij}x||_2 <= t, i,j=1,...,n +% Ax=b +% and use a log barrier algorithm. +% +% Usage: xp = tveq_logbarrier(x0, A, At, b, lbtol, mu, slqtol, slqmaxiter) +% +% x0 - Nx1 vector, initial point. +% +% A - Either a handle to a function that takes a N vector and returns a K +% vector , or a KxN matrix. If A is a function handle, the algorithm +% operates in "largescale" mode, solving the Newton systems via the +% Conjugate Gradients algorithm. +% +% At - Handle to a function that takes a K vector and returns an N vector. +% If A is a KxN matrix, At is ignored. +% +% b - Kx1 vector of observations. +% +% lbtol - The log barrier algorithm terminates when the duality gap <= lbtol. +% Also, the number of log barrier iterations is completely +% determined by lbtol. +% Default = 1e-3. +% +% mu - Factor by which to increase the barrier constant at each iteration. +% Default = 10. +% +% slqtol - Tolerance for SYMMLQ; ignored if A is a matrix. +% Default = 1e-8. +% +% slqmaxiter - Maximum number of iterations for SYMMLQ; ignored +% if A is a matrix. +% Default = 200. +% +% Written by: Justin Romberg, Caltech +% Email: jrom@acm.caltech.edu +% Created: October 2005 +% + +function xp = tveq_logbarrier(x0, A, At, b, lbtol, mu, slqtol, slqmaxiter) + +largescale = isa(A,'function_handle'); + +if (nargin < 5), lbtol = 1e-3; end +if (nargin < 6), mu = 10; end +if (nargin < 7), slqtol = 1e-8; end +if (nargin < 8), slqmaxiter = 200; end + +newtontol = lbtol; +newtonmaxiter = 50; + +N = length(x0); +n = round(sqrt(N)); + +% create (sparse) differencing matrices for TV +Dv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ... + reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N); +Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ... + reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N); + +% starting point --- make sure that it is feasible +if (largescale) + if (norm(A(x0)-b)/norm(b) > slqtol) + disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); + AAt = @(z) A(At(z)); + [w,cgres] = cgsolve(AAt, b, slqtol, slqmaxiter, 0); + if (cgres > 1/2) + disp('A*At is ill-conditioned: cannot find starting point'); + xp = x0; + return; + end + x0 = At(w); + end +else + if (norm(A*x0-b)/norm(b) > slqtol) + disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); + opts.POSDEF = true; opts.SYM = true; + [w, hcond] = linsolve(A*A', b, opts); + if (hcond < 1e-14) + disp('A*At is ill-conditioned: cannot find starting point'); + xp = x0; + return; + end + x0 = A'*w; + end +end +x = x0; +Dhx = Dh*x; Dvx = Dv*x; +t = (0.95)*sqrt(Dhx.^2 + Dvx.^2) + (0.1)*max(sqrt(Dhx.^2 + Dvx.^2)); + +% choose initial value of tau so that the duality gap after the first +% step will be about the origial TV +tau = N/sum(sqrt(Dhx.^2+Dvx.^2)); + +lbiter = ceil((log(N)-log(lbtol)-log(tau))/log(mu)); +disp(sprintf('Number of log barrier iterations = %d\n', lbiter)); +totaliter = 0; +for ii = 1:lbiter + + [xp, tp, ntiter] = tveq_newton(x, t, A, At, b, tau, newtontol, newtonmaxiter, slqtol, slqmaxiter); + totaliter = totaliter + ntiter; + + tvxp = sum(sqrt((Dh*xp).^2 + (Dv*xp).^2)); + disp(sprintf('\nLog barrier iter = %d, TV = %.3f, functional = %8.3f, tau = %8.3e, total newton iter = %d\n', ... + ii, tvxp, sum(tp), tau, totaliter)); + + x = xp; + t = tp; + + tau = mu*tau; + +end +
\ No newline at end of file |