aboutsummaryrefslogtreecommitdiff
path: root/Optimization/tveq_newton.m
diff options
context:
space:
mode:
authorEugeniy E. Mikhailov <evgmik@gmail.com>2021-01-29 16:23:05 -0500
committerEugeniy E. Mikhailov <evgmik@gmail.com>2021-01-29 16:23:05 -0500
commit3983eb46023c1edd00617729ba929057fda8d0bd (patch)
tree816ad084f355000656c43da9160f1c257bbb1ddc /Optimization/tveq_newton.m
downloadl1magic-3983eb46023c1edd00617729ba929057fda8d0bd.tar.gz
l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.zip
Initial import from https://statweb.stanford.edu/~candes/software/l1magic/v1.11
Additional Clean up of Mac dirs and tex generated files
Diffstat (limited to 'Optimization/tveq_newton.m')
-rw-r--r--Optimization/tveq_newton.m180
1 files changed, 180 insertions, 0 deletions
diff --git a/Optimization/tveq_newton.m b/Optimization/tveq_newton.m
new file mode 100644
index 0000000..9e71b73
--- /dev/null
+++ b/Optimization/tveq_newton.m
@@ -0,0 +1,180 @@
+% tveq_newton.m
+%
+% Newton algorithm for log-barrier subproblems for TV minimization
+% with equality constraints.
+%
+% Usage:
+% [xp,tp,niter] = tveq_newton(x0, t0, A, At, b, tau,
+% newtontol, newtonmaxiter, slqtol, slqmaxiter)
+%
+% x0,t0 - starting points
+%
+% A - Either a handle to a function that takes a N vector and returns a K
+% vector , or a KxN matrix. If A is a function handle, the algorithm
+% operates in "largescale" mode, solving the Newton systems via the
+% Conjugate Gradients algorithm.
+%
+% At - Handle to a function that takes a K vector and returns an N vector.
+% If A is a KxN matrix, At is ignored.
+%
+% b - Kx1 vector of observations.
+%
+% tau - Log barrier parameter.
+%
+% newtontol - Terminate when the Newton decrement is <= newtontol.
+%
+% newtonmaxiter - Maximum number of iterations.
+%
+% slqtol - Tolerance for SYMMLQ; ignored if A is a matrix.
+%
+% slqmaxiter - Maximum number of iterations for SYMMLQ; ignored
+% if A is a matrix.
+%
+% Written by: Justin Romberg, Caltech
+% Email: jrom@acm.caltech.edu
+% Created: October 2005
+%
+
+function [xp, tp, niter] = tveq_newton(x0, t0, A, At, b, tau, newtontol, newtonmaxiter, slqtol, slqmaxiter)
+
+largescale = isa(A,'function_handle');
+
+alpha = 0.01;
+beta = 0.5;
+
+N = length(x0);
+n = round(sqrt(N));
+K = length(b);
+
+% create (sparse) differencing matrices for TV
+Dv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ...
+ reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N);
+Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ...
+ reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N);
+
+% auxillary matrices for preconditioning
+Mdv = spdiags([reshape([ones(n-1,n); zeros(1,n)],N,1) ...
+ reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N);
+Mdh = spdiags([reshape([ones(n,n-1) zeros(n,1)],N,1) ...
+ reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N);
+Mmd = reshape([ones(n-1,n-1) zeros(n-1,1); zeros(1,n)],N,1);
+
+
+% initial point
+x = x0;
+t = t0;
+Dhx = Dh*x; Dvx = Dv*x;
+ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2);
+f = sum(t) - (1/tau)*(sum(log(-ft)));
+
+niter = 0;
+done = 0;
+while (~done)
+
+ ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx);
+ ntgt = -tau - t./ft;
+ gradf = -(1/tau)*[ntgx; ntgt];
+
+ sig22 = 1./ft + (t.^2)./(ft.^2);
+ sig12 = -t./ft.^2;
+ sigb = 1./ft.^2 - (sig12.^2)./sig22;
+
+ w1p = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt);
+ wp = [w1p; zeros(K,1)];
+ if (largescale)
+ % diagonal of H11p
+ dg11p = Mdh'*(-1./ft + sigb.*Dhx.^2) + Mdv'*(-1./ft + sigb.*Dvx.^2) + 2*Mmd.*sigb.*Dhx.*Dvx;
+ afac = max(dg11p);
+ hpfun = @(z) Hpeval(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, afac);
+ [dxv,slqflag,slqres,slqiter] = symmlq(hpfun, wp, slqtol, slqmaxiter);
+ if (slqres > 1/2)
+ disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x;
+ return
+ end
+ else
+ H11p = Dh'*sparse(diag(-1./ft + sigb.*Dhx.^2))*Dh + ...
+ Dv'*sparse(diag(-1./ft + sigb.*Dvx.^2))*Dv + ...
+ Dh'*sparse(diag(sigb.*Dhx.*Dvx))*Dv + ...
+ Dv'*sparse(diag(sigb.*Dhx.*Dvx))*Dh;
+ afac = max(diag(H11p));
+ Hp = full([H11p afac*A'; afac*A zeros(K)]);
+ %keyboard
+ opts.SYM = true;
+ [dxv, hcond] = linsolve(Hp, wp, opts);
+ if (hcond < 1e-14)
+ disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
+ xp = x; tp = t;
+ return
+ end
+ end
+ dx = dxv(1:N);
+ Dhdx = Dh*dx; Dvdx = Dv*dx;
+ dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx));
+
+ % minimum step size that stays in the interior
+ aqt = Dhdx.^2 + Dvdx.^2 - dt.^2;
+ bqt = 2*(Dhdx.*Dhx + Dvdx.*Dvx - t.*dt);
+ cqt = Dhx.^2 + Dvx.^2 - t.^2;
+ tsols = [(-bqt+sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt); ...
+ (-bqt-sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt) ];
+ indt = find([(bqt.^2 > 4*aqt.*cqt); (bqt.^2 > 4*aqt.*cqt)] & (tsols > 0));
+ smax = min(1, min(tsols(indt)));
+ s = (0.99)*smax;
+
+ % line search
+ suffdec = 0;
+ backiter = 0;
+ while (~suffdec)
+ xp = x + s*dx; tp = t + s*dt;
+ Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx;
+ ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2);
+ fp = sum(tp) - (1/tau)*(sum(log(-ftp)));
+ flin = f + alpha*s*(gradf'*[dx; dt]);
+ suffdec = (fp <= flin);
+ s = beta*s;
+ backiter = backiter + 1;
+ if (backiter > 32)
+ disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)');
+ xp = x; tp = t;
+ return
+ end
+ end
+
+ % set up for next iteration
+ x = xp; t = tp;
+ Dvx = Dvxp; Dhx = Dhxp;
+ ft = ftp; f = fp;
+
+ lambda2 = -(gradf'*[dx; dt]);
+ stepsize = s*norm([dx; dt]);
+ niter = niter + 1;
+ done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);
+
+ disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e', ...
+ niter, f, lambda2/2, stepsize));
+ if (largescale)
+ disp(sprintf(' SYMMLQ Res = %8.3e, SYMMLQ Iter = %d', slqres, slqiter));
+ else
+ disp(sprintf(' H11p condition number = %8.3e', hcond));
+ end
+
+end
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Implicit application of Hessian
+function y = Hpeval(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, afac)
+
+N = length(ft);
+K = length(z)-N;
+w = z(1:N);
+v = z(N+1:N+K);
+
+Dhw = Dh*w;
+Dvw = Dv*w;
+
+y1 = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhw + sigb.*Dhx.*Dvx.*Dvw) + ...
+ Dv'*((-1./ft + sigb.*Dvx.^2).*Dvw + sigb.*Dhx.*Dvx.*Dhw) + afac*At(v);
+y2 = afac*A(w);
+
+y = [y1; y2];