diff options
author | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2021-01-29 16:23:05 -0500 |
---|---|---|
committer | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2021-01-29 16:23:05 -0500 |
commit | 3983eb46023c1edd00617729ba929057fda8d0bd (patch) | |
tree | 816ad084f355000656c43da9160f1c257bbb1ddc /Optimization/l1qc_logbarrier.m | |
download | l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.tar.gz l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.zip |
Initial import from https://statweb.stanford.edu/~candes/software/l1magic/v1.11
Additional Clean up of Mac dirs and tex generated files
Diffstat (limited to 'Optimization/l1qc_logbarrier.m')
-rw-r--r-- | Optimization/l1qc_logbarrier.m | 116 |
1 files changed, 116 insertions, 0 deletions
diff --git a/Optimization/l1qc_logbarrier.m b/Optimization/l1qc_logbarrier.m new file mode 100644 index 0000000..388529e --- /dev/null +++ b/Optimization/l1qc_logbarrier.m @@ -0,0 +1,116 @@ +% l1qc_logbarrier.m +% +% Solve quadratically constrained l1 minimization: +% min ||x||_1 s.t. ||Ax - b||_2 <= \epsilon +% +% Reformulate as the second-order cone program +% min_{x,u} sum(u) s.t. x - u <= 0, +% -x - u <= 0, +% 1/2(||Ax-b||^2 - \epsilon^2) <= 0 +% and use a log barrier algorithm. +% +% Usage: xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter) +% +% x0 - Nx1 vector, initial point. +% +% A - Either a handle to a function that takes a N vector and returns a K +% vector , or a KxN matrix. If A is a function handle, the algorithm +% operates in "largescale" mode, solving the Newton systems via the +% Conjugate Gradients algorithm. +% +% At - Handle to a function that takes a K vector and returns an N vector. +% If A is a KxN matrix, At is ignored. +% +% b - Kx1 vector of observations. +% +% epsilon - scalar, constraint relaxation parameter +% +% lbtol - The log barrier algorithm terminates when the duality gap <= lbtol. +% Also, the number of log barrier iterations is completely +% determined by lbtol. +% Default = 1e-3. +% +% mu - Factor by which to increase the barrier constant at each iteration. +% Default = 10. +% +% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. +% Default = 1e-8. +% +% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored +% if A is a matrix. +% Default = 200. +% +% Written by: Justin Romberg, Caltech +% Email: jrom@acm.caltech.edu +% Created: October 2005 +% + +function xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter) + +largescale = isa(A,'function_handle'); + +if (nargin < 6), lbtol = 1e-3; end +if (nargin < 7), mu = 10; end +if (nargin < 8), cgtol = 1e-8; end +if (nargin < 9), cgmaxiter = 200; end + +newtontol = lbtol; +newtonmaxiter = 50; + +N = length(x0); + +% starting point --- make sure that it is feasible +if (largescale) + if (norm(A(x0)-b) > epsilon) + disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); + AAt = @(z) A(At(z)); + [w, cgres] = cgsolve(AAt, b, cgtol, cgmaxiter, 0); + if (cgres > 1/2) + disp('A*At is ill-conditioned: cannot find starting point'); + xp = x0; + return; + end + x0 = At(w); + end +else + if (norm(A*x0-b) > epsilon) + disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); + opts.POSDEF = true; opts.SYM = true; + [w, hcond] = linsolve(A*A', b, opts); + if (hcond < 1e-14) + disp('A*At is ill-conditioned: cannot find starting point'); + xp = x0; + return; + end + x0 = A'*w; + end +end +x = x0; +u = (0.95)*abs(x0) + (0.10)*max(abs(x0)); + +disp(sprintf('Original l1 norm = %.3f, original functional = %.3f', sum(abs(x0)), sum(u))); + +% choose initial value of tau so that the duality gap after the first +% step will be about the origial norm +tau = max((2*N+1)/sum(abs(x0)), 1); + +lbiter = ceil((log(2*N+1)-log(lbtol)-log(tau))/log(mu)); +disp(sprintf('Number of log barrier iterations = %d\n', lbiter)); + +totaliter = 0; + +for ii = 1:lbiter + + [xp, up, ntiter] = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter); + totaliter = totaliter + ntiter; + + disp(sprintf('\nLog barrier iter = %d, l1 = %.3f, functional = %8.3f, tau = %8.3e, total newton iter = %d\n', ... + ii, sum(abs(xp)), sum(up), tau, totaliter)); + + x = xp; + u = up; + + tau = mu*tau; + +end + |