diff options
author | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2021-01-29 16:23:05 -0500 |
---|---|---|
committer | Eugeniy E. Mikhailov <evgmik@gmail.com> | 2021-01-29 16:23:05 -0500 |
commit | 3983eb46023c1edd00617729ba929057fda8d0bd (patch) | |
tree | 816ad084f355000656c43da9160f1c257bbb1ddc /Optimization/l1dantzig_pd.m | |
download | l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.tar.gz l1magic-3983eb46023c1edd00617729ba929057fda8d0bd.zip |
Initial import from https://statweb.stanford.edu/~candes/software/l1magic/v1.11
Additional Clean up of Mac dirs and tex generated files
Diffstat (limited to 'Optimization/l1dantzig_pd.m')
-rw-r--r-- | Optimization/l1dantzig_pd.m | 234 |
1 files changed, 234 insertions, 0 deletions
diff --git a/Optimization/l1dantzig_pd.m b/Optimization/l1dantzig_pd.m new file mode 100644 index 0000000..6a57dea --- /dev/null +++ b/Optimization/l1dantzig_pd.m @@ -0,0 +1,234 @@ +% l1dantzig_pd.m +% +% Solves +% min_x ||x||_1 subject to ||A'(Ax-b)||_\infty <= epsilon +% +% Recast as linear program +% min_{x,u} sum(u) s.t. x - u <= 0 +% -x - u <= 0 +% A'(Ax-b) - epsilon <= 0 +% -A'(Ax-b) - epsilon <= 0 +% and use primal-dual interior point method. +% +% Usage: xp = l1dantzig_pd(x0, A, At, b, epsilon, pdtol, pdmaxiter, cgtol, cgmaxiter) +% +% x0 - Nx1 vector, initial point. +% +% A - Either a handle to a function that takes a N vector and returns a K +% vector , or a KxN matrix. If A is a function handle, the algorithm +% operates in "largescale" mode, solving the Newton systems via the +% Conjugate Gradients algorithm. +% +% At - Handle to a function that takes a K vector and returns an N vector. +% If A is a KxN matrix, At is ignored. +% +% b - Kx1 vector of observations. +% +% epsilon - scalar or Nx1 vector of correlation constraints +% +% pdtol - Tolerance for primal-dual algorithm (algorithm terminates if +% the duality gap is less than pdtol). +% Default = 1e-3. +% +% pdmaxiter - Maximum number of primal-dual iterations. +% Default = 50. +% +% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. +% Default = 1e-8. +% +% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored +% if A is a matrix. +% Default = 200. +% +% Written by: Justin Romberg, Caltech +% Email: jrom@acm.caltech.edu +% Created: October 2005 +% + +function xp = l1dantzig_pd(x0, A, At, b, epsilon, pdtol, pdmaxiter, cgtol, cgmaxiter) + +largescale = isa(A,'function_handle'); + +if (nargin < 6), pdtol = 1e-3; end +if (nargin < 7), pdmaxiter = 50; end +if (nargin < 8), cgtol = 1e-8; end +if (nargin < 9), cgmaxiter = 200; end + +N = length(x0); + +alpha = 0.01; +beta = 0.5; +mu = 10; + +gradf0 = [zeros(N,1); ones(N,1)]; + + +% starting point --- make sure that it is feasible +if (largescale) + if (max( abs(At(A(x0) - b)) - epsilon ) > 0) + disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); + AAt = @(z) A(At(z)); + [w, cgres] = cgsolve(AAt, b, cgtol, cgmaxiter, 0); + if (cgres > 1/2) + disp('A*At is ill-conditioned: cannot find starting point'); + xp = x0; + return; + end + x0 = At(w); + end +else + if (max(abs(A'*(A*x0 - b)) - epsilon ) > 0) + disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); + opts.POSDEF = true; opts.SYM = true; + [w, hcond] = linsolve(A*A', b, opts); + if (hcond < 1e-14) + disp('A*At is ill-conditioned: cannot find starting point'); + xp = x0; + return; + end + x0 = A'*w; + end +end +x = x0; +u = (0.95)*abs(x0) + (0.10)*max(abs(x0)); + +% set up for the first iteration +if (largescale) + Atr = At(A(x) - b); +else + Atr = A'*(A*x - b); +end +fu1 = x - u; +fu2 = -x - u; +fe1 = Atr - epsilon; +fe2 = -Atr - epsilon; +lamu1 = -(1./fu1); +lamu2 = -(1./fu2); +lame1 = -(1./fe1); +lame2 = -(1./fe2); +if (largescale) + AtAv = At(A(lame1-lame2)); +else + AtAv = A'*(A*(lame1-lame2)); +end + +% sdg = surrogate duality gap +sdg = -[fu1; fu2; fe1; fe2]'*[lamu1; lamu2; lame1; lame2]; +tau = mu*(4*N)/sdg; + +% residuals +rdual = gradf0 + [lamu1-lamu2 + AtAv; -lamu1-lamu2]; +rcent = -[lamu1.*fu1; lamu2.*fu2; lame1.*fe1; lame2.*fe2] - (1/tau); +resnorm = norm([rdual; rcent]); + +% iterations +pditer = 0; +done = (sdg < pdtol) | (pditer >= pdmaxiter); +while (~done) + + % solve for step direction + w2 = - 1 - (1/tau)*(1./fu1 + 1./fu2); + + sig11 = -lamu1./fu1 - lamu2./fu2; + sig12 = lamu1./fu1 - lamu2./fu2; + siga = -(lame1./fe1 + lame2./fe2); + sigx = sig11 - sig12.^2./sig11; + + if (largescale) + w1 = -(1/tau)*( At(A(1./fe2-1./fe1)) + 1./fu2 - 1./fu1 ); + w1p = w1 - (sig12./sig11).*w2; + hpfun = @(z) At(A(siga.*At(A(z)))) + sigx.*z; + [dx, cgres, cgiter] = cgsolve(hpfun, w1p, cgtol, cgmaxiter, 0); + if (cgres > 1/2) + disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; + return + end + AtAdx = At(A(dx)); + else + w1 = -(1/tau)*( A'*(A*(1./fe2-1./fe1)) + 1./fu2 - 1./fu1 ); + w1p = w1 - (sig12./sig11).*w2; + Hp = A'*(A*sparse(diag(siga))*A')*A + diag(sigx); + opts.POSDEF = true; opts.SYM = true; + [dx, hcond] = linsolve(Hp, w1p,opts); + if (hcond < 1e-14) + disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'); + xp = x; + return + end + AtAdx = A'*(A*dx); + end + du = w2./sig11 - (sig12./sig11).*dx; + + dlamu1 = -(lamu1./fu1).*(dx-du) - lamu1 - (1/tau)*1./fu1; + dlamu2 = -(lamu2./fu2).*(-dx-du) - lamu2 - (1/tau)*1./fu2; + dlame1 = -(lame1./fe1).*(AtAdx) - lame1 - (1/tau)*1./fe1; + dlame2 = -(lame2./fe2).*(-AtAdx) - lame2 - (1/tau)*1./fe2; + if (largescale) + AtAdv = At(A(dlame1-dlame2)); + else + AtAdv = A'*(A*(dlame1-dlame2)); + end + + + % find minimal step size that keeps ineq functions < 0, dual vars > 0 + iu1 = find(dlamu1 < 0); iu2 = find(dlamu2 < 0); + ie1 = find(dlame1 < 0); ie2 = find(dlame2 < 0); + ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0); + ife1 = find(AtAdx > 0); ife2 = find(-AtAdx > 0); + smax = min(1,min([... + -lamu1(iu1)./dlamu1(iu1); -lamu2(iu2)./dlamu2(iu2); ... + -lame1(ie1)./dlame1(ie1); -lame2(ie2)./dlame2(ie2); ... + -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ... + -fe1(ife1)./AtAdx(ife1); -fe2(ife2)./(-AtAdx(ife2)) ])); + s = 0.99*smax; + + % backtracking line search + suffdec = 0; + backiter = 0; + while (~suffdec) + xp = x + s*dx; up = u + s*du; + Atrp = Atr + s*AtAdx; AtAvp = AtAv + s*AtAdv; + fu1p = fu1 + s*(dx-du); fu2p = fu2 + s*(-dx-du); + fe1p = fe1 + s*AtAdx; fe2p = fe2 + s*(-AtAdx); + lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2; + lame1p = lame1 + s*dlame1; lame2p = lame2 + s*dlame2; + rdp = gradf0 + [lamu1p-lamu2p + AtAvp; -lamu1p-lamu2p]; + rcp = -[lamu1p.*fu1p; lamu2p.*fu2p; lame1p.*fe1p; lame2p.*fe2p] - (1/tau); + suffdec = (norm([rdp; rcp]) <= (1-alpha*s)*resnorm); + s = beta*s; + backiter = backiter+1; + if (backiter > 32) + disp('Stuck backtracking, returning last iterate. (See Section 4 of notes for more information.)') + xp = x; + return + end + end + + % setup for next iteration + x = xp; u = up; + Atr = Atrp; AtAv = AtAvp; + fu1 = fu1p; fu2 = fu2p; + fe1 = fe1p; fe2 = fe2p; + lamu1 = lamu1p; lamu2 = lamu2p; + lame1 = lame1p; lame2 = lame2p; + + sdg = -[fu1; fu2; fe1; fe2]'*[lamu1; lamu2; lame1; lame2]; + tau = mu*(4*N)/sdg; + + rdual = rdp; + rcent = -[lamu1.*fu1; lamu2.*fu2; lame1.*fe1; lame2.*fe2] - (1/tau); + resnorm = norm([rdual; rcent]); + + pditer = pditer+1; + done = (sdg < pdtol) | (pditer >= pdmaxiter); + + disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e',... + pditer, tau, sum(u), sdg, norm(rdual))); + if (largescale) + disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); + else + disp(sprintf(' H11p condition number = %8.3e', hcond)); + end + +end |