#!/usr/bin/python3 import sys import pandas as pd import numpy as np import os import sqlite3 # infile = 'gb.db' infile = sys.argv[1] con = sqlite3.connect(infile) # dIn=pd.read_sql("Select * from 'GradesTable' where GroupName='student'", con) dIn = pd.read_sql("Select * from 'GradesTable'", con) dOut = dIn.copy() # replacing user names in accordance with BlackBoard dOut["UserName"] = dOut["UserName"].str.replace("@.*$", "", regex=True) dOut.rename(columns={"UserName": "Username"}, inplace=True) # exclude inforows dOut = dOut.loc[dOut["GroupName"].isin(["student"])] # remove unneeded info cols infoCol = [ "FirstName", "LastName", "GroupName", "UserHiddenColums", "UserHiddenGroups", "UserHiddenGradeCategories", "SectionNum", "IdNum", ] dOut = dOut.drop(infoCol, axis=1) # drop non gradable columns cCat = dIn["UserName"] == "_Col_Category_" colToDrop = [] for c in dOut.columns: if c == "Username": continue category = dIn[cCat][c][0] if category not in ["HomeWork", "MidTerm", "FinalExam", "weighted_column"]: colToDrop.append(c) dOut = dOut.drop(colToDrop, axis=1) dOut.to_csv("BlackBoard.csv", index=False) print(f"Data was exported to {fout}")