aboutsummaryrefslogtreecommitdiff
path: root/regenTheExpertTA.py
diff options
context:
space:
mode:
Diffstat (limited to 'regenTheExpertTA.py')
-rwxr-xr-xregenTheExpertTA.py33
1 files changed, 29 insertions, 4 deletions
diff --git a/regenTheExpertTA.py b/regenTheExpertTA.py
index 335fd7c..81ea437 100755
--- a/regenTheExpertTA.py
+++ b/regenTheExpertTA.py
@@ -23,7 +23,7 @@ hsub = hsub.replace('"', '')
hsub = hsub.split(',')
headers = h.split(',')
-# we should fail hard if this column namess are not present
+# we should fail hard if this column names are not present
headers[hsub.index('Last')]='LastName'
headers[hsub.index('First')]='FirstName'
headers[hsub.index('Email')]='UserName'
@@ -35,9 +35,19 @@ headers[hsub.index('Student No')]='SID'
# headers[3]='TotalPcnt'
# headers[4]='TotalScore'
-d = pd.read_csv(infile, skiprows=[0,1], header=None, names=headers)
-# d.loc[0, 'FullName']='MaxScore'
-# d.loc[0, 'UserName']='MaxScore'
+d = pd.read_csv(infile, skiprows=[0], header=None, names=headers)
+
+# First row contains max points information, so let's reassign it
+d.loc[0, 'UserName']='_Max_Points_'
+d.loc[0, 'LastName']='MaxScore'
+d.loc[0, 'FirstName']='MaxScore'
+d.loc[0, 'SID']=pd.NA
+
+specialUsers=[]
+specialUsers.append('_Max_Points_')
+# lets add row which will be in charge of the column type
+d=pd.concat([d, pd.DataFrame({'UserName': ['_Col_Category_']}, columns=d.columns)], ignore_index=True)
+specialUsers.append('_Col_Category_')
# cleanup
# c = d.columns
@@ -56,6 +66,21 @@ d.drop(row.index, inplace=True)
# hand tuned fixes
# d['UserName'].replace('phanng@hotmail.com@tj.va$', 'kphan@wm.edu', regex=True, inplace=True)
+# Now let's convert percentage which TheExperTA reports to points as GradeTable expects
+for c in d.columns:
+ if c in ['LastName', 'FirstName', 'UserName', 'SID']:
+ continue
+ maxP = d.loc[(d['UserName'] == '_Max_Points_')][c].values[0]
+ d.loc[(d['UserName'] == '_Max_Points_')][c]
+ index = ~d['UserName'].isin( specialUsers )
+ d.loc[index,c] *= maxP/100 # convert percentage to points
+
+ # now we are trying to guess column category
+ if 'hw' in c.lower():
+ d.loc[(d['UserName'] == '_Col_Category_'), c] = 'HomeWork'
+
+
+
d.to_csv('TheExperTA.csv')
# now import to sqlite3