realistic_Rb Eugeniy Mikhailov License GPL. Solving simplified Rb atom model with fields propagation along spatial axis Z with Doppler broadening. We assume four-wave mixing condition when w3-w4=w2-w1 i.e. fields E3 and E4 drive the same resonance as fields E2 and E1. * --------------- | F=1, 2P_3/2 > * \ \ * \ E3_r \ -------- | F=2, 2P_+1/2 > * \ E4_r \ / \ * \ \ / E2_l \ * \ / \ E1_l * | F=2, 2S_1/2 > -------------- \ * \ \ * \ \ * ------------- | F=1, 2S_1/2 > * We are solving dE/dz+(1/c)*dE/dt=i*eta*rho_ij, where j level is higher then i. Note that E is actually a Rabi frequency of electromagnetic field not the EM field in xmds terms it looks like dE_dz = i*eta*rhoij - 1/c*L[E], here we moved t dependence to Fourier space VERY IMPORTANT: all Rabi frequency should be given in [1/s], if you want to normalize it to something else look drho/dt equation. No need to renormalizes eta as long as its express through the upper level decay rate in the same units as Rabi frequency. section double eta = 0; // eta constant in the wave equation for Rabi frequency. Units are [1/(m s)] // --------- Atom and cell properties ------------------------- // range of Maxwell distribution atomic velocities const double mass = (86.909180527 * 1.660538921e-27); // atom mass in [kg] // above mass expression is written as (expression is isotopic_mass * atomic_mass_unit) // Average sqrt(v^2) in Maxwell distribution for one dimension // Maxwell related parameters will be calculated in section double v_thermal_averaged=0; // Maxwell distribution velocities range to take in account in [m/s] double V_maxwell_min = 0, V_maxwell_max = 0; // repopulation rate (atoms flying in/out the laser beam) in [1/s] const double gt=0.01 *(2*M_PI*1e6); // Natural linewidth of j's level in [1/s] const double G3=3.0 *(2*M_PI*1e6); const double G4=3.0 *(2*M_PI*1e6); // total decay of i-th level branching ratios. Rij branching of i-th level to j-th const double R41=0.5, R42=0.5; const double R31=0.5, R32=0.5; complex E1ac, E2ac, E3ac, E4ac; // Complex conjugated Rabi frequencies complex r21, r31, r41, r32, r42, r43, r44; // density matrix elements // inner use variables double probability_v; // will be used as p(v) in Maxwell distribution ]]> 0 to provide range for Maxwell velocity distribution\n"); v_thermal_averaged=sqrt(k_boltzmann*Temperature/mass); // Maxwell distribution velocities range to take in account in [m/s] // there is almost zero probability for higher velocity p(4*v_av) = 3.3e-04 * p(0) V_maxwell_min = -4*v_thermal_averaged; V_maxwell_max = -V_maxwell_min; // eta constant in the wave equation for Rabi frequency. Units are [1/(m s)] eta = 3*lambda*lambda*Ndens*Gamma_super/8.0/M_PI; ]]> z E1 E2 E3 E4 probability_v probability_v_norm Maxwell_distribution_probabilities E1a E2a E3a E4a E_field Maxwell_distribution_probabilities Maxwell_distribution_probabilities_norm r11a r22a r33a r12a r13a r14a r23a r24a r34a r44a density_matrix Maxwell_distribution_probabilities Maxwell_distribution_probabilities_norm r11 r22 r33 r12 r13 r14 r23 r24 r34 r44 E_field_avgd 100 100 density_matrix E_field_avgd Lt E_field density_matrix E_field_avgd I1_out I2_out I3_out I4_out density_matrix_averaged r11_out r22_out r33_out r44_out r12_re_out r12_im_out r13_re_out r13_im_out r14_re_out r14_im_out r23_re_out r23_im_out r24_re_out r24_im_out r34_re_out r34_im_out