(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 89945, 2474] NotebookOptionsPosition[ 86782, 2364] NotebookOutlinePosition[ 87159, 2381] CellTagsIndexPosition[ 87116, 2378] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["set up the system", "Section"], Cell["This loads the package.", "MathCaption", CellID->836781195], Cell[BoxData[ RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input", CellID->2058623809], Cell[TextData[{ "We define an atomic system consisting of two even-parity lower states and \ two odd-parity upper states. We apply a light field with components at \ frequencies ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], " (near resonant with the ", Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]", RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], " transition), ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], " and ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]], "(near resonant with the ", Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], " transition)\[AliasDelimiter]." }], "Text", CellChangeTimes->{{3.524013673755671*^9, 3.524013697746722*^9}}, CellID->525777075], Cell["\<\ Define the atomic system. Three level \[CapitalLambda] system\ \>", "MathCaption", CellID->429217524], Cell[BoxData[ RowBox[{ RowBox[{"system", "=", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"AtomicState", "[", RowBox[{"1", ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"2", ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"3", ",", RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]"}], ",", RowBox[{"Energy", "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", RowBox[{"1", "/", "2"}]}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", RowBox[{"1", "/", "2"}]}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]", "}"}]}], ";"}]], "Input", CellID->433132487], Cell["\<\ Define the optical field. Field (1) is probe, fields (2) and (3) are pumps\ \>", "MathCaption", CellID->133602844], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"field", "=", RowBox[{ RowBox[{"OpticalField", "[", RowBox[{"\[Omega]1", ",", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]1", "/", RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", "\[Phi]1"}], "}"}]}], "]"}], "+", RowBox[{"OpticalField", "[", RowBox[{"\[Omega]2", ",", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]2", "/", RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", "\[Phi]2"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{3.524259583801378*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"\[Phi]1", "-", RowBox[{"t", " ", "\[Omega]1"}]}], ")"}]}]], " ", "\[CapitalOmega]1"}], RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"\[Phi]2", "-", RowBox[{"t", " ", "\[Omega]2"}]}], ")"}]}]], " ", "\[CapitalOmega]2"}], RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]]}], ",", "0", ",", "0"}], "}"}]], "Output", CellChangeTimes->{3.524014012716285*^9, 3.524259591553705*^9, 3.524259626080548*^9, 3.524306875181789*^9, 3.524307290537285*^9, 3.524307437720878*^9, 3.524307566559088*^9, 3.524308707967733*^9}] }, Open ]], Cell["\<\ The Hamiltonian for the system subject to the optical field. Probe couples \ |1> and |3>, Pumps couple |2> and |3>.\ \>", "MathCaption", CellID->462076121], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"H", "=", RowBox[{ RowBox[{"Expand", "@", RowBox[{"Hamiltonian", "[", RowBox[{"system", ",", RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "_", "]"}], " ", RowBox[{"ReducedME", "[", RowBox[{"_", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]", "0"}]}]}], "]"}]], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"Energy", "[", "1", "]"}], "0", RowBox[{ RowBox[{"-", "\[CapitalOmega]1"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]1", "-", RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}]}, {"0", RowBox[{"Energy", "[", "2", "]"}], RowBox[{ RowBox[{"-", "\[CapitalOmega]2"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]2", "-", RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}]}, { RowBox[{ RowBox[{"-", "\[CapitalOmega]1"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]1", "-", RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}], RowBox[{ RowBox[{"-", "\[CapitalOmega]2"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]2", "-", RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{3.524014012961052*^9, 3.524259598039252*^9, 3.524259629043541*^9, 3.524306875364363*^9, 3.524307290619138*^9, 3.524307437836161*^9, 3.524307566674161*^9, 3.52430870804791*^9}] }, Open ]], Cell["The level diagram for the system.", "MathCaption", CellID->358620443], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"LevelDiagram", "[", RowBox[{"system", ",", RowBox[{"H", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", RowBox[{"-", "1.5"}]}], ",", RowBox[{ RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", RowBox[{"-", "1"}]}], ",", RowBox[{ RowBox[{"Energy", "[", "3", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.524013707327201*^9, 3.524013712245067*^9}}, CellID->167259034], Cell[BoxData[ GraphicsBox[{{{{}, LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{}, LineBox[{{-0.9, -1.}, {-0.09999999999999998, -1.}}]}, {{}, LineBox[{{0.09999999999999998, 0.}, {0.9, 0.}}]}}, {{}, {}, {}}, {Arrowheads[{-0.07659574468085106, 0.07659574468085106}], ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}], ArrowBox[{{-0.45999999999999996`, -1.}, {0.45999999999999996`, 0.}}]}, {PointSize[0.0225]}}, ImagePadding->{{2., 2}, {2., 2.}}, ImageSize->94.]], "Output", CellChangeTimes->{ 3.524014013119625*^9, {3.524259615431492*^9, 3.524259632461302*^9}, 3.52430687544827*^9, 3.524307290760151*^9, 3.524307437955327*^9, 3.524307566755542*^9, 3.524308708148272*^9}] }, Open ]], Cell["\<\ Apply the rotating-wave approximation to the Hamiltonian. \[Delta]a is \ average pump detuning, \[Delta] is relative pump detuning.\ \>", "MathCaption", CellID->577766068], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"Hrwa", "=", RowBox[{ RowBox[{"RotatingWaveApproximation", "[", RowBox[{"system", ",", "H", ",", RowBox[{"{", RowBox[{"\[Omega]1", ",", "\[Omega]2"}], "}"}], ",", RowBox[{"TransformMatrix", "\[Rule]", RowBox[{"MatrixExp", "[", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", RowBox[{"DiagonalMatrix", "[", RowBox[{"{", RowBox[{ RowBox[{"-", "\[Omega]1"}], ",", RowBox[{"-", "\[Omega]2"}], ",", "0"}], "}"}], "]"}]}], "]"}]}]}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]1", "\[Rule]", RowBox[{ RowBox[{"-", RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",", RowBox[{"\[Omega]2", "\[Rule]", RowBox[{ RowBox[{"-", RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]2"}]}]}], "}"}]}]}], ")"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.524259650739166*^9, 3.524259657623566*^9}, { 3.524259695984735*^9, 3.524259716178644*^9}}], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"\[Delta]1", "0", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}]}, {"0", "\[Delta]2", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}]}, { RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}], RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}], "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{3.52401401316455*^9, 3.524259664732384*^9, 3.524259718048386*^9, 3.524306875516249*^9, 3.524307290848865*^9, 3.52430743816091*^9, 3.524307566843626*^9, 3.524308708218072*^9}] }, Open ]], Cell[TextData[{ Cell[BoxData[ ButtonBox["IntrinsicRelaxation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRelaxation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]], " supply the relaxation matrices. Add additional term \[Gamma]p for \ incoherent pumping from |1> to |3>." }], "MathCaption", CellID->610306692], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"relax", "=", RowBox[{ RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", RowBox[{"TransitRelaxation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}], "+", TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"\[Gamma]p", "0", "0"}, {"0", "0", "0"}, {"0", "0", "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]}]}], "]"}]], "Input", CellID->645617687], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"\[Gamma]p", "+", "\[Gamma]t"}], "0", "0"}, {"0", "\[Gamma]t", "0"}, {"0", "0", RowBox[{"\[CapitalGamma]", "+", "\[Gamma]t"}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{3.524014013274888*^9, 3.524259721983669*^9, 3.52430687561284*^9, 3.52430729094324*^9, 3.524307438234119*^9, 3.524307566916775*^9, 3.524308708286795*^9}] }, Open ]], Cell[TextData[{ Cell[BoxData[ ButtonBox["OpticalRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], " supply the repopulation matrices." }], "MathCaption", CellID->854192725], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"repop", "=", RowBox[{ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", RowBox[{"TransitRepopulation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}], "+", TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", "0", "0"}, {"0", "0", RowBox[{"\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]}]}], "]"}]], "Input", CellID->465762594], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}], "0", "0"}, {"0", RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}], "0"}, {"0", "0", RowBox[{"\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{3.524014013584079*^9, 3.524259725691324*^9, 3.52430687566883*^9, 3.524307291009512*^9, 3.524307438293535*^9, 3.524307567000164*^9, 3.524308708373547*^9}] }, Open ]], Cell["Here are the evolution equations.", "MathCaption", CellID->314466782], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TableForm", "[", RowBox[{"eqs", "=", RowBox[{ RowBox[{"LiouvilleEquation", "[", RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//", "Expand"}]}], "]"}]], "Input", CellID->298399236], Cell[BoxData[ TagBox[ TagBox[GridBox[{ { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox["\[Gamma]t", "2"], "-", RowBox[{"\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox["\[Gamma]t", "2"], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{"\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], Column], Function[BoxForm`e$, TableForm[BoxForm`e$]]]], "Output", CellChangeTimes->{3.524014013741555*^9, 3.524259731199048*^9, 3.524306875710959*^9, 3.524307291095*^9, 3.524307438359244*^9, 3.524307567071678*^9, 3.524308708479944*^9}] }, Open ]], Cell["Convert to c form.", "Text"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Collect", "[", RowBox[{ RowBox[{ RowBox[{"eqs", "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], "\[Rule]", RowBox[{"2", RowBox[{"E1", "/", "\[CapitalOmega]1"}]}]}], ",", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], "\[Rule]", RowBox[{"2", RowBox[{"E1c", "/", "\[CapitalOmega]1"}]}]}], ",", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[Rule]", RowBox[{"2", RowBox[{"Ef", "/", "\[CapitalOmega]2"}]}]}], ",", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[Rule]", RowBox[{"2", " ", RowBox[{"Efc", "/", "\[CapitalOmega]2"}]}]}], ",", RowBox[{"\[CapitalGamma]", "\[Rule]", RowBox[{"2", "G"}]}], ",", RowBox[{"\[Gamma]p", "\[Rule]", RowBox[{"2", "gp"}]}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{"2", "gt"}]}], ",", RowBox[{"\[Delta]1", "\[Rule]", "d1"}], ",", RowBox[{"\[Delta]2", "\[Rule]", "da"}]}], "}"}]}], ",", RowBox[{"DMElementPattern", "[", "]"}], ",", "FullSimplify"}], "]"}], "/.", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", "a__"], "[", "t", "]"}], "\[Rule]", SubscriptBox["r", "a"]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MapThread", "[", RowBox[{"Equal", ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"DMVariables", "[", "system", "]"}], "/.", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", "a__"], "[", "t", "]"}], "\[Rule]", SubscriptBox["dr", "a"]}]}], ",", "%"}], "}"}]}], "]"}], "/.", RowBox[{ RowBox[{"Complex", "[", RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]", RowBox[{"a", " ", "i"}]}]}], "\[IndentingNewLine]", RowBox[{"DeleteCases", "[", RowBox[{"%", ",", RowBox[{ RowBox[{ SubscriptBox["dr", RowBox[{"a_", ",", "b_"}]], "\[Equal]", "_"}], "/;", RowBox[{"b", "<", "a"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"StringJoin", "[", RowBox[{ RowBox[{ RowBox[{"StringReplace", "[", RowBox[{ RowBox[{ RowBox[{"ToString", "@", RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], ",", RowBox[{"{", RowBox[{ RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",", RowBox[{ RowBox[{ "\"\\"", "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], ":>", RowBox[{"\"\\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}], ",", RowBox[{ RowBox[{ "\"\\"", "~~", "r_", "~~", "\"\<,\>\"", "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", RowBox[{"r", "<>", "a", "<>", "b"}]}]}], "}"}]}], "]"}], "&"}], "/@", "%"}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{ RowBox[{ RowBox[{"NotebookDirectory", "[", "]"}], "<>", "\"\\""}], ",", "%"}], "]"}]}], "Input", CellChangeTimes->{{3.524014168318809*^9, 3.524014208362378*^9}, { 3.524259775991233*^9, 3.524259803019728*^9}, {3.524259910132192*^9, 3.524259921595321*^9}, 3.524260077001915*^9, {3.524265840178889*^9, 3.524265840456311*^9}, {3.524265923474642*^9, 3.524265929078822*^9}, { 3.524265960227649*^9, 3.52426596652093*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "1"}]], "\[Equal]", RowBox[{"gt", "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"gp", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{"G", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "2"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "gp"}], "-", RowBox[{"2", " ", "gt"}], "-", RowBox[{"d1", " ", "i"}], "+", RowBox[{"da", " ", "i"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"Ef", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "E1c"}], " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"Efc", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "G"}], "-", "gp", "-", RowBox[{"2", " ", "gt"}], "-", RowBox[{"d1", " ", "i"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "1"}]], "\[Equal]", RowBox[{ RowBox[{"i", " ", RowBox[{"(", RowBox[{"d1", "-", "da", "+", RowBox[{ RowBox[{"(", RowBox[{"gp", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", "i"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"Efc", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "2"}]], "\[Equal]", RowBox[{"gt", "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"Ef", " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"Efc", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"G", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "E1c"}], " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"Efc", " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "G"}], "-", RowBox[{"2", " ", "gt"}], "-", RowBox[{"da", " ", "i"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"Efc", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "1"}]], "\[Equal]", RowBox[{ RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"Ef", " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "G"}], "-", "gp", "-", RowBox[{"2", " ", "gt"}], "+", RowBox[{"d1", " ", "i"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "2"}]], "\[Equal]", RowBox[{ RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{"Ef", " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "G"}], "-", RowBox[{"2", " ", "gt"}], "+", RowBox[{"da", " ", "i"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"Ef", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{"2", " ", "gp", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"Ef", " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"Efc", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"G", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}]}], "}"}]], "Output", CellChangeTimes->{3.524014014687035*^9, 3.524014182827821*^9, 3.524014214903372*^9, 3.524259784109108*^9, 3.52425981618349*^9, 3.524259922834424*^9, 3.524260078672261*^9, 3.524260324306823*^9, 3.52426584452029*^9, 3.52426593042942*^9, 3.524265967369995*^9, 3.524306876032781*^9, 3.524307291231653*^9, 3.524307438516994*^9, 3.524307567220775*^9, 3.524308708599409*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "1"}]], "\[Equal]", RowBox[{"gt", "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"gp", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{"G", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "2"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "gp"}], "-", RowBox[{"2", " ", "gt"}], "-", RowBox[{"d1", " ", "i"}], "+", RowBox[{"da", " ", "i"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"Ef", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "E1c"}], " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"Efc", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "G"}], "-", "gp", "-", RowBox[{"2", " ", "gt"}], "-", RowBox[{"d1", " ", "i"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "2"}]], "\[Equal]", RowBox[{"gt", "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"Ef", " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"Efc", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"G", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "E1c"}], " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"Efc", " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "G"}], "-", RowBox[{"2", " ", "gt"}], "-", RowBox[{"da", " ", "i"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"Efc", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{"2", " ", "gp", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"Ef", " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"Efc", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"G", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}]}], "}"}]], "Output", CellChangeTimes->{3.524014014687035*^9, 3.524014182827821*^9, 3.524014214903372*^9, 3.524259784109108*^9, 3.52425981618349*^9, 3.524259922834424*^9, 3.524260078672261*^9, 3.524260324306823*^9, 3.52426584452029*^9, 3.52426593042942*^9, 3.524265967369995*^9, 3.524306876032781*^9, 3.524307291231653*^9, 3.524307438516994*^9, 3.524307567220775*^9, 3.524308708610404*^9}], Cell[BoxData["\<\"dr11_dt = gt - 2*(gp + gt)*r11 - E1*i*r13 + E1c*i*r31 + \ G*r33;\\ndr12_dt = (-gp - 2*gt - d1*i + da*i)*r12 - Ef*i*r13 + \ E1c*i*r32;\\ndr13_dt = -(E1c*i*r11) - Efc*i*r12 + (-G - gp - 2*gt - d1*i)*r13 \ + E1c*i*r33;\\ndr22_dt = gt - 2*gt*r22 - Ef*i*r23 + Efc*i*r32 + \ G*r33;\\ndr23_dt = -(E1c*i*r21) - Efc*i*r22 + (-G - 2*gt - da*i)*r23 + \ Efc*i*r33;\\ndr33_dt = 2*gp*r11 + E1*i*r13 + Ef*i*r23 - E1c*i*r31 - Efc*i*r32 \ - 2*(G + gt)*r33;\\n\"\>"], "Output", CellChangeTimes->{3.524014014687035*^9, 3.524014182827821*^9, 3.524014214903372*^9, 3.524259784109108*^9, 3.52425981618349*^9, 3.524259922834424*^9, 3.524260078672261*^9, 3.524260324306823*^9, 3.52426584452029*^9, 3.52426593042942*^9, 3.524265967369995*^9, 3.524306876032781*^9, 3.524307291231653*^9, 3.524307438516994*^9, 3.524307567220775*^9, 3.52430870861651*^9}], Cell[BoxData["\<\"/home/evmik/src/my_src/Nresonances/xmds2/Shahriar_system/\ code.txt\"\>"], "Output", CellChangeTimes->{3.524014014687035*^9, 3.524014182827821*^9, 3.524014214903372*^9, 3.524259784109108*^9, 3.52425981618349*^9, 3.524259922834424*^9, 3.524260078672261*^9, 3.524260324306823*^9, 3.52426584452029*^9, 3.52426593042942*^9, 3.524265967369995*^9, 3.524306876032781*^9, 3.524307291231653*^9, 3.524307438516994*^9, 3.524307567220775*^9, 3.524308708714171*^9}] }, Open ]], Cell[BoxData[""], "Input", CellChangeTimes->{{3.524260308571472*^9, 3.524260312167967*^9}, 3.524306978555205*^9, 3.524307013512631*^9}], Cell[" ", "Text", Editable->False, Selectable->False, CellFrame->{{0, 0}, {0, 3}}, ShowCellBracket->False, CellMargins->{{0, 0}, {1, 1}}, CellElementSpacings->{"CellMinHeight"->1}, CellFrameMargins->0, CellFrameColor->RGBColor[0, 0, 1], CellSize->{Inherited, 5}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SetOptions", "[", RowBox[{"DensityMatrix", ",", RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}]}], "]"}]], "Input", CellChangeTimes->{{3.524307000452544*^9, 3.524307000463202*^9}, { 3.524307418860458*^9, 3.524307419472997*^9}, {3.524307520189753*^9, 3.524307546020878*^9}, 3.524307592322806*^9, 3.524307883148581*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",", RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",", RowBox[{"Label", "\[Rule]", "None"}], ",", RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",", RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output", CellChangeTimes->{ 3.524307002471601*^9, 3.524307291448724*^9, {3.524307420165008*^9, 3.524307438796962*^9}, {3.524307527474511*^9, 3.524307593190057*^9}, 3.52430788535289*^9, 3.524308708803262*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"repop", "=", RowBox[{ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", RowBox[{"TransitRepopulation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}], "+", TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", "0", "0"}, {"0", "0", RowBox[{"\[Gamma]p", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]}]}], "]"}]], "Input", CellChangeTimes->{{3.524307970556094*^9, 3.524308012791452*^9}}], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}], "0", "0"}, {"0", RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}], "0"}, {"0", "0", RowBox[{"\[Gamma]p", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{{3.524307976838331*^9, 3.524308013600831*^9}, 3.524308708877245*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TableForm", "[", RowBox[{ RowBox[{"eqs", "=", RowBox[{ RowBox[{ RowBox[{"LiouvilleEquation", "[", RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], "\[Rule]", RowBox[{"2", RowBox[{"Ep", "/", "\[CapitalOmega]1"}]}]}], ",", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], "\[Rule]", RowBox[{"2", RowBox[{"Epc", "/", "\[CapitalOmega]1"}]}]}], ",", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[Rule]", RowBox[{"2", RowBox[{"Ef", "/", "\[CapitalOmega]2"}]}]}], ",", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[Rule]", RowBox[{"2", " ", RowBox[{"Efc", "/", "\[CapitalOmega]2"}]}]}], ",", RowBox[{"\[CapitalGamma]", "\[Rule]", RowBox[{"2", "G"}]}], ",", RowBox[{"\[Gamma]p", "\[Rule]", RowBox[{"2", "gp"}]}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{"2", "gt"}]}], ",", RowBox[{"\[Delta]1", "\[Rule]", "d1"}], ",", RowBox[{"\[Delta]2", "\[Rule]", "da"}]}], "}"}]}], "//", "Expand"}]}], ",", RowBox[{"TableHeadings", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.524307054351258*^9, 3.524307205361724*^9}, 3.524307262579295*^9, 3.524307393253102*^9, {3.524309375390078*^9, 3.524309380051313*^9}}], Cell[BoxData[ TagBox[ TagBox[GridBox[{ { TagBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{"gt", "-", RowBox[{"2", " ", "gp", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Epc", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{"G", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "d1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "da", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"gp", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Epc", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "Epc", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Efc", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "d1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{"G", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{"gp", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Epc", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "d1", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "da", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"gp", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Efc", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{"gt", "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Efc", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"G", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "Epc", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Efc", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "da", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"G", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Efc", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "d1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"G", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"gp", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "da", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"G", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{"2", " ", "gp", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Epc", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Efc", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"2", " ", "G", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxDividers->{ "Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {}, "Rows" -> {{False}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], OutputFormsDump`HeadedColumn], Function[BoxForm`e$, TableForm[BoxForm`e$, TableHeadings -> {{ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 1], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 2], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 3], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 1], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 2], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 3], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 1], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 2], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 3]}, None}]]]], "Output", CellChangeTimes->{ 3.524307018971411*^9, 3.524307075938764*^9, 3.524307109764846*^9, { 3.524307160561649*^9, 3.524307172673792*^9}, 3.524307206201787*^9, { 3.524307263669585*^9, 3.524307291493324*^9}, {3.524307394696453*^9, 3.524307438870627*^9}, {3.52430753126664*^9, 3.524307595687757*^9}, 3.524307887690143*^9, 3.52430801698964*^9, 3.52430870896515*^9, 3.52430938085923*^9, 3.52430978379848*^9, 3.524309869099255*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eqs", "=", RowBox[{"eqs", "/.", RowBox[{"{", RowBox[{ RowBox[{"Efc", "\[Rule]", "Ef"}], ",", " ", RowBox[{"Epc", "\[Rule]", " ", "Ep"}], ",", " ", RowBox[{"d1", "\[Rule]", RowBox[{"da", "+", "d"}]}]}], "}"}]}]}]], "Input", CellChangeTimes->{{3.524307458740539*^9, 3.524307469154199*^9}, { 3.524309130251093*^9, 3.524309138828676*^9}, 3.52430919612042*^9, { 3.524309638524346*^9, 3.524309671517801*^9}, {3.524309725894808*^9, 3.524309728377661*^9}, {3.524309817825289*^9, 3.524309863778695*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"0", "\[Equal]", RowBox[{"gt", "-", RowBox[{"2", " ", "gp", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{"G", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "da", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"d", "+", "da"}], ")"}], " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"gp", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}]}]}], ",", RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"d", "+", "da"}], ")"}], " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{"G", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{"gp", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "da", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"d", "+", "da"}], ")"}], " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"gp", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}]}]}], ",", RowBox[{"0", "\[Equal]", RowBox[{"gt", "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"G", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "da", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"G", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"d", "+", "da"}], ")"}], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"G", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"gp", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "da", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"G", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{"2", " ", "gp", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ep", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "Ef", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"2", " ", "G", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}]}], "}"}]], "Output", CellChangeTimes->{ 3.524309672083385*^9, 3.524309729281384*^9, 3.524309789339478*^9, 3.524309822769915*^9, {3.524309853706028*^9, 3.524309872142201*^9}}] }, Open ]], Cell[BoxData[ RowBox[{"Needs", "[", "\"\\"", "]"}]], "Input", CellChangeTimes->{ 3.524308087648338*^9, {3.524308961969795*^9, 3.5243090170597*^9}, { 3.524309168675656*^9, 3.524309185278702*^9}, {3.524309274048782*^9, 3.52430929781512*^9}, {3.524309386065924*^9, 3.52430939305321*^9}, { 3.524309433031015*^9, 3.524309452256637*^9}, 3.524309684685198*^9, 3.524309723959268*^9, {3.524309982508775*^9, 3.524310015946306*^9}, { 3.524310077800565*^9, 3.524310124188593*^9}, {3.524310167623911*^9, 3.524310168175304*^9}, {3.524310232289191*^9, 3.524310249731075*^9}, { 3.52431029037146*^9, 3.52431029246203*^9}, {3.524310388752021*^9, 3.524310454965432*^9}, {3.524310707096789*^9, 3.524310707339371*^9}, { 3.52431115037595*^9, 3.524311180234761*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"params", "=", RowBox[{"{", RowBox[{ RowBox[{"G", "\[Rule]", " ", RowBox[{"2", "*", "6"}]}], ",", RowBox[{"gt", "\[Rule]", " ", RowBox[{"0.01", "/", "2"}]}], ",", RowBox[{"gp", "\[Rule]", "1"}], ",", " ", RowBox[{"da", "\[Rule]", "100"}], ",", RowBox[{"Ep", "\[Rule]", " ", ".001"}], ",", RowBox[{"Ef", "\[Rule]", " ", "13"}]}], "}"}]}]], "Input", CellChangeTimes->{ 3.524308087648338*^9, {3.524308961969795*^9, 3.5243090170597*^9}, { 3.524309168675656*^9, 3.524309185278702*^9}, {3.524309274048782*^9, 3.52430929781512*^9}, {3.524309386065924*^9, 3.52430939305321*^9}, { 3.524309433031015*^9, 3.524309452256637*^9}, 3.524309684685198*^9, 3.524309723959268*^9, {3.524309982508775*^9, 3.524310015946306*^9}, { 3.524310077800565*^9, 3.524310124188593*^9}, {3.524310167623911*^9, 3.524310168175304*^9}, {3.524310232289191*^9, 3.524310249731075*^9}, { 3.52431029037146*^9, 3.52431029246203*^9}, {3.524310388752021*^9, 3.524310454965432*^9}, {3.524310707096789*^9, 3.524310707339371*^9}, { 3.52431115037595*^9, 3.524311177427666*^9}, 3.52431122885174*^9, { 3.524311524641037*^9, 3.524311524903175*^9}, {3.524312004987617*^9, 3.524312005209647*^9}, {3.5243172979346*^9, 3.524317302891587*^9}, { 3.524317367235934*^9, 3.524317385775052*^9}, {3.524317427143301*^9, 3.524317476556061*^9}, {3.52431750738962*^9, 3.524317507570649*^9}, { 3.524317545539274*^9, 3.524317545625274*^9}, {3.524318012238966*^9, 3.524318013931872*^9}, {3.524318068667338*^9, 3.524318103735068*^9}, { 3.524318211533083*^9, 3.524318213162736*^9}, {3.524318284248626*^9, 3.524318308133564*^9}, {3.524318341074253*^9, 3.524318341356755*^9}, 3.524318554444965*^9, 3.524318603003304*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"G", "\[Rule]", "12"}], ",", RowBox[{"gt", "\[Rule]", "0.005`"}], ",", RowBox[{"gp", "\[Rule]", "1"}], ",", RowBox[{"da", "\[Rule]", "100"}], ",", RowBox[{"Ep", "\[Rule]", "0.001`"}], ",", RowBox[{"Ef", "\[Rule]", "13"}]}], "}"}]], "Output", CellChangeTimes->{ 3.524311229628232*^9, 3.524311525783165*^9, 3.52431200606623*^9, { 3.524317283500434*^9, 3.52431730377196*^9}, {3.524317368176747*^9, 3.52431738681527*^9}, {3.524317429677792*^9, 3.524317477141658*^9}, 3.524317508411749*^9, 3.524317546255317*^9, 3.524318014420271*^9, { 3.524318069860861*^9, 3.52431810690484*^9}, 3.524318215399202*^9, { 3.524318285361436*^9, 3.524318308910024*^9}, 3.524318342053785*^9, 3.524318555132459*^9, 3.524318603598756*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Re", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", "params"}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Im", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", "params"}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"d", ",", RowBox[{"-", "20"}], ",", "20"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"PlotPoints", "\[Rule]", "100"}], ",", RowBox[{"MaxRecursion", "\[Rule]", "1"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", " ", RowBox[{"PlotLegend", "\[Rule]", RowBox[{"{", RowBox[{"dispersion", ",", "gain"}], "}"}]}], ",", " ", RowBox[{"LegendPosition", "\[Rule]", RowBox[{"{", RowBox[{"1.1", ",", RowBox[{"-", "0.2"}]}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.524308094188334*^9, 3.524308094191923*^9}, { 3.524308124766632*^9, 3.52430816521818*^9}, {3.524308215017632*^9, 3.52430821599524*^9}, {3.524308278827747*^9, 3.524308417340977*^9}, { 3.524308457756842*^9, 3.524308519015868*^9}, {3.524308627034058*^9, 3.524308649205349*^9}, {3.524308803024812*^9, 3.524308805097356*^9}, { 3.524308851297888*^9, 3.524308857191146*^9}, {3.524308980168808*^9, 3.52430900618334*^9}, 3.524309066640106*^9, {3.524309244411378*^9, 3.524309247426896*^9}, {3.524309455544498*^9, 3.524309458269017*^9}, { 3.524309929887741*^9, 3.524309973047037*^9}, {3.524310032108643*^9, 3.5243100388017*^9}, {3.524310105170209*^9, 3.524310107302507*^9}, 3.524310260188325*^9, {3.524310401182218*^9, 3.524310401316028*^9}, { 3.524310445626734*^9, 3.524310579827762*^9}, 3.524310745021266*^9, { 3.524310821036282*^9, 3.524310838368384*^9}, {3.524311016000181*^9, 3.524311029712519*^9}, {3.524311758192257*^9, 3.524311758374465*^9}, 3.524312080157748*^9, {3.524317317505721*^9, 3.524317351600485*^9}, { 3.524317407104004*^9, 3.52431740849332*^9}, {3.524318234988842*^9, 3.524318240790222*^9}}], Cell[BoxData[ GraphicsBox[{InsetBox[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwt1fs/1PkewPGhaFyWKJRLGEWRy5jcNn3ng+NaCbV2G5cmVkqptCpUJHIp JYsYodDmiA1RiXrPx3eGuVG5ZCopm1tlEytRbuecx+P88Ho8/4SXYcgRvzBZ CoUS/d/+51//tv+2uMjAvVOJRFIRCcGDYg3nJwx8ts1XL7GYhF79IOvkQgae YReN1F0noUfygpG3j4FtH6nlbSkhoePkLpvbVgzMecXyoJaR4Fdno+yzYI2X He8vHb9JQteY5sCUxBpHjsv5rywn4Vx1ek5+gTU21/Rw2F9BgtXROdfNB6yx py/r6XQlCYElv7y+w7DGYtcazaXVJKR31h+jLdBx9UE1PdZdEj7ttPeyLKDj 4Jh+G/ZDErbfvzzaZ07HfzQyt9iSJCgYUZ1TeFZ4xtWhlt5GwrM721x2sa1w x8Dcnsc9JJjYCXXTPljiYIsOAWeABL73JWqdgSWuDY8rkZ8gYfWp/OCOAAu8 b9lOJ84iCWEHPD0YKeb4ss5oiJYaD4S5V1L7YSP23Dhhv8qIB0bJZ1gdw2Z4 duLUfJY9D2xSa/LuqZvh58N51YIdPAgWxpoObTPFn8OLNE6G8yBB8t7nlxMb 8CRnoiojiQcPlMfaNO+sx3dUH2Zb3uDBiCrn9arnJlj4dN54BcmDJyYX/FUo Jlg8K//g9DAP2s6oGe9wMMbt9CzinBIfmnOJ9K6963CvOLbC3Y4P7aMyzmX5 a3H/sebqt6F8uOKvFLavywivmZynHszmw9akRp3IeRpOzpjSqZfwQW9s0YRr Q8OlZYu6q+VaYER7VLAryBCff7fLku7ZAvsDdTv70gzwLKW08M/fW0CmQRD6 63l9fD/ENUra1wKGm0u9cqR6uBXtph+3a4UjP1a8ZrnpYtphs++V2a1gFuro Qn2sjWuvXb1lMN0KUlWdDkf11djfcebW5cMCqLU3VqQma+EHmatXbv8ogLih 0xGsbg28Z65/ZDhBCFEqlBMuTiuxv7e8WoCuCHrYqv4r7qtjQfDw5lmBCMzs IoIiFNRwkFL/+jmOGAJXDOjX/KOCK6QUL5cYCTjhtC5OphI+sO2ix9qLbbAE u1n5OlKxaZiyyg9kOxg0BA3Y0OTw580jk0OqT0G3QWlofYsM/tb2NjVu9zMY Ya+L+915nht4VpZV69gBPtOhpw9rT3MnK/jEiS2dcLLomU74oXEuK6/y0qfT XXB7/5un0XsHuRrb5chPwm7IWON/TMTs5Y7yFExjk55DuvRNul+shLtsZ/JP L+x7oF8n8fuYZTx3ubakfp+0ByQttgU7r4qYY0lkQIWXFNrfP5oLMn3JlI0f F1yPlALLzlJTxH/H3LSn/p2pjhQyP3ZccYv7wPQtvy+o++c5vPNulHunNc6c 52epLuR0gWHN3UO/OUwy3VxfXMyTeQZstcqupQFfmaV5XotaVq2AI5T/TuV+ Y3aWUprdF+6CAT9yqdLaeSajpVF8LbCA8AvrdWA7UpBge8/8x3tNRPb7hInG YRk028fxXvRqIco/T8/HRy9Br5ISecrhIqLp6xFFF1k5lHrzgQvFV0K8jS38 nFArjzZOfT3peltCLJkXdj9iU1GYIi/GZURMfF8iUgmdVEDG5+zarpaKiHFF kYdCihIaGoygmmgLCUprzYq0ayrI3rhJxneIT3AeUTzmvi1HJXURgzFFzcTS grlXRenqqOvJbGP4y8dEwmSVW8OPK9FopXuu56sGIsOoo290QANtNuk39rxb TxyUCkVpR7XQve8xGXohtUTAsuOXi9esRudGfLg+nCpCr+lLuV6NNtLsPfRE WlJOHHV9//c9B12EPvRuaWeXEd1brygKBvXQRfXg+ENVxYRij9IZp9/0kcz0 kHemQj6xYUzv14IsA9QZsvtUclUWYVunX+8RYIjOqRuZPRSlERmhvZwlhjRk ev4+yl+IJz76TozGTdOQbgr/zEjrAYIuG/X+FtcIqVR6FL/BznB23Ms3M38t 8hZbbNN1i4JV4jc7kiPXIacPIV8+pccDJ+z1jPkmY9R0Ru2YwYdkoDE3qeQo maCiycJHkWcvQO6rqfY73SYoe0rGJdkjE3z2Rhn1cNajq//6WZvVngUrjd2H Hh7ZgPYmepz3+5oNzVUpvn52psh2kVLH6cyFE1EGpuWqZuhlkmzny+o8iDaM zqcOmqFe5+VubWwOBGTTa9fc3ojKT9Zc7ZYWgJeLp+3EWXOk8F0jiupXCLR7 4rAYTwskuhh1vKygCFzU5c2UVSzRDXn9C52CYjj057XAwAFLNOOemmPw7Tow z28vtPrJCq1I77pSl3gD2vzikFqzFZqIsR1ppJaAt8xrh7Z1dFRjUZaP40sg +g/t+EtpdJQs8Z6JHS2B4v0pM1WTdKQESf4bWaXwWNlEeOtna5S/SSvPvKkU +p9+aV/gWaNG2njDJ70yKE+7vibIgoHg6FavgZgyCKUl8HOzGMh209H2ZmEZ lA71vhELGehmfJ+T42QZ/P+XqLaKq8bWvQn/AXchtYQ= "]]}, {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" 1:eJwtlmk4FOoCgAfVGZS1KOsYaySzkMj55kNJoyNGlmvLehJFJBVm7MyIkBQV nTaVmChKxTdfkZ2QqCxZo0i0WIrcc5/n/nif9+f791XzCWH5CxMIhIx/+Z+H bm9fXFmhYzte4MhtxzTkOdq0waKNjpcyLL16pNNQr6oHLfEyHdf6H3Mubz2N Ok7sNyqi0PFa5qzr8+2n0atpuZEfzTQ8PHPuAqE4FVGOLu3acYiGddLHPAxJ qYjXWR5G/k3FNu8tvHcm89Bnh+1Mg4tU7Fco6bLlOxf99fDMZL8+FQeokJi9 LC4SVSdaJNdQ8FkCFpUtS0Ht/L2W+70oOP/8aLFALgVpGzcocT8aYD/JgFTT oGRUa5tOfEAywKNNtxYe1yWhTVG5nh1uW7GjC61siJSE/A/tsaYn6+N76ZS7 2w8mooaczJRBtAWrEktiCOUJSD2R7drxQQ8nPWm3DfkUj4xSSi9UyOhhs3k2 11opHnk2nNId26uLKeOhxdghDsU0T9i5RGzGTJ9dhuSjsejR2ukWOb4Ovv/M 7vE6cgwal8zr2/haGwd8X2R5abBRm3aqkwRBG18f4G+WkYlCLWxprX0mWnhY sJ+qvPoUepYDeK+8NbHdm7W01MII1DopZHE9VwNPyybO7LMOR5lO4v5/v1LH fHXx4UPNocgm4YnikWUylhK6ekW49ghSnl7RFhiRsavtizju+4NoXGGyfr+H Gu68Ofzs+YQXCnBX6uznkrCq0jpf60YWEqqs9/VLUsUUqYRWxyZdpLbjGvNc jzI+xFeIUw60BSGmd/pcrZRw59iDmvs7vYGer5klsVoBk8pGbXJ7g0CPpGKH mcwmzFpDeBcWFA7KtmuJERPlsXy35Pkd9lEgciw60LVrA+ZkOGiTfsSBUAlC hKX5enzylH4vvSAZdHtJOsk+lMEjS+XptjOnAaGl6i16L42dxbsVBmgZQM84 0CNQVBpLvmiXV/bJAocHS7Z5m0vhuzObHfIMs4G77Ihq6VcJLBx721ObngPa PlYsapivw9MBV6Tkcy4Ac8x9lZchju2CrU34phcBGY/H/RgTxb+pZ8ZXkfKB CLai2JsRsaJekXjY1n+AjFknz/LeGhw0JVExNHAVkCo9RozIqzHHoUOm5fl1 oFJp6HfvmAi2oA7+ypctBEqV4mM6L4Swn/AlYVh5G1gbSkqb0AmYh66g37y7 YNxLM/KsxbKge8iGeKKGD5SKd0bFbv0pqEvL+RhBKwN2877RwQrzgoimyT/z mA+AH1OhJbDmm2Dfetn6LV8rwIn8dsWDh2cEG8q4A6Vyj0FLhyBBLf+TQEsj qc4/swoUBQy8DPceFSiNrJysccYgTcUprJHRK2Dp2Vfr/VEDeD0DPNapZkFj O3XHnE0dGFSM+zltwBEcvPj+uaFRE2h+se2iw/lGRhWLfXXqRxtonaha8tB9 yyjof1wYR+4ErsYGco21wwzjKvmpPX++BhmfOjKtIj8yUtozxAYk34Jh2yer h+VnGPH9+3cdVe0HaqX3Dx8z+cb4O9AqfdJxEHhJ3321ym2OEUgUjhAtGgI4 cO1UimCRwepTEVMyHgak2iOrxDWWGUH3Nn94fWMIsPx7TbzMCPCXOZPcozkI sidiZp98EII3hfq/lsI+cOvL/DInXAReCsnDv+Eb8HQuRMxSeDU8HPxAvojT Bd6fuvwlpmwNtDMTkEan24HIckNXlRcRytZxDix8bgY/RRolfL+JQqJ3fE+v Vz2YEWu0Fk0Wh2HEmeoDN2vAyQkzfoPUOjgrp/qm/gYGhLpSWe4lCbhLK+5b o1MVaMmY0hlUl4InSn40zn5+BPKqCNZLi1LQZ8h53sOuHNje5Ui3PpOGX6Dp 6TvxZWDVxaV3+TwZaD1qZdO2lw+e13VJ6fnIwrbgy4+tft8BMd+KrSpN18Nt ghaKqWchSBZnyLAkN8AliwmXXpfrIE29o39yZAO8vETpodb8A6KXWxxMi+Sg m3FQ7pRrPgjqaWjkHpWH66wXxt0f5gHfLyrF2bs3wv8ssZSSLM8Dtz+OnylQ 2QSf0rrSPc2zgdmQoaLn+CYY+4bhf6EhEyg//X5LuVQBkq+cezSjnw6sYoOb PoYrwkyfrjUSLjxwdNfEVIWJEuTpEeauTySBa9ZVUUBSGQrbCMtRsuNBl02m WP2oMizaLT7USY0BX6TaLFcVq0By78/YZlokEOsWZ5sfU4VmheYewSXHwYUp +6x8TRL8DkssFhihYPO0st/FLBKs9/Fa0kgIBKXtKmmhcyQYLTRVPot8wbYH quXWbmqQOFdXPabpBrxPL2tpITXYHVZ833S9HUjz7c0TUSNDv/KjFn4PjcFT 1w8WjDQy1AiLJnvmUdAn+9nJyHkydLtqacN/yERU4dCJQoE6HE48UBOY4I5i Z5j2Gbka0CC3fV7ayB9tbBrYl3hEExK1hT5xfwWiPP++BX1DLVjw8KWLQm4I IjMMJc6Ja8M53Wi1vNlQlPPuRyu/SxumRrisX3P3GLLzDlXvztOBA/RDBxrJ x9F6rd1jj0M2Q5JKOJpLiEDPipPtWca6UOKRDvHG1RMoIpSke0tSD77ya9lG 5Z9E4WrhucRRPVhYHV/xM+sUcsumlqkUbYFT7GzHMmYkYlru2TYbqw89V2zF ShYiEbmiyf/knq2w4P6vncFJUchSZo3eWgkDGGn6qzFnOQodLrnk7j5iAM3m ljw9gqMRI+mvyxRHChQ70fRxsSEatbAiofQzCuR2ccPIymxkK9Rn0qJJhUW+ /ENLB9jI2+FX7xZnKhzPNh0XYrNR+E0FTjqXCjeKdDdXX2Aj0RS7HcqICs+8 OT9gc5+NCgKSF4q/UWF3prfRsSY24j9xGryjSYM8IwenrwNsVL1Wu6HQmQYr RcKMs2f/7U2va+5Mp8FpHS3XWhEOGnz5vfV3DQ3qpq4Yrshy0M4tzDn9RRrM Knz/kkTmoFvcKyoeW+nwbHaKydmtHJTkmBG6eIAO3buFCqq2c5AvOaY2J4sO iRtsdXPMOejaWO9AUwMd6jKkM7/v4aD//w10iBF17rPjoP8CPVJGmA== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, DisplayFunction:>$DisplayFunction, FormatType->TraditionalForm, Frame->True, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}], {-1, -0.6180339887498948}, { Left, Bottom}, {2, 1.2360679774997896`}], GraphicsGroupBox[{ {GrayLevel[0], RectangleBox[{1.1500000000000001`, -0.25}, \ {1.9500000000000002`, 0.3500000000000001}]}, {GrayLevel[1], EdgeForm[{GrayLevel[0], Thickness[0.001]}], GraphicsGroupBox[{ RectangleBox[{1.1, -0.2}, {1.9000000000000001`, 0.4000000000000001}], InsetBox[ GraphicsBox[{{{InsetBox[ GraphicsBox[ {Hue[0.9060679774997897, 0.6, 0.6], LineBox[{{0, 0}, {1, 0}}]}], {0.08, 0.08}, { Left, Bottom}, {1, 1}], InsetBox["gain", {1.2100000000000002`, 0.58}, {-1, 0}, Automatic, {1, 0}]}, {InsetBox[ GraphicsBox[ {Hue[0.67, 0.6, 0.6], LineBox[{{0, 0}, {1, 0}}]}], {0.08, 1.24}, { Left, Bottom}, {1, 1}], InsetBox["dispersion", {1.2100000000000002`, 1.74}, {-1, 0}, Automatic, {1, 0}]}}, {}}, AspectRatio->0.7500000000000001, FormatType->TraditionalForm, PlotRange->{{-0.1, 3.26}, {-0.1, 2.42}}], {1.1, -0.2}, { Left, Bottom}, {0.8, 0.6000000000000001}]}]}}]}, AspectRatio->Automatic, Background->None, ColorOutput->Automatic, ImageSize->Automatic, PlotRange->All]], "Output", CellChangeTimes->{{3.524310696655616*^9, 3.524310712400555*^9}, 3.524310748075032*^9, 3.524310842512368*^9, 3.524311025047665*^9, 3.524311165720685*^9, 3.524311199077887*^9, 3.524311239713523*^9, 3.524311537889152*^9, 3.524311765539826*^9, 3.524312087990248*^9, { 3.524317311737578*^9, 3.52431746842431*^9}, 3.524317500981639*^9, 3.524317536105704*^9, 3.524318026001136*^9, {3.524318084948051*^9, 3.524318116548036*^9}, {3.524318225225333*^9, 3.524318250029337*^9}, { 3.524318296178135*^9, 3.5243183252333*^9}, 3.524318564720048*^9, 3.524318612822276*^9}] }, Open ]], Cell[BoxData[""], "Input", CellChangeTimes->{{3.524310661537552*^9, 3.524310661580805*^9}}], Cell[BoxData[""], "Input", CellChangeTimes->{{3.524308167496655*^9, 3.524308225146567*^9}, { 3.524308611599059*^9, 3.524308618637643*^9}, {3.524308681290815*^9, 3.524308696030959*^9}, 3.524308787305737*^9, {3.524309309530025*^9, 3.524309327226821*^9}}] }, Open ]] }, WindowSize->{936, 1054}, WindowMargins->{{Automatic, 0}, {Automatic, 0}}, ShowSelection->True, Magnification->1.5, FrontEndVersion->"8.0 for Linux x86 (32-bit) (February 23, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 36, 0, 110, "Section"], Cell[606, 24, 66, 1, 63, "MathCaption", CellID->836781195], Cell[675, 27, 85, 2, 43, "Input", CellID->2058623809], Cell[763, 31, 1128, 37, 94, "Text", CellID->525777075], Cell[1894, 70, 112, 3, 63, "MathCaption", CellID->429217524], Cell[2009, 75, 1057, 27, 179, "Input", CellID->433132487], Cell[3069, 104, 125, 3, 63, "MathCaption", CellID->133602844], Cell[CellGroupData[{ Cell[3219, 111, 784, 23, 71, "Input"], Cell[4006, 136, 1103, 31, 70, "Output"] }, Open ]], Cell[5124, 170, 166, 4, 86, "MathCaption", CellID->462076121], Cell[CellGroupData[{ Cell[5315, 178, 508, 15, 98, "Input"], Cell[5826, 195, 1584, 43, 105, "Output"] }, Open ]], Cell[7425, 241, 76, 1, 63, "MathCaption", CellID->358620443], Cell[CellGroupData[{ Cell[7526, 246, 530, 16, 71, "Input", CellID->167259034], Cell[8059, 264, 751, 14, 141, "Output"] }, Open ]], Cell[8825, 281, 182, 4, 86, "MathCaption", CellID->577766068], Cell[CellGroupData[{ Cell[9032, 289, 1156, 31, 98, "Input"], Cell[10191, 322, 1674, 46, 138, "Output"] }, Open ]], Cell[11880, 371, 456, 13, 88, "MathCaption", CellID->610306692], Cell[CellGroupData[{ Cell[12361, 388, 933, 25, 154, "Input", CellID->645617687], Cell[13297, 415, 895, 23, 99, "Output"] }, Open ]], Cell[14207, 441, 390, 12, 64, "MathCaption", CellID->854192725], Cell[CellGroupData[{ Cell[14622, 457, 1070, 29, 155, "Input", CellID->465762594], Cell[15695, 488, 1405, 39, 127, "Output"] }, Open ]], Cell[17115, 530, 76, 1, 63, "MathCaption", CellID->314466782], Cell[CellGroupData[{ Cell[17216, 535, 250, 7, 43, "Input", CellID->298399236], Cell[17469, 544, 16224, 431, 342, "Output"] }, Open ]], Cell[33708, 978, 34, 0, 42, "Text"], Cell[CellGroupData[{ Cell[33767, 982, 3830, 101, 404, "Input"], Cell[37600, 1085, 6056, 190, 260, "Output"], Cell[43659, 1277, 4176, 129, 179, "Output"], Cell[47838, 1408, 860, 12, 287, "Output"], Cell[48701, 1422, 486, 7, 43, "Output"] }, Open ]], Cell[49202, 1432, 140, 2, 43, "Input"], Cell[49345, 1436, 271, 9, 15, "Text"], Cell[CellGroupData[{ Cell[49641, 1449, 420, 7, 71, "Input"], Cell[50064, 1458, 593, 12, 71, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[50694, 1475, 1078, 28, 155, "Input"], Cell[51775, 1505, 1211, 35, 126, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[53023, 1545, 1895, 48, 166, "Input"], Cell[54921, 1595, 9792, 264, 243, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[64750, 1864, 565, 12, 43, "Input"], Cell[65318, 1878, 6937, 196, 260, "Output"] }, Open ]], Cell[72270, 2077, 793, 12, 43, "Input"], Cell[CellGroupData[{ Cell[73088, 2093, 1784, 31, 43, "Input"], Cell[74875, 2126, 805, 16, 43, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[75717, 2147, 2570, 55, 179, "Input"], Cell[78290, 2204, 8102, 147, 250, "Output"] }, Open ]], Cell[86407, 2354, 92, 1, 43, InheritFromParent], Cell[86502, 2357, 264, 4, 43, "Input"] }, Open ]] } ] *) (* End of internal cache information *)