(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 63341, 1878] NotebookOptionsPosition[ 61116, 1798] NotebookOutlinePosition[ 61481, 1814] CellTagsIndexPosition[ 61438, 1811] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["set up the system", "Section"], Cell["This loads the package.", "MathCaption", CellID->836781195], Cell[BoxData[ RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input", CellID->2058623809], Cell[TextData[{ "We define an atomic system consisting of two even-parity lower states and \ two odd-parity upper states. We apply a light field with components at \ frequencies ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], " (near resonant with the ", Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]", RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], " transition), ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], " (near resonant with the ", Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], " transition), and ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "c"], "InlineMath"], TraditionalForm]]], " (near resonant with the ", Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], " transition)." }], "Text", CellID->525777075], Cell["\<\ Define the atomic system. Three level \[CapitalLambda] system\ \>", "MathCaption", CellID->429217524], Cell[BoxData[ RowBox[{ RowBox[{"system", "=", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"AtomicState", "[", RowBox[{"1", ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"2", ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"3", ",", RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]"}], ",", RowBox[{"Energy", "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", RowBox[{"1", "/", "2"}]}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", RowBox[{"1", "/", "2"}]}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]", "}"}]}], ";"}]], "Input", CellID->433132487], Cell["\<\ Define the optical field. Field (1) is probe, fields (2) and (3) are pumps\ \>", "MathCaption", CellID->133602844], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"field", "=", RowBox[{ RowBox[{"OpticalField", "[", RowBox[{"\[Omega]1", ",", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]1", "/", RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", "\[Phi]1"}], "}"}]}], "]"}], "+", RowBox[{"OpticalField", "[", RowBox[{"\[Omega]2", ",", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]2", "/", RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", "\[Phi]2"}], "}"}]}], "]"}], "+", RowBox[{"OpticalField", "[", RowBox[{"\[Omega]3", ",", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]3", "/", RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", "\[Phi]3"}], "}"}]}], "]"}]}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"\[Phi]1", "-", RowBox[{"t", " ", "\[Omega]1"}]}], ")"}]}]], " ", "\[CapitalOmega]1"}], RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"\[Phi]2", "-", RowBox[{"t", " ", "\[Omega]2"}]}], ")"}]}]], " ", "\[CapitalOmega]2"}], RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"\[Phi]3", "-", RowBox[{"t", " ", "\[Omega]3"}]}], ")"}]}]], " ", "\[CapitalOmega]3"}], RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]]}], ",", "0", ",", "0"}], "}"}]], "Output"] }, Open ]], Cell["\<\ The Hamiltonian for the system subject to the optical field. Probe couples \ |1> and |3>, Pumps couple |2> and |3>.\ \>", "MathCaption", CellID->462076121], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"H", "=", RowBox[{ RowBox[{"Expand", "@", RowBox[{"Hamiltonian", "[", RowBox[{"system", ",", RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "_", "]"}], " ", RowBox[{"ReducedME", "[", RowBox[{"_", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]", "0"}]}]}], "]"}]], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"Energy", "[", "1", "]"}], "0", RowBox[{ RowBox[{"-", "\[CapitalOmega]1"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]1", "-", RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}]}, {"0", RowBox[{"Energy", "[", "2", "]"}], RowBox[{ RowBox[{ RowBox[{"-", "\[CapitalOmega]2"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]2", "-", RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], "-", RowBox[{"\[CapitalOmega]3", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]3", "-", RowBox[{"t", " ", "\[Omega]3"}]}], "]"}]}]}]}, { RowBox[{ RowBox[{"-", "\[CapitalOmega]1"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]1", "-", RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}], RowBox[{ RowBox[{ RowBox[{"-", "\[CapitalOmega]2"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]2", "-", RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], "-", RowBox[{"\[CapitalOmega]3", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]3", "-", RowBox[{"t", " ", "\[Omega]3"}]}], "]"}]}]}], "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["The level diagram for the system.", "MathCaption", CellID->358620443], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"LevelDiagram", "[", RowBox[{"system", ",", RowBox[{"H", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", RowBox[{"-", "1.5"}]}], ",", RowBox[{ RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", RowBox[{"-", "1"}]}], ",", RowBox[{ RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}], "]"}]], "Input", CellID->167259034], Cell[BoxData[ GraphicsBox[{{{{}, LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{}, LineBox[{{-0.9, -1}, {-0.09999999999999998, -1}}]}, {{}, LineBox[{{0.09999999999999998, 0}, {0.9, 0}}]}}, {{}, {}, {}}, {Arrowheads[{-0.07659574468085106, 0.07659574468085106}], ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}], ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.}}]}, {PointSize[0.0225]}}, ImagePadding->{{2, 2}, {2, 2}}, ImageSize->94.]], "Output"] }, Open ]], Cell["\<\ Apply the rotating-wave approximation to the Hamiltonian. \[Delta]a is \ average pump detuning, \[Delta] is relative pump detuning.\ \>", "MathCaption", CellID->577766068], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"Hrwa", "=", RowBox[{ RowBox[{"RotatingWaveApproximation", "[", RowBox[{"system", ",", RowBox[{"H", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]2", "\[Rule]", RowBox[{"\[Omega]a", "-", RowBox[{"\[Delta]", "/", "2"}]}]}], ",", RowBox[{"\[Omega]3", "\[Rule]", RowBox[{"\[Omega]a", "+", RowBox[{"\[Delta]", "/", "2"}]}]}]}], "}"}]}], ",", RowBox[{"{", RowBox[{"\[Omega]1", ",", "\[Omega]a"}], "}"}], ",", RowBox[{"TransformMatrix", "\[Rule]", RowBox[{"MatrixExp", "[", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", RowBox[{"DiagonalMatrix", "[", RowBox[{"{", RowBox[{ RowBox[{"-", "\[Omega]1"}], ",", RowBox[{"-", "\[Omega]a"}], ",", "0"}], "}"}], "]"}]}], "]"}]}]}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]1", "\[Rule]", RowBox[{ RowBox[{"-", RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",", RowBox[{"\[Omega]a", "\[Rule]", RowBox[{ RowBox[{"-", RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]a"}]}]}], "}"}]}]}], ")"}], "//", "MatrixForm"}]], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"\[Delta]1", "0", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}]}, {"0", "\[Delta]a", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2"}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3"}]}]}, { RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}], RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2"}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3"}]}], "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell[TextData[{ Cell[BoxData[ ButtonBox["IntrinsicRelaxation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRelaxation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]], " supply the relaxation matrices. Add additional term \[Gamma]p for \ incoherent pumping from |1> to |3>." }], "MathCaption", CellID->610306692], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"relax", "=", RowBox[{ RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", RowBox[{"TransitRelaxation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}], "+", TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"\[Gamma]p", "0", "0"}, {"0", "0", "0"}, {"0", "0", "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]}]}], "]"}]], "Input", CellID->645617687], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"\[Gamma]p", "+", "\[Gamma]t"}], "0", "0"}, {"0", "\[Gamma]t", "0"}, {"0", "0", RowBox[{"\[CapitalGamma]", "+", "\[Gamma]t"}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell[TextData[{ Cell[BoxData[ ButtonBox["OpticalRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], " supply the repopulation matrices." }], "MathCaption", CellID->854192725], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"repop", "=", RowBox[{ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", RowBox[{"TransitRepopulation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}], "+", TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0"}, {"0", "0", "0"}, {"0", "0", RowBox[{"\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]}]}], "]"}]], "Input", CellID->465762594], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}], "0", "0"}, {"0", RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}], "0"}, {"0", "0", RowBox[{"\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["Here are the evolution equations.", "MathCaption", CellID->314466782], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TableForm", "[", RowBox[{"eqs", "=", RowBox[{ RowBox[{"LiouvilleEquation", "[", RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//", "Expand"}]}], "]"}]], "Input", CellID->298399236], Cell[BoxData[ TagBox[ TagBox[GridBox[{ { RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox["\[Gamma]t", "2"], "-", RowBox[{"\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]a", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]a", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox["\[Gamma]t", "2"], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]a", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]a", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"\[Gamma]p", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[CapitalOmega]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[CapitalOmega]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "-", RowBox[{"\[CapitalGamma]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], Column], Function[BoxForm`e$, TableForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["Convert to c form.", "Text"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Collect", "[", RowBox[{ RowBox[{ RowBox[{"eqs", "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], "\[Rule]", RowBox[{"2", RowBox[{"E1", "/", "\[CapitalOmega]1"}]}]}], ",", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], "\[Rule]", RowBox[{"2", RowBox[{"E1c", "/", "\[CapitalOmega]1"}]}]}], ",", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[Rule]", RowBox[{"2", RowBox[{"d", "[", "t", "]"}], RowBox[{"E2", "/", "\[CapitalOmega]2"}]}]}], ",", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[Rule]", RowBox[{"2", RowBox[{"dc", "[", "t", "]"}], RowBox[{"E2c", "/", "\[CapitalOmega]2"}]}]}], ",", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[Rule]", RowBox[{"2", RowBox[{"dc", "[", "t", "]"}], RowBox[{"E3", "/", "\[CapitalOmega]3"}]}]}], ",", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[Rule]", RowBox[{"2", RowBox[{"d", "[", "t", "]"}], RowBox[{"E3c", "/", "\[CapitalOmega]3"}]}]}], ",", RowBox[{"\[CapitalGamma]", "\[Rule]", RowBox[{"2", "G"}]}], ",", RowBox[{"\[Gamma]p", "\[Rule]", RowBox[{"2", "gp"}]}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{"2", "gt"}]}]}], "}"}]}], ",", RowBox[{"DMElementPattern", "[", "]"}], ",", "FullSimplify"}], "]"}], "/.", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", "a__"], "[", "t", "]"}], "\[Rule]", SubscriptBox["r", "a"]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MapThread", "[", RowBox[{"Equal", ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"DMVariables", "[", "system", "]"}], "/.", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", "a__"], "[", "t", "]"}], "\[Rule]", SubscriptBox["dr", "a"]}]}], ",", "%"}], "}"}]}], "]"}], "/.", RowBox[{ RowBox[{"Complex", "[", RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]", RowBox[{"a", " ", "i"}]}]}], "\[IndentingNewLine]", RowBox[{"DeleteCases", "[", RowBox[{"%", ",", RowBox[{ RowBox[{ SubscriptBox["dr", RowBox[{"a_", ",", "b_"}]], "\[Equal]", "_"}], "/;", RowBox[{"b", "<", "a"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"StringJoin", "[", RowBox[{ RowBox[{ RowBox[{"StringReplace", "[", RowBox[{ RowBox[{ RowBox[{"ToString", "@", RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], ",", RowBox[{"{", RowBox[{ RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",", RowBox[{ RowBox[{ "\"\\"", "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], ":>", RowBox[{"\"\\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}], ",", RowBox[{ RowBox[{ "\"\\"", "~~", "r_", "~~", "\"\<,\>\"", "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", RowBox[{"r", "<>", "a", "<>", "b"}]}]}], "}"}]}], "]"}], "&"}], "/@", "%"}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{ RowBox[{ RowBox[{"NotebookDirectory", "[", "]"}], "<>", "\"\<\\\\code.txt\>\""}], ",", "%"}], "]"}]}], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "1"}]], "\[Equal]", RowBox[{"gt", "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"gp", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{"G", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "2"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "gp"}], "-", RowBox[{"2", " ", "gt"}], "-", RowBox[{"i", " ", "\[Delta]1"}], "+", RowBox[{"i", " ", "\[Delta]a"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E2", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E3", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "E1c"}], " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E3c", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E2c", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "G"}], "-", "gp", "-", RowBox[{"2", " ", "gt"}], "-", RowBox[{"i", " ", "\[Delta]1"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "1"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "gp"}], "-", RowBox[{"2", " ", "gt"}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{"\[Delta]1", "-", "\[Delta]a"}], ")"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E3c", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E2c", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "2"}]], "\[Equal]", RowBox[{"gt", "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E2", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E3", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E3c", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E2c", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"G", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "E1c"}], " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E3c", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E2c", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "G"}], "-", RowBox[{"2", " ", "gt"}], "-", RowBox[{"i", " ", "\[Delta]a"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E3c", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E2c", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "1"}]], "\[Equal]", RowBox[{ RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E2", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E3", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "G"}], "-", "gp", "-", RowBox[{"2", " ", "gt"}], "+", RowBox[{"i", " ", "\[Delta]1"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "2"}]], "\[Equal]", RowBox[{ RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E2", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E3", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "G"}], "-", RowBox[{"2", " ", "gt"}], "+", RowBox[{"i", " ", "\[Delta]a"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E2", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E3", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{"2", " ", "gp", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E2", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E3", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E3c", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E2c", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"G", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}]}], "}"}]], "Output"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "1"}]], "\[Equal]", RowBox[{"gt", "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"gp", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{"G", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "2"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "gp"}], "-", RowBox[{"2", " ", "gt"}], "-", RowBox[{"i", " ", "\[Delta]1"}], "+", RowBox[{"i", " ", "\[Delta]a"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E2", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E3", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "E1c"}], " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E3c", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E2c", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "G"}], "-", "gp", "-", RowBox[{"2", " ", "gt"}], "-", RowBox[{"i", " ", "\[Delta]1"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "2"}]], "\[Equal]", RowBox[{"gt", "-", RowBox[{"2", " ", "gt", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E2", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E3", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E3c", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E2c", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"G", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "E1c"}], " ", "i", " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E3c", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E2c", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "G"}], "-", RowBox[{"2", " ", "gt"}], "-", RowBox[{"i", " ", "\[Delta]a"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E3c", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E2c", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{"2", " ", "gp", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"E1", " ", "i", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E2", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E3", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"E1c", " ", "i", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E3c", " ", RowBox[{"d", "[", "t", "]"}]}], "+", RowBox[{"E2c", " ", RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"G", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}]}], "}"}]], "Output"], Cell[BoxData["\<\"dr11_dt = gt - 2*(gp + gt)*r11 - E1*i*r13 + E1c*i*r31 + \ G*r33;\\ndr12_dt = (-gp - 2*gt - i*\[Delta]1 + i*\[Delta]a)*r12 - i*(E2*d(t) \ + E3*dc(t))*r13 + E1c*i*r32;\\ndr13_dt = -(E1c*i*r11) - i*(E3c*d(t) + \ E2c*dc(t))*r12 + (-G - gp - 2*gt - i*\[Delta]1)*r13 + E1c*i*r33;\\ndr22_dt = \ gt - 2*gt*r22 - i*(E2*d(t) + E3*dc(t))*r23 + i*(E3c*d(t) + E2c*dc(t))*r32 + \ G*r33;\\ndr23_dt = -(E1c*i*r21) - i*(E3c*d(t) + E2c*dc(t))*r22 + (-G - 2*gt - \ i*\[Delta]a)*r23 + i*(E3c*d(t) + E2c*dc(t))*r33;\\ndr33_dt = 2*gp*r11 + \ E1*i*r13 + i*(E2*d(t) + E3*dc(t))*r23 - E1c*i*r31 - i*(E3c*d(t) + \ E2c*dc(t))*r32 - 2*(G + gt)*r33;\\n\"\>"], "Output"], Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\xmds2\\\\\ Shahriar_system\\\\\\\\code.txt\"\>"], "Output"] }, Open ]] }, Open ]] }, WindowSize->{1010, 875}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, ShowSelection->True, FrontEndVersion->"7.0 for Microsoft Windows (64-bit) (February 18, 2009)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 36, 0, 71, "Section"], Cell[606, 24, 66, 1, 43, "MathCaption", CellID->836781195], Cell[675, 27, 85, 2, 31, "Input", CellID->2058623809], Cell[763, 31, 1290, 44, 47, "Text", CellID->525777075], Cell[2056, 77, 112, 3, 43, "MathCaption", CellID->429217524], Cell[2171, 82, 1057, 27, 112, "Input", CellID->433132487], Cell[3231, 111, 125, 3, 43, "MathCaption", CellID->133602844], Cell[CellGroupData[{ Cell[3381, 118, 1085, 32, 52, "Input"], Cell[4469, 152, 1306, 40, 53, "Output"] }, Open ]], Cell[5790, 195, 166, 4, 43, "MathCaption", CellID->462076121], Cell[CellGroupData[{ Cell[5981, 203, 508, 15, 31, "Input"], Cell[6492, 220, 1755, 50, 71, "Output"] }, Open ]], Cell[8262, 273, 76, 1, 43, "MathCaption", CellID->358620443], Cell[CellGroupData[{ Cell[8363, 278, 464, 15, 31, "Input", CellID->167259034], Cell[8830, 295, 535, 10, 94, "Output"] }, Open ]], Cell[9380, 308, 182, 4, 43, "MathCaption", CellID->577766068], Cell[CellGroupData[{ Cell[9587, 316, 1379, 38, 72, "Input"], Cell[10969, 356, 2462, 70, 117, "Output"] }, Open ]], Cell[13446, 429, 456, 13, 43, "MathCaption", CellID->610306692], Cell[CellGroupData[{ Cell[13927, 446, 933, 25, 57, "Input", CellID->645617687], Cell[14863, 473, 717, 20, 71, "Output"] }, Open ]], Cell[15595, 496, 390, 12, 43, "MathCaption", CellID->854192725], Cell[CellGroupData[{ Cell[16010, 512, 1070, 29, 59, "Input", CellID->465762594], Cell[17083, 543, 1226, 36, 92, "Output"] }, Open ]], Cell[18324, 582, 76, 1, 43, "MathCaption", CellID->314466782], Cell[CellGroupData[{ Cell[18425, 587, 250, 7, 31, "Input", CellID->298399236], Cell[18678, 596, 23733, 623, 315, "Output"] }, Open ]], Cell[42426, 1222, 34, 0, 29, "Text"], Cell[CellGroupData[{ Cell[42485, 1226, 4538, 123, 228, "Input"], Cell[47026, 1351, 7965, 257, 164, "Output"], Cell[54994, 1610, 5305, 171, 107, "Output"], Cell[60302, 1783, 658, 8, 145, "Output"], Cell[60963, 1793, 125, 1, 30, "Output"] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)