(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 275207, 6690] NotebookOptionsPosition[ 270613, 6531] NotebookOutlinePosition[ 270979, 6547] CellTagsIndexPosition[ 270936, 6544] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["General setup", "Section"], Cell["This loads the package.", "MathCaption", CellID->836781195], Cell[BoxData[ RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input", CellID->2058623809], Cell[TextData[{ "We define an atomic system consisting of two even-parity lower states and \ two odd-parity upper states. We apply a light field with components at \ frequencies ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], " (near resonant with the ", Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]", RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], " transition), ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], " (near resonant with the ", Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], " transition), and ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "c"], "InlineMath"], TraditionalForm]]], " (near resonant with the ", Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], " transition)." }], "Text", CellID->525777075], Cell["Define the atomic system.", "MathCaption", CellID->429217524], Cell[BoxData[ RowBox[{ RowBox[{"system", "=", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"AtomicState", "[", RowBox[{"1", ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"2", ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"3", ",", RowBox[{"Energy", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", SubscriptBox["\[CapitalGamma]", "3"]}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"4", ",", RowBox[{"NaturalWidth", "\[Rule]", SubscriptBox["\[CapitalGamma]", "4"]}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]", "}"}]}], ";"}]], "Input", CellID->433132487], Cell[TextData[{ "Define the optical field with three frequencies, ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], ", ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], ", and ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "c"], "InlineMath"], TraditionalForm]]], "." }], "MathCaption", CellID->133602844], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"field", "=", RowBox[{ RowBox[{"OpticalField", "[", RowBox[{"\[Omega]1", ",", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]1", "/", RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", "\[Phi]1"}], "}"}]}], "]"}], "+", RowBox[{"OpticalField", "[", RowBox[{"\[Omega]2", ",", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]2", "/", RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", "\[Phi]2"}], "}"}]}], "]"}], "+", RowBox[{"OpticalField", "[", RowBox[{"\[Omega]c", ",", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]c", "/", RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",", "\[Phi]c"}], "}"}]}], "]"}]}]}]], "Input", CellID->534530029], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"\[Phi]1", "-", RowBox[{"t", " ", "\[Omega]1"}]}], ")"}]}]], " ", "\[CapitalOmega]1"}], RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"\[Phi]2", "-", RowBox[{"t", " ", "\[Omega]2"}]}], ")"}]}]], " ", "\[CapitalOmega]2"}], RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"\[Phi]c", "-", RowBox[{"t", " ", "\[Omega]c"}]}], ")"}]}]], " ", "\[CapitalOmega]c"}], RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]]}], ",", "0", ",", "0"}], "}"}]], "Output"] }, Open ]], Cell["\<\ The Hamiltonian for the system subject to the optical field. Each field is \ assumed to interact with only one transition\[LongDash]the other terms are \ set to zero.\ \>", "MathCaption", CellID->462076121], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"H", "=", RowBox[{ RowBox[{"Expand", "@", RowBox[{"Hamiltonian", "[", RowBox[{"system", ",", RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "_", "]"}], " ", RowBox[{"ReducedME", "[", RowBox[{"_", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]", "0"}]}]}], "]"}]], "Input", CellID->494599775], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"Energy", "[", "1", "]"}], "0", RowBox[{ RowBox[{"-", "\[CapitalOmega]1"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]1", "-", RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}], "0"}, {"0", RowBox[{"Energy", "[", "2", "]"}], RowBox[{ RowBox[{"-", "\[CapitalOmega]2"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]2", "-", RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], RowBox[{ RowBox[{"-", "\[CapitalOmega]c"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]c", "-", RowBox[{"t", " ", "\[Omega]c"}]}], "]"}]}]}, { RowBox[{ RowBox[{"-", "\[CapitalOmega]1"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]1", "-", RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}], RowBox[{ RowBox[{"-", "\[CapitalOmega]2"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]2", "-", RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], "0", "0"}, {"0", RowBox[{ RowBox[{"-", "\[CapitalOmega]c"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]c", "-", RowBox[{"t", " ", "\[Omega]c"}]}], "]"}]}], "0", RowBox[{"Energy", "[", "4", "]"}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["The level diagram for the system.", "MathCaption", CellID->358620443], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"LevelDiagram", "[", RowBox[{"system", ",", RowBox[{"H", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", RowBox[{"-", "1.5"}]}], ",", RowBox[{ RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", RowBox[{"-", "1"}]}], ",", RowBox[{ RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}], "]"}]], "Input", CellID->167259034], Cell[BoxData[ GraphicsBox[{{{{}, LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{}, LineBox[{{-0.9, -1}, {-0.09999999999999998, -1}}]}, {{}, LineBox[{{0.09999999999999998, 0}, {0.9, 0}}]}, {{}, LineBox[{{0.09999999999999998, 0.5}, {0.9, 0.5}}]}}, {{}, {}, {}}, {Arrowheads[{-0.07659574468085106, 0.07659574468085106}], ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}], ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.}}], ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.5}}]}, {PointSize[0.0225]}}, ImagePadding->{{2, 2}, {2, 2}}, ImageSize->94.]], "Output"] }, Open ]], Cell["Apply the rotating-wave approximation to the Hamiltonian.", \ "MathCaption", CellID->577766068], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"Hrwa", "=", RowBox[{ RowBox[{"RotatingWaveApproximation", "[", RowBox[{"system", ",", RowBox[{"H", "/.", RowBox[{"\[Omega]c", "\[Rule]", RowBox[{"\[Omega]2", "+", "\[Omega]4"}]}]}], ",", RowBox[{"{", RowBox[{"\[Omega]1", ",", "\[Omega]2", ",", "\[Omega]4"}], "}"}], ",", RowBox[{"TransformMatrix", "\[Rule]", RowBox[{"MatrixExp", "[", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", RowBox[{"DiagonalMatrix", "[", RowBox[{"{", RowBox[{ RowBox[{"-", "\[Omega]1"}], ",", RowBox[{"-", "\[Omega]2"}], ",", "0", ",", "\[Omega]4"}], "}"}], "]"}]}], "]"}]}]}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]1", "\[Rule]", RowBox[{ RowBox[{"-", RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",", RowBox[{"\[Omega]2", "\[Rule]", RowBox[{ RowBox[{"-", RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]2"}]}], ",", RowBox[{"\[Omega]4", "\[Rule]", RowBox[{ RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]c", "-", "\[Delta]2"}]}]}], "}"}]}]}], ")"}], "//", "MatrixForm"}]], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"\[Delta]1", "0", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}], "0"}, {"0", "\[Delta]2", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}], RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c"}]}, { RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}], RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}], "0", "0"}, {"0", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c"}], "0", RowBox[{"\[Delta]2", "-", "\[Delta]c"}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell[TextData[{ Cell[BoxData[ ButtonBox["IntrinsicRelaxation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRelaxation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]], " supply the relaxation matrices." }], "MathCaption", CellID->610306692], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"relax", "=", RowBox[{ RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", RowBox[{"TransitRelaxation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", CellID->645617687], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"\[Gamma]t", "0", "0", "0"}, {"0", "\[Gamma]t", "0", "0"}, {"0", "0", RowBox[{"\[Gamma]t", "+", SubscriptBox["\[CapitalGamma]", "3"]}], "0"}, {"0", "0", "0", RowBox[{"\[Gamma]t", "+", SubscriptBox["\[CapitalGamma]", "4"]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Version using complex DM variables", "Section"], Cell["Remove explict time dependence from the density matrix.", "MathCaption", CellID->690131918], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SetOptions", "[", RowBox[{"DensityMatrix", ",", RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}]}], "]"}]], "Input", CellID->718931880], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",", RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",", RowBox[{"Label", "\[Rule]", "None"}], ",", RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",", RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output", ImageSize->{432, 33}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}] }, Open ]], Cell[TextData[{ Cell[BoxData[ ButtonBox["OpticalRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], " supply the repopulation matrices." }], "MathCaption", CellID->854192725], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"repop", "=", RowBox[{ RowBox[{ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", RowBox[{"TransitRepopulation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.", RowBox[{ RowBox[{"BranchingRatio", "[", RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]", SubscriptBox["R", RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input", CellID->465762594], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["R", RowBox[{"3", ",", "1"}]], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["R", RowBox[{"4", ",", "1"}]], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}], "0", "0", "0"}, {"0", RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["R", RowBox[{"3", ",", "2"}]], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["R", RowBox[{"4", ",", "2"}]], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}], "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["Here are the evolution equations.", "MathCaption", CellID->314466782], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TableForm", "[", RowBox[{ RowBox[{"eqs", "=", RowBox[{ RowBox[{"LiouvilleEquation", "[", RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//", "Expand"}]}], ",", RowBox[{"TableHeadings", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}], "]"}]], "Input", CellID->298399236], Cell[BoxData[ TagBox[ TagBox[GridBox[{ { TagBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ FractionBox["\[Gamma]t", "2"], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["R", RowBox[{"3", ",", "1"}]], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["R", RowBox[{"4", ",", "1"}]], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[Gamma]t"}], " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[Gamma]t"}], " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ FractionBox["\[Gamma]t", "2"], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["R", RowBox[{"3", ",", "2"}]], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["R", RowBox[{"4", ",", "2"}]], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "-", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}], "-", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}]}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxDividers->{ "Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {}, "Rows" -> {{False}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], OutputFormsDump`HeadedColumn], Function[BoxForm`e$, TableForm[BoxForm`e$, TableHeadings -> {{ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 1, 1], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 1, 2], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 1, 3], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 1, 4], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 2, 1], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 2, 2], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 2, 3], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 2, 4], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 3, 1], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 3, 2], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 3, 3], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 3, 4], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 4, 1], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 4, 2], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 4, 3], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 4, 4]}, None}]]]], "Output"] }, Open ]], Cell["Make plots from paper.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Re", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "5.9"}]}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",", RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",", RowBox[{"\[CapitalOmega]c", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "5."}]}], ",", RowBox[{"\[CapitalOmega]1", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",", RowBox[{"\[CapitalOmega]2", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "5."}]}], ",", RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",", RowBox[{"\[Delta]1", "\[Rule]", RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"d", ",", RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "5"}], " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}], ",", RowBox[{"5", " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwtmnk01c//x4UiCde+u9fOXVzr5V6ZIUuWWyKElCKKki1FkUqopLQqS6J8 FNlSIpkpyRKSpQVJkbLvkiy/+z3n98/7fR5n5j3zej1fy5n3OUPad8RpPzcX F5cA5/G/N6s7fGR1lY1PTFb/lJsmgs8V9yZs/7FxH/XKEp4lgojUlplr82ws vnP+p98fIih20VzSGGPjxix+vadLRKDa2i3o2MXGzUd4Kz35SECw1oKWVcbG jm1yfa3yJNBbKBICD7LxwOGrNru3kMDpMwXzsW0OmLH5zSH5bBI4LxX47sFF ezwyRDYvC1EGim80c8I87PDk9Cn1ECsVsKx6QMJMxxZn8TvGUTRVQWYYbXvB sA3ecHZkoNxIDTR/mblc88IaH+15UfKFrQ6qqTA1JswKk1e4Hc0yNcBfQyGW ka4lnpGvTW4W0QKvXLr7bvJuxvSnf30FbmgDex8dx7Rqc3xLAJzZF0IBPoln Xm9JhngjLdWEdYgGztcUZv6sM8NbyvffPbedDlq3+9mfhqaYO/i1+4YyXaAn LL8SNGCC/avzebfo6wPpvG+b77sw8BMBjbve4obg6sPc6rY2A2x3aP7nIx0G 2FH9EIc3GOBkz+t4nMEAku0FryWxAc4Z3frRADJA2lLpW4/HBrhfQflMnSMD 3N+GWn4kGOAYm3Pha0MZoHzuU++0qQE+31F85VMZA/SYr18V/U8fm0fUWu1l GYNMV8E1TzP08XKv4vOWzcZgb6Awj9t1fUzsizQ2dTAGg9cl+NJO62NaowS3 lJcxmPhFElbZpY8t3zXN1scYA+5kppI+QR837/kese61MdDoCgTOJ/RwqmHg lfU2JmCn+os92iF6mCe3OnVymwlIDBWIXeOvh2+dB2/adpqA3wIPcZGTHsY9 NukJASbgEWvQXFBbD2/JTSwuuGQCaBnelrWfdXHy2XPa+W0mYPdQkW96iy7u mjE8rd5tAi4brsaFvdHF/44O4NR+EzDZnFFLKtbFzqekK71nTUDJSpd1TIIu Fnz/IPioBBMYeLvYMox0cRNthuzjwgS+BfcPClF0seuQ8rCKFxPcWJg5/5Ok i6kfHV53+jLB/JWrjdc26mKY0bh+QzgTlL96bz85QMf2shPRRSlMwFSx2/rw Gh3bPeVrD29ggoAjt4Niz9OxV2COmnArE6S9+J3sdoqOl//8enz1IxMsOSe8 XxtIx+sYmsLO/UzwMu6N4z4LOv4ROWaT948JxlvFQkyM6Ti1u/jSiTUsoKjg kyJCo+OVyGglfT4WiHm6pq1aho7z13ZEOYiyQGxTdK7RDx38Z8yyQFyDBTxc HY6B9zp4UaGt6j6ZBfT7ZLdsqdLB62vD30rRWWBwpnzI/aYOjszZYH3fmAVw dHzlvrM6WMRPJKLKlAXu8LlcDAzWwTf3mIo9hSzAlpumRNvp4D0WwqOWW1hA /QFePsfQwScKwpu67FmAS+dyS7KqDm73POKzdRsLlFlQgrNWaHh/EKvvnQsL JDctwocjNKzmd2FHx04W8HdtIJR+pmGnU57p5Z4sIBvg96SmlIZHdXtyNuxl gdkZg7imuzQssmGgK8qHBZqjeVw6k2hYVIfQ8Wo/C+Tytan1RtLwe3pmzTd/ jv8pWfODfjT8eBZ1tR/k+C93pG7CmYazbt21yQhkAYMHm1IXIA2fSdhhyDrM AkI6ggfX0GiYq7X3XUEQC/x63mUiIEfDG7NI9KkjHD0sHgqI8dOw74bes3wh HD2ajnXLzVGxkmDhz3EOh7taF6j+oGKf+tXg3FAW2NonHk19T8WPiAQzahgL aAb0s42qqNj3wsjeMxxeM1uiCB5SsYap9/h9DndFx07Y3KTiy0W809c4XMa3 DTuepWKxGJ3jWzmcnKKQ4h5MxRYZc4ntnPX95Ub37vOiYhqXppYyh+GDSr1A Oyqezd7uYcKxR1bnPE84g4r71z6TlQ7m6PfcreOkKhXPKTjuf8nxr8VC/cE5 AhXfwR90NTn+5zXNHk1eoeDrV3LC3Tj6nHatsb41QsHs0J+Kdv/Try9FKusz BWddOqK46sfRL8D7d14tBTsNtHsd9eXoN0urKCmlYNJZ7zf5nHj9jl4+X3mX gpd3KBvd280Cr/maPGqSKHgu8/e1HZz4pqXcITdFUnARxfbFGzeOXg8YzV+d KdjiL635IydfNHXWZQ5CCr7JmNwXwckn7oqOoAkqZ79dH6RbrFngaVOIyBp+ Ct5VpyRzj5Ofya7w+/o5Mnb34J2XYbDAgT6hUtEfZLxRSFDaWpcF5GfznVWr yPgEd6fOE1UWmI+OUqU+JGM5++tZUwos8J7Pds7wJhnLRl126JVkgTNygzdt gsnYxXya+pJTX0MWxK4AVTI+derYoUM/mSCTlfDrqzAZH5l9XqLVzQQ7DMZn Hf9p4x3hGwOjOPWN1aqEGW3aeO1Clu37CiaIUFRRePRSG/vqOk6+f8wEFKkL 2goPtfGbCbaQ1z0mSOXfacUTq42fRH+6I5HABFvXIKeIQG2c+4YRtSmSCXgX 1byHXLXxgc7V0uEAJjgyMhP1nqqNs4uTeVocmMC65XJxWrcWLrvh8PKcAKef vJ1/KVSnhbl8NwnnLpiAUuT17nSpFub/L9V106AJUCghD/qf18LkA71pDcgE zF6rkzNgaOGFo56bNQ5x+m0STes/ZS1M/BAf0+xiArzP3TCSFdLCWYbTN3vM TMC7CJ/tXD818Rrh0Gs0YROQ7b4a33RVE+cvZ9qF5RmDnU5+10GMJqbUk3/q XjIGQvbN90oPamKDtQGeDiHGINI0rSoVamKoVPEjmWEMHJUY077jGjjidnqu chUDrJPOXP30RQOvNe7US01jgCqRtRvtazXw7Br2k91RDKDB3a6hm66Bi9tK V74YMsDKQJDXsq0GFktMmTh03wiUfe0MCDbUwJqbdsw7xBiBgI+mx/uJGljx 4vZdEW5GoLNO4FrDH3V8cnL+dTafESh4lFt/44E6pvwRat2xxxB4Bvfq09ao 44jHinYrI/rANW5MYM2YGkYSf73AC33gmLr0vf2zGuZt2lLWel4fWGLZK5HF alhAZ+9/v1T1AU3EbfTNHjV8vlNo31pnPcBd/P6+Z7Uq1hi+e3jnFTrIm8AS 50+o4J5Dbjqm5logm6d11NNfBe8enEgof6EJMqS+1dCcVbCsrrnbaUNNcBUs h3Roq+DChqMS6hoa4MRlkxalLmXszt6lWsejBrbqlMY/M1bG8iFpLy7nE8Fs UM6f/jki/qNwJ/8tvwjwD/+xm9BPxH+1LLP3ygqBrkjSW7NWIlbLL1fNUhME r+LuXr/9iIiTu82zRzbzg+Q7abrb9hCxz9/Goms5XMAxSeNTeIoSLrVmv7m3 t9XM6NaDB+8DlTAl98nFib5sM4VslXBtayXM9WRs5xrBuurhciVC36IiJqo8 0/MO6q+O65eyt/dVxLFv54SyJ+arnzP5EYmhgB1TxuJ2lvOhTKv4SycJCphL K6A3UX09OufIu+vTiDxOtBHVX3tFADn5cf1NypLHwRLZ/x5v34hGUxb0FtbL 4+MvvTstbAioLT1ijfOAHC7wFioI+EVAFf/Nvn9cLYcd3Fs7LseJoviXk4d8 wuSwKtHzde1TMUQc+p3b0iOLn0fdF8uakUDrZv2OapXL4lSJTVePnJBEYysD m+NSZPFAGX2ayiWFKsW/95lYy2IBf2n7Y1zSaAf8IvugSAbHHetM2dYjg5j2 bkOr52Uw3aayJNdeFpFcO8s9fGWwntXWQ3Plsmg88MMOERkZvHL3vWhcghxK uNWQfOKMNDbNLL1Qza2A1GOPf3zkLo1DN8+P7turgN4c0FDsoktjOt/nt7eq FBA389xj429SOLVjubLxgCLKUjaY838mhX+7msd0VigisKHf9NYlKRyx3p73 Ap8SOtkDm+ZYUvjm+60ZgreVkFzthJiamBSeTFs6NNSjhCofZ3ruGJbE/y0o VrwVIqI/MUvDpamSuN265MQDOyK66Z+v9+OIJDZ+KneE6UdEBo4eUQQbzglT TnXv5lgiCiU9Xx88J4Ff04SuvS4iIoKA//a7TRJYeverh+a1RFQ8LXG7JUcC P7jRcdD6CxFt7X7TtxwlgXk6Jf06R4horCZMk+okgfW+3DWbWSKipALl4F1a EpzzXfTd+4IkpH3jQ/lFLgksLBYIxmVJqCE6drXykzgmR13u7dAgoQN+OjbD heJ452MbKy99EuLb1pssEy/O6dcLFkmbSCiXcenjFi9xnGgxVOBnTUKWRFPF 4wbieIcX2WuKTUL9/CP7/9sgjitj4nV1d5DQmanbjz/+EMP24yECZHcSInZt mVtbKYZ9uiUa+3eREHr9x9QwRQybu7g6e+8hod35uXG+B8Rw291fiQ+8SWj5 mkvTNSCGY9oDHZ5zOP0kr3iNpBieLr0dncGZz9z/xHN6TBRfyTj0192LhL6w 9+WQakVxxxmv29Oc/Y4bEUYc00Vxbvl9vUMuJCSphPViw0Rx2MW4G++2kdBT viNRRXaimDcqPUnCloR2TCq87iWJ4qQ2y56t5iQ087lpvdBfAjYumDY/aUxC V1+d2L6plYDNV3LCsmkkRH+kffvQfwScUuSs9FaFhN5f/dKXFkPABiFHh0ek SCjoRKLmOxcCfmgQGSK9gYQEfRnBixQCDhRxtXFcJiI7wxurO7tFMHEu+e9M LxENKVjaJJaK4FKZmvoDLUSUuG4mufy8CJazrXu3WEVEtZ8cFSWNRfDLb4c+ J9wiIl+8ut9KWAR3N5lFXTxLRGudvDyHmoSxaGXlqZdBRBQ7Kx2VqyWM8TnL PS8tiKi6NmL92s9CmEreF3SNTET/bnak+sQLYbh53C5PjIgiTK6UE/s3YnOZ I8mmNUooMIZv7k66IPaaW6rYOqyIkiTUan0cBfG9TRtk08sUUUGBxQ0KryDO k/2s3BytiMa7og2rAzfg6OpM6ylBRRTKmD36nSmA517cnuxVVECRk33zGl/4 cCzbtm5WQg7dSVh5O5nEhxupx/PXfZBFlYrytyogHxaLULTadlEWLTm4Mezz 1uHsSKG7N5dlUOzD5mNBx9Zi7eeLU8e+SKOEfZULZRI8OGDcjCATKony/n6q j27gxh6trW+SlCVR/ZW5VOtobsx3VlvgWJsEEkB0k88Da7CLq8dEFV0CJcv9 F/nvCRcOmTm0NeCXGNJ+qDF39v4SihX/QF8GBGR9qWshQ2EGkZ/+tundy4cK brgOUhOn0fHun14GReuQWGZb+8vpKdSp7PRMdWkt6itsLPxaN4lm01fk+q/z ovmsow3MgVF04Imcr+nrNWivhtE9k0v9CB9f/71VcaEaxw9KDg+mIVWemq7P FiXVFEQTNxw+A3YWH7qu7H/LbD77wo3LB/4DpEX1CKf5KrNcS0s5u33VIEc5 gxLwrs0MXRApujbRCpzf917ymRowm6uuW21s+Q743L5v/r44ZybirpLnZzYN Ul25kr64rgP1X/o74/qmwdLc+JNeaT5w2uM+T86ZGTBK/3TiYBcfmPZU2/Pt 7Sz4pCBjseS5HrTv1pDcue0PuLiNHZy4UxDc9CXH2XovgeHWY5VmMgSw9edI iT/3Msi7NTakc5QA1vkVfDt3fxlMaH5llrcSwDF/Kuv17xXwrSLA8ES8KKA8 lYrMeM4FJRLXlUaOigGh5zJ0SXMemDPSqEa6KwkCFv5aq13lgbZ/5hoapiXB W+MuL4N+Hohb7xxpspICMRV3Ljqd44VFT4giLUNSYKJS7ldyw1roHKkkZ6El A1pfKmTyOfHDoEqr8MzTcoCyslwmmcMPHVwSSLn1ciDRrPed2iyH9916+kxI HpijzL+bb66HeFfYn65b8qAUK7nEdglAMy7NlbgMBSC0huvQZfIGOH7ye5FW jwIIMO87k3lyA1xl9B9+IKMIlF9nFVcpCsKDW2IpfCmK4FoNSfDvvo1QOP12 cUmwEhA0s/iRUbgRSioeLO+4pwTinu97brG4EXZWSvm9+aAEIh7n+CalCMH7 /MSMBUkiGNd4w9T9KgR9Ds/Pi1CJwD97QOSjpjDUWxHXP2tBBDtvqb1UwsJw o0Tg0QOBRPCbP8f2x1oRePDG0bmOGCJQs35SVkYWgTLf8u2TU4ggE7dfcD8m Ap9FWPN3lRFB13L/HDlDBPaoSN7dX0sEkqxZ75XXIrAiy/wwvZMILj8VZ+QI EWCNUlvJ0WkiaJpWzT5qQICTM+3iQ6tEwE833LjFgwCravsTLwmSgOVhq+Oy sQQY4jIZvEeaBGIfufSPPiBA1s8cTU8VEqj6tX8rekeAZ3OLeKOpJPBXNaIi ZYoAearlnF8ZkYDRvnhVXylR6LSY5qkKSCD07s3LRptEoYb70J5saxIo7Mld 5PcRhWoRxHQGmwRGZMr3dyeKwvplVZs+JxLQdKtrfVwoCvvMBK6lupGA7/VP rNgOUdg4Hft4lycJZH34leu0KArFXOyw5m4S6BFaIKgRxeDAveKphT0kIO3A H/3HSgyqiazd3+BNAi7npX83BIrBW14qrJscvvpW0zk9RQw+Xlm86smZ38Jj Uh1ULgb/8ipekPAiAQFzWy3zr2LwcpPLJuxOAtYx7tfFeMRhU/SmBjcXEjjz 4uDqT01x6B7yw+7zNhJAC5EBz7eKw+DYgL5NtiSwZHih80K4OIywxQ/jzEnA OOwO9LojDqWCrRryjEkgvPhRvg4Wh+e6L/jm0kigZKxSkntQHLbNCj2I5Og7 rv3udMcGCSjXv6ZCUYoEtA90j+bqSsD2V8IdKetJwO/BiFukmwR8WU+nv18k guwf/17bR0vAVs9TQu3DRCDnJX97sl4Cbm8bjFGq4+TXHQpvzbgEvONdXu39 hAiufzI9ckNcEjrp//3qnkkEgk5eVkxvSSjD//ny/mAi2HL5cLFgvCR8znuG GuJGBOeaouW+5UvC3wefvVbfRAQr1plTZ/9IwnpGQ/IZXiJgxhXuclWQgryy o2mWTUrg2KvqOs3NUlDb4yutOkkJTLK+ZTQnS0EhnUEPm7VK4DudaCelLg0/ 1pUvEDoUgN+VVZbENmm4O5VffHekAhie6KWKHZeG9984JxrIKYDpwgyCcKM0 lH9nP3BwhzyIEIrm2TgjDRM38rlWj8iBxcO75gTkZaDgjt+sxFNygJsq92Vd kAy0kDcNCUyXBfFJi428t2Sg5i4TGK0mCwRGv1RxYxlY377n/NwjGSCWn5q1 QpCFqadocsL50kBVS/LA/FMOf1Xxe3ZKEuQlzrnP9spCxyMfHBpGJADld4f9 NJ8c3GJU8t1khwQw+O+azri7HKSkRCmayIoDKzXCn5/LclBVflvYVBQB+JEE 4zutFOBzxt5z/up8YDh25Fh7kAIk9inqvbm0FgT1NR78cEsB5j3aPJw4zgMi 7p5nNw9xxmVg6t10LpCgwCdRe0kRclXpNup7zpjlyXDfL+tUgvGjXnJeoj+r 5/iX+hr0SJBR8VlK20wMhWZsFhmyJsGQUw7aNdvE0aTuRcDvSYKSpdIG7H0S aNhDNtP6LAn+rjKt/HReCvUVGHvWtJNg9vdecVafHGpyPNpZFa4M89J2HRq3 U0Z2P6t4exKVYTb9XlBbpzKqi+Q1+JeuDC8MtOZHeKug19nXrprUKkNztbeE jnBV9Hy2ZNszCRWo2TzdWJ6qjnJSxxuKnqnAnXeY51zfaCMi1ehvS6MKPLnm tlGwNRllvorWHO9VgUeOv4gsrCOj1GHBBAqfKrxQtzp5vI6Ckk3Jlg/dVGFR TdG98Bc0FNXnX529oArdBnv6cxm6aCG8aOyVoBp8cZoeaBqsi46u/yP/nagG O7sNZ/XydFGwXvwJJVs1WPh7QpIlqYf84u4bp99Wg4eDu6rjh/XQds3vpTeY 6nCs+fbYYKgBcn23sN2DrQ47/s5HNGYYII8gkSlFb3W4O+ZfsVi9AfItAzp5 59Shi+Bi2EdZQxQBM/MrW9XheNIklqswRFH9T+1O9atD1j3fTu1vhuhUfPPQ 5nl1OPW7p/0urxFKbFrSaJbTgMONGd1VbCN0Z6fn/W9+GvDdUJT1+89GKPNf 6Ob7kRpQa6YuSGbRCOVkXvhxIIkzX1H9ZLMsAxUMVBCnSzTg4/NDtAgPBkLB 0hm8yxoQ7i7O6mtjoIHEzhta1zThGyxrNpZnjH6TxwzGH2jCLbnxz+ArYzTW wttR+lwTSu5QebvxizGaFzcQNe3VhB0NLgkyfCaI/97V5K1aWrDiV1+yrJcJ ErR8RBUz1YIZf7NSvUJMEOHXq6ZPW7XgQs5+T9VzJkiWOiWwN1wLEo4ZeVjk myBqxbaEMKQFdZsoHT+nTJDeLn914zYtmDCWpHWIm4mMVmNqlwa04NE7Odyn RZkIWhXyxAtow+quP5Weukxk+bs2205BGz4xzdipCpnI9uJXc2G6Nnw55DMf u5WJnD4Ixqa6aMNxvbHCfweZyDVcVcnrgDZsr+NJkD/GRJ5SptWkE9pwKejS l49nmcjXK3DpUZY2LDz+3lshnYkihhqOvxzRhsGq41+l6pkoU8G2W4qLDKv+ +8LF1c5EddvrN4WKk+FJgzavk1+ZSLryLbfGJjJUSG86YTzFsXfcav/p7WRI 3PHuyolFJjqoXFvXvZ8MQ98lJrjzsFDlhZqkK8lkuOFeYdaoGAv9qLaYGM4m wyy28Mp9ORbaMPNqu1U5Gdpm/ipdUWahXZ5YcvEbGWb67wtNp7NQ3GUQuWOW DBvTotL6jVjocU11dyE/BRZENe1sM2WhFfLLLB9dClzUr8wusGEhdW9Tnmor CjzXVERLc2Chbddf7Jf2oMCTx4+yGdtZ6Hg9sz40iAJHveLCz7iwUNZShXbz GQr0v0mWiHFnoXq6ySWNWxQo4ByfTvZioSnf5xOn8ymQZBwWluTNQrK3GU49 iAJl+5NW7vmwkEXzszKjDgq0TlbJPOzHQgFrjKRSflPgxreMwskDLHTN8Gnk yBIFFqlExFMCWajqoEGPFYEKH64xiFI+zEIDGU/MstSo8Ini4c/tQSwk2KZ3 b9GECmtVXo+YB7OQwbpSHpetVEjmOb54OISjD1PXr2gfFfqpHbd2D2Whc0HF 9euPUeElj+0b14axUGG2Dtn3IhUePWeSGMrhjx8LL1XfpUKnBeHRbA6vCNAm pcuo0O2498FbHFYHj53C6qnweJ8fZTuHt4ZRnjb3UKGph5jXB876x/7Ll9Kc osKdqsJKMhzO6taOOrOWBnm/vUrR4thTL/yop0eGBotd3Vp5OPZObtYCDBoN CtfWTuVx/JE5nncvxYIzfrqDX5bjr0WBBu+oKw1ukFNR3cnRI6Av1886kAY9 P9C3+h5koavi6g1Zp2hw5ZDvJeDPQi+2PCD/u0aDDQfFB4Z9OfqU5EwWVdHg dWW15qd7OPr8VHYW+ECDeWI6jp92sZCXTPZT3580OKgk29TEiWfh6awoGSEd aBfd58tw5ujxVOlrmLIOPLbHwblwGwutDmWCFiMd+OtYy9clexZydMrgPbtH B1ZW/oCqlpx8iZf3/xqmA1OfkZtXAAvdq0xrYCTqwH05G73KWCw0rXwnebRY B+rFnal7osdCjZH2guQ1dGhz6liNjBILKcuFzT0SoMPt551tTWVZKKrqTq+2 OB1aBgz83CzBQlqrQ8XaGnQYqnWshHcDCyXGJbposznflzbTd80xkc3l2kyt 23RYuTqw6XMtpz7pYwkPs+nQTdQ8JQkx0fwH8RCtAjos7PpAoVUwUa6472Yt RIfKg2MrzAImWneH+7fmTzocNNw8G5/CRG/uA11NXV2odcmObe7ORPLW/rJ5 TF0Y/jpE8t92Jgr/lcyjaakL50TW78mzYyIV7d5ODTdd6EPvetXLYqIzRSej NKJ1YVK3/asaBSYyr6yoUW/QhSGRPtdLvpmg6vf6rmp79eDAwQb6JKdfhvsk eBwN0IPPL6zGtLiYIK0/Xbtrw/Qg9bXXrTy2CbqueMZ/f7we/Lb67qPjJhMU cLj1+IN8PdjTFW0QIW+CJDccTlOb14N3+op5GV3GKMg6t0/toj7cdNXA+fQO Y6T4UjpQ/akBXJhxIHy3ZaDFlonRbywGHGw6WFKraYhelNQfsLllAgnbBd7Z HtBHC8+vbfdXM4WZJT49km90kUyKt4Fhohm8ZVV6TzKUjpy5JKbijkBY5KSt bJlDQ26NoTH2ZebQ55C1zNnTFNRy8gP/wX4LyKO4erHitTY6a/6w4QfZEk4d OLWPLaWFxrevTuwJsoLaoWGNTTka6J2dq5hBmjVMSeXuu3RYHQ26qB/2/W4D M3e5uvWaqaFw2z81IwRbeIfiXn8GcM4LidaxEaZ2sLTFgmLlqYKYXUJhXrH2 MGLPaLZhpDLn7/nzvrRCBygTHXaO9zkJ2SUszvY9cYAj5mqJDWUk5Lcon6Be 4QBf6JQ9u1xCQnf79uaX1DjA2IAf15XySUjk8chM3WcHyP3y12Z2JglNWa3G zXKzYWq71fdvcSRUdkz9P7YbGyb2Z3d+dSKh1uEtJtd2saG8b4dy3TYSGvUK fPd5LxuuXolJLHEgITXL4gmfQ2yod2r0znlrEropwjSOOs2GruqiTdZMEjr+ kN2Qm8+Goesnvs2SSOi6fLDnaDEbzrYQgicUSaj48tUx3WdsGJF+W3hEjoSG jn4ivMRs6ES4F/VTgoQ8LPZ6tHeyYZuQ8tTgehKKeHp2VLqbDf9sXB4dWkdC VzVzY3b3sWHQic8zYzwk1Cg0kj00zIabo/cT/y4T0eDpjYY6k2z49zC3Fdc/ IuKe06kLn2PD5biIUP4FIlI84OReuciGB7yM8whzRPT/9xHg/99HQP8HtnoB PQ== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, PlotRange->NCache[{{-60, 60}, { Rational[-1, 2000], Rational[1, 2000]}}, {{-60, 60}, {-0.0005, 0.0005}}], PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Re", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "5.9"}]}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",", RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",", RowBox[{"\[CapitalOmega]c", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "5."}]}], ",", RowBox[{"\[CapitalOmega]2", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",", RowBox[{"\[CapitalOmega]1", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "5."}]}], ",", RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",", RowBox[{"\[Delta]2", "\[Rule]", RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"d", ",", RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}], ",", RowBox[{"3", " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwtmnk0Vd/7x83jdS8ZEq4hwzXfc64xZO/MKYUiQyQZKqVBaNKHCE1K0Uxl ppIkqXT3LpQ5JUOaJJlDxhL6nd9a33/OXa+199n7eZ73ez973bWOWuAe92A+ Hh4eJerx/7+WHw8M//vngs0eP3pfL8sEnU9uj63+64JfkRmrOQpMEHWlefLi jAtONtEVu67MBCUe2vOsny54nWvw3r0sJtBo+Uhz7XLBtPKX3bormIBWY2N4 q8wFTxzVaPqymQm+FEvugztc8M4Gq2qHXCaIO353JvbdWmz4oi3PzEIZnFwa 1pB7eg3W+dMi75eqApSrtbMjfJzx4nrLqcwoVbCgsV3Wmr0aj464Z11hq4HM CEO3u0OOePRGjNMeseWg6cPkuapnDng4pEO6Z3A54BrAK8ci7HH72zPLH02q gz8mdEtT0g6XeEr2P5DWBC88PnZfErDFgQ+rxbdZaoE129iu17mr8IsZ34Kq GyywLfn4S6cUiAskPrstCuuAk1XFmT9eW2NCYHri2hld0OIWsiYOWuGxsfV/ eD30AYehtBjeuwJbVCqHPltqCOQLvtrmeJhh8YzaU794CSqf+oUra8xwaNDV jgxBAmh0P3p8dpUZnvx2o9BJlACE/Bm9aAMzLBJ8vPyqJAEck82lnQXNcPdp BX9tFQJEbU/tGSszxVfas1pGLQnQpm0bZyljijOeCTS2RBCgy87QkhAzxSsl G66aRxOgO2DZtAaPKVYRCI7OOEyAkStj2+kjJpgIydHxjyOAgOgN129VJnir p3j7kxQCGA9OqSRFmGD/hrXMpgICXCjM4757Z4wf+N3cNP6BABu5hfhAnTHe e8fEvvATAeRa776Uw8b49EWzFr+vBLg+X/rK554xzmntP/qklwA561FzT5Ix 1jy+cfOKMQI8nu74MmFljOeimH/X8JPgsNjH7jQjY5yhnfGwXJAEVipfekx1 jbG0/8tRRRESYKfevsNLjbHitc6bbTQS1F8fH+WbMMI/Zh1f8cuR4NMq0X9L 8o3wcGeJ3QoWCTI9abyPMoyw6avmhzY6JNgaxuDflGaErwYWetvrkaAvTVb4 epwR7uC3GTNhk2CsX42hvtkIX5/a/PyFKQlK5zWkatyNcEA+2HLBnAQHpLSl Q1cb4d6Du2N8LUjw28Jw6R1TI+y+Q6WpfSUJ+FIsVIykjHBs6BjvHjsSVGet VGsTNsJJOh/e8DiQIPExVI9e5ODauFbXU44kEP/mwHo2zMHdRD1fgjMJZIw3 sG1fcbD693RzhisJ2p08yR+VHMx74GyprxsJrvp5GyU95GDJxqdCN91JoJy0 xazhFgcXf45uFPUgAasrDGw4wsGp+py8Xd4k8NJ6tkV3Hwd/aonjO+5DguT9 YrG8oRzswTibeNqXBANihfi+Ower9HnvPOxHAvlNv7sTnTjYtGbXkS3+JFid 7cjrb83BfsWf5My3kKDIsm8VTZeDPxs4rakKIEFXkkngdxUODl+efCFyK5XP +4TjT2U5+MeHu1ghkNJP9X1WqjgHz63tvlNK8a5d6lXbean56wd0Vm4jwY2K /d/BLImD+LUkn1LcJPCSf+lPErvtTjfSCSLBoquUxmgPiZ3nGrefotgwI8Cu ppPEdrSF+M8U+w/eD7rRTOLJM2Ney4NJcM7kX0JENYk3HBF+5kUxjluX6/yU xH0XYUwsxeNNGTVqJSRObjXcf5ViVYWfP37nkvi63mJYNsWuIVZCLddJPCe3 3yqT4tjS01r5qSQ+v/pH2UmKHyx2ORxLInGZx+q8YIp7nHVDPWJIbLRF6xtJ 8ZLLh5L0I0hMb7lmMkrFZ/O9Np9/B4n1RXwjrlG8ny1f2+VP4r/sBztMKc46 EjrwYCOJf3Uf7X9B5d/6ulzkpDOJY/mMnllRLCAjpBMASbz9zOfSPKp+xgEe q81MSewUqHjjH1XvoLs5O+j6JG7WULVzpDj99+TJH2okHl5WFh1D6fPKzrao cimJw4WN+bMo/WbOX6i/KEHiVHZqaRmlr9bnb0M7+Ulcre/m9ojS31OHFLf5 Q+BhgZSi7M0kePzizZrxXgKfYTeWO1H+GZBQ2fW6i8A2Z/sXFr0ov/iEn8ls IfBSsTJW1iYSHJygNa2tJPDGVbMOxRtJUGC9+ad6KYEv1hg0yW0gwYdTdyT+ 5hPYyC99UxjlZwt153WFFwkcsKcnvcOFBDv3XA2PPUngPnXjjtE1JLj+bCBl 038EDpU9b/ZrNQnmNyS9EQyj1v9QEVZuTwL9W+1jnwIIPF9TWHfQlgSbRzQl yzwJnGI46qO5igTPE6pdA20I/FdpNcvKigSjLdL7VpgT2Mx97WDuCur8MLel ShpS8TXHjPymzvuxR7zvuMsIPM2YQN4kpX9jTJ5pDxsvPHeo/adBAh/PtdHg DRu/5Im06FMjgVG3gpNTJRsfKk7WeaxM9ZPJx4Pel9iUHwLuLpUngYvihH6M Mxvbv/wV3SRK1TsXL5wwY+P23X5CfEIk4GGfa07RYOPjTT9CVPhIUGajv/fW oiHm7detlp4jgMLOkIdVpYY4RxUNfxogwNSkcULjTUOsmscr6k7106YYfo+2 M4ZYtG69dTHVb2NTb830hRjiyPsykortBOiv6FohpmiIq1ycVPALApQJr8eu 8Qa4Rau8WzCNACmpzFTvvQbYqGl9w9uzBAhVHNka6GeAr9ommcclUfuzT/If MDPAP6trH5yk7os4zyqHy8P6uJC2kWuxhQA+3alLb3XqYz4DBT8lL+q+2Bkw UFCjjw+ebL3z1ZUAAzELJ5/e1Me9t6b3iNkQYF2uWdPnDfp4fb+r6dByAmiz hTL7oD5+x9s3+06BAHxP3oePGehjsVbW1etLCPCocZ8kr4g+HmltTmug7kul qTsbNCr18OHx/7bB52wwaKPatVNDD1fXxeW3qbNBpmVS/2eGHh4qX7+rXIIN NhqPTrn+1cVa04anbWcNAdasZJi908WTnrwvAuoMwRURL3v+WF18dKQcXdlh CByaz5Vc/6iDq216h1KvGoD5VzPP6a918Ey43dR8jAEoRX4NcaU62NDcDdMC DQDzgV5f6Elq/k0b/mU6BmDq4mtFYzMd3PTD7eiHUn2Q5f0vsfGCNjaM7Fcs LtMDXu4haeCYNs5uOv7e4qIeoK9pul26QxsnyM+ahu7TA4esrldegdo4Npdj mKmvB1xVzCaCRlnY/sEnm9hMXbDYG+63sJqFO7Mz2xb36ADfvV+MDHm1sOjP PQyHei3gmfBTjPenJhbofbHkcoYWcL0y/621UxNfiNbOTtmrBeywwvlDJZr4 yUJtaISsFjCU3DRSvUUTQ6dPE8t9NQFfyZscX64GNterv3yvXR0UjGHZk0fU 8dGltRFZaapgKjx79vu0KuYXuDofOL4EhB7o8Zf6roqbksWa7sYvAV2H1F5Z t6jiR7bvsv/KLQEvEm6mXS1SxZ2ysY8er5QCKdeuk+u3qGLnP1wHfXkGcD3D 6jiQqoJzw8xa67eIgAoLEaRmxsQEp7Ei8cWMdaZ94tmjUkx8K+/ArtXEtPUJ V4HNHcNKeDzX9SHr9qS1ewjPnzO3lHDL0d1fok+OW4+k/ub8FqXGi1eGu430 WqsODuQ1f1Kg+umeq1qsh1yhqZBInccUi/qF+ryv5v5c7LVNSFXAPLnVe+Ln 33CfynzrXuGggLGo9N3LPB+5G+EHhdz7y/Be4cZ7g0YD3KTLdSlHjsvjbuG+ V1EaM1yt2IPtRd7yuGReemJ3+Cy3ejtLuYuQx9vBmi1vH/7m8lmcuGf+dSnW fmgVlkP85R79BBunLZfi2PfmEny//nEVa8akNaWXYuOrw317TvGgp/cyfTcO yWE7LcFX3ct40eyx+aHSK3K4dsq/mST50H61CtG907J4oPVC6jwUQFJioW43 G2Wxagb3XjBXAJVMyF5tzpbFU9uEHLRXCKKfVRHaBu6yOCE8zaVQSwhtD2E7 DhXLYPOm6lDymzASXv8lZVmiDBWPeMVfJxGUZ3a23clPBgeF7dvOXyyCvosM B+eLU3zvwU28RxT538lLCNoujUU+dJ949FYMLVz0aLwIpPEne99z+uri6MZR AZkqOWmco9aZ8nafOPrgEpitVrME19Icj9wWoqGDplLDrjeWYCfdjqH6tTQk p4I5sRFLMGzV9VA5T0Mbx5kvv6gtwUcro4ATXQJNdjaK0v9I4YA3jo1KqyXQ hRdH3Fa2SOFKoneXUpwEIop0r+7Kl8IinM23HMsl0JsLH7qvH5PC2gKesjcH JFD4kWTtBg8pPOKeV6guT0e0ILO9c/pSOIfeu6Pdjo6cTdL/eX2UxNrJuUkN 6XQ0yLRzTC6VxOZdMr2ST+koWWgy5fFJSTwX5rbj1Ec60hq73d4XIIkF7OqF LOboqKbDVVnOXBJrWDR2qMkxUBD+F2zPoNaT/rPcjs1Agu5+voONDBwFn3ln 2zOQjfqzIccjDDxwtHypjTcDxU7JH87TYeB3u0yWq+9kIG5NlKhgJx3vj00L XX2Qgf5een9lWyIdWykULT6OZyDz7Rztl8Z07HpSX2v/GQaKWnH+sep3CWyV LWt35AIDPRQbdfgvVQIvcRP40Z7OQOMf17R/BhKY7n3jWfIlBjK8VxhsNUrD zTt6b6alMVDYMeHpazdoOPNxVsriOQY6I6tZs82Vhsf7orO8TzLQ3bs26foC NKzNw2u/N5aBmmwDgqcfi2Mls3YRh0gGGu2KMeGGieNEsbRrX0IZiLH/umCS iji+NrUNr/RiIEL0Sdv6VjGcXJbgHerAQG632nPlk8Swgv87vy0cBtpvNhX5 zUIMXwLrPusoMdDFZimHolFRHIXy/tXzM1BZMFsuIksUH4WI33GQjtrm1/ZZ eopiVy1zkNVIRzMXd5YLiIniMvos89s9Olqql5zY9FwE14bcVxM5S0fmL3M9 L+0TwXftwr4p7qSjQ+PdM6wPwnizGY+3kjIdXUtafDV+RhjPqEblLpmWQE+V lS4/gcK4fNa6XaReAs2v3WS2pkAIL4kv7REJl0DM3gPCMpuFcNHjzcNKKyWQ 9ZELHZ8YQrjZOJK0F5NAsYVN0eHRgvi92ez5/kwaug2HHc30BLH801Nbd4XQ 0MsOEXmerwJ4Jljws4I+DQkI2VWkOghg7fmlv8RKxVFS4NPfZbL8+MChxLNt BWKo4E9HbUwdHz5WecHePlAM1Z6fvuIQw4d7RH020hTEkBgiVnT28mKfPdKO FQmiKEUx/9Dfhzx48KN7NeEognQLWdPxOfNol+uzWslEQbSrIzBdljaPyMbx +naWICoWzDTJj/iL6itc5L1qBRAZKBNVbzOH4n564zxBAWSuyDsr+W0WvSuP H9Pfz4ccznb9zmBOIptI34Wd5CL3brpnn0HyBNKFX9bybFrgSme+a30+8Qut XQTRk4fnud3F9cWfX4+j5erXFFncOe7Mrcg6i94RdOz7U1O20Sx3K8v09oqz 31FmVfChra/GuDixT26o7zpab3ljv2xfHlcfGcqYDB0HUUtlty2Kn7OeyTqV fm57PlhM4Il9b/LQOs/OTtE5kAu2BB0WtP9Za41OSd6/ONYCEm9on16BPlpP c1//q2/+Bs6Y0kv2L4xYS3qrF4RYT4Di+qDBc0Pz1rUfvrcldE8Ahc7mMLfO Bes4nxz+7OOT4GXVhjZm9aL1hK/mlq+vpsBAl3NjvTMPaPVnyXmtnwV0zd4d igw+cOZrv23Ur1lw8vXJ2zYxfMAuoGBf2sXfoFK8R8FwiA+UbdVpaun4A2yu FD0kMT+4FKSXsDpgHshXfHenbRYE634MPwjlWwAy/xVaRyFBIBRy9+uJnAXw xEmWJ1hNCESHGli+HFgEprYr/zzoFgL6j5YeyqjggVKOKQ2ctSIgeXr23F1R XnjlBNIZyRIBvSadec98eGHUMr3tP2dFQEb5lfcf5nkhV0NvsvCGKKBXLCPk VvHDtbd1PUGLGNj5+4+D5gV+KKn0b1+YvDh4Zd7lZ/ydH5Zq/fcq118cHHty 7bT7CQEo07E8SueHOOj6czhrazvFnU76wZo0YGrh+2QvSxDi96bvLm6jgbGn iv0pdYJwYHwu4v4HGlj79+9ChoIQrJb1Cz4nJQEKLD/J3AsTgu2cVxwnRwkQ UHnDpkFCGK4TjTTVuysBKuePenf5C8PqHivG6o8SQH6l397B+8JQu8VWjCVC By3PmZnC7iJwbl6sRNyXDvQXF8rkskVgSnzMc6E4Oki2/tKgOSUC0w6/fViU Qwe9x7g9xvaicEZ6q+BEDR2sQpl/bC+JwkrzAtDRSweZ/45JbugXhUoRfeIe vAwwB7awAs3F4LrAF+wQRQbwjAXW+06KwfD8/rOCRgxQilU8YrvE4Dv9Mi1D Jwag8/LsOqcnDg8nv5X/6MMAO1d1H888Kg6Loz/fFg5jgFdx+Oq9JnH43p+m cv8gAyx/eaukUpkGbzg0SjTFM8AxvrjXDXtoEDeH0vzOMECXzdYvXZgGzZ0K unwuMIBp/KrpQSkJGOsd7fMynQEuVqnR/gRKwOPZ/50/d4kBaNY2PRnFErBi y56iiTQGSKgIrLCZk4Cnjq3QFU9lgAVOfEq/PR2mLJhrt59igKh72UFnUulw hJjsdD3OAKOsagvyMx06jCWcPRjNAKFZvZLt2gyoeo1e5ryTAbqVBPsPH2BA ToNyZzWVn9dlzecqmAHzchSze6n8B0SyV/cISsJdJ4o+5RszgKbDw7IyPUlI XycXRlNmgMD4KpUkN0loePHhBklBBsjErae8oyVhi7/tsweDdNC18H1aL4N6 /9yGvtEGOpCznApYfEmNx2eseHWHDs49kjHLpktB+ZHqlJVBdNA4oZEVaSwF NeLVFrus6ECEMJFw8pGCae8C90lI00Fskcf3kVwp2CkyWWJQQfmpP3gdapCC OXoVf5YlSYA/GlFPUn9JwVvrfoArGyTA/puXzpmuXALXxoisXP2DBoo/5c2J bFsCayPfJx8pooHhZY+DPyYvgefryHnr3TQQlNZhGft+CZyaXkI/PCwOPE7K D9SFSUN5ydmapnoxcOGV9oYbqdIwtnCfRfpRMdDMv4Ib/lgaJve/mJ3QEwMO x7zTpPll4EYBnoyoeFFgHnEN+l2TgS0rhycbZEXAgZKiO2wsA602vRHfXyYM Hvx8KsfXJwO9Tp3+WOkqDHS3fxzJI2Vht4FQtvNxIaDop3R1vFYWGmdU8abX CQCva/oCVaOy8MDFcJ5iDwGQ1mG1J11GDvJki8XGf+UHNHc/e4sAOdiyUy17 /wgfWHTI/BU/KwcrO9ZUvxnmAd8IVeelWvKwxOFeVLvIH+uQ8/8sZdfLw4LU t5dh1az10NgXA+mD8pCnapAhemjGeqI4Q4pRLw+9fvyeG2uftOYzUPwgFL4M wg+Jr5OfjVhr6Mhtn3mkAKFLgE8lu8Y6RI2W2GbPhDyPF3Pr/Ge5Q7HD0a3h TKi9mZn4Re4PN7y7fsfby0zolbBJzfbtHDfq5kmXpkEmdB3j3sxbu8hNYgrL 1pxVhgEXI7/ie3yoYBlfTlmbCuQ5Gr5tx3dRNC0y313HUYN8i/3CUq4yaH+G reSggxoc32DURFbLoHHyNBDxVYPSJauerTKXRUM+CpkO8WpwoF5yN1NVDnXf NfetalWDFyRD3daMLkWNrpFtlQeWQ/ljjkE/YhVR9pXRuvvl6pBHitZ6iaOG VA1M/zTXq8MBl62VbaFqKPNFjPboF2r8yTXL1htq6MoQLUlfWAMWN1aNCAgt RylWenaFmzTg2WKeGLW25ehwdyg367cGZI9Wq7gEayA37W+l6RZaULtHX/aw Iwt5Nvx283HRgtxTzh11e1jIJ1zyl3KAFvw0qXqs/jILBZUBdsEJLWgzKRny uY+FomDmnactWvB9q5OCbZw2uublm/M1hAWD5XxuDOTpoMy/+21zDrEgfULl IbteB2VnnurZfoYF7c93BGj+1EF3e5+oTjxgwUWP1iNKHF2E9spnCCywIDDv 3mBRoYt6k9vSdS5qw6HpznK7R3poQO+n8WiuNiyL2V56pFUP/WwWeF9aoQ3l Hm1+EPhLD83IGC+x+qINtQ5ZH12lr49Ebl9IWaejA+0YplpOmfrI4Mn6pAik A4WKDYJLIgwQZ3Oolvk7HVii8Hcd/1kDZPrvWM18rw4UC722XizPAEH7Yv5E MV2Yal7/xaTDALm/pcVe8dCFBcV552imhihqsO7g82FdKFNkXibcZ4gymas/ LuXRg/NbWd+Pzxui1261K/fL6EGJlX237ixhI/mnr/hYK/Xg3C2XVmFrNnp6 qurM+RQ9+KLb7caf82zUw7UZG8rSg/IqrBdjOWwkPvnCzf6xHvwuuzH3cgUb bfbFcnNf9eBPG8O2xS9stKj3/NY2Uh8uG7spwZQhkFaAFT/XXh96+9zn9ikR aH3as2B5H3343upP7GlNAt2af6LbdFwf6mTe9ww1JZBNU3mZ6Xt9KLpmDXOv J4FOhJfUikYbQJ6OOFnB8wQqzmLrBZ02gI/pQQm3LxGovb34LPemAUx+bx7P zKD2A/fcI2oNoJwqWv+okEC1jKJPn5YZQu8PHjNhLwg0bqsDzAwNIe9gzGPa awItO1hwO9XGEDZ6/LY510ignd15IQ5hhjDC/+U7iw4C0R5kj9+vNIQzk6uP GQ0TyPjH8g1ibw1hefxfy6ExAvkty3oU9MMQZh/P+5UwRcUXd+vwMjobZh9r 8gxdIJCre4ZA/BY2LNwsHdkvQaKDiUqhnyPYkH7OYGuNFIluP71eZ5bMht63 l289KUuiieXXUkZK2PBgRFhOtRKJ6g+toenxElDoeaovQ5dEyxUjpovECGgX J2v3S59EhyuvfdGVIaD/3zEPLptEOv8GS3RZBDybPvVSwYREsbekrhURBDwY LZZQZEaizlUr4nUtCOi20sVCy4JEyQnJHrouBBQ8P76ux5pE3Zol1kWeBKwL /ySpvopE5q87WLoBFNeInXO1JdGAKGtOJ4KA3NyR+P2OJHI8V5Opc5WAHRMF VzrWkSiT+JlUmEXAT4zipHhXEs28ldmnc5eAiXL+pUx3EuXJBNnqIAKGlRw5 wPQg0eKj0/qFtQR09JoPjfckkeemh7I67wjYW+qyvnMTiYSu8Q1o/yDgeXGh 4vU+JPK31H1bMErAXYO/ju33JVH5J7en2r+p9fgrZhI2k4h+7FB2AS8JhyJd ViX5kShY5fYZbXESLip6nDrkT6JKXBtZIEPCxlSVBd8tJJIJHPfXViahiMGd asMAElXnAFKbJKFC77b53K0kUnIIVSiwIKF6/AR2DiTRgf4Ufm07Eo6HCMZ3 U9yYXD6S70JC76U8u0K3kUhd90sbaxMJBTSncr5SfLhBEOUHkLDM9bbn6iAS vdtlUMDaScLaO5GFORTr0j1S8yOo/R6frflF8fH7Rw+zYkj4NrXsHRFMoi7X nG35iSRcygz6vZVizkTDWtZ5Eraa1/idoPjUxUmT/KskpPXd17lOcY+xogor m4TPTt85nk2xRbuNSP5dEh5dPpaSSfGF6J2/tMpJOHBk64EzFA/JX+jKQ9T8 g1e9dlO86umTKq06Em5Z9yVgFcVXfL/dzXtHwtxmVqkIxePzIpe0PpFwMEt5 XxUVr1Mm8V/eDxLm31Z6uY/iW8Bru9YYCYvkDeqkKf7d/Z9b3m8SXpGSKCqk 6uF6PN9Ci48DvQr1ko0oLlB/o54nzoFK24oSH1D15KmZoWnJcuCto3616hR7 hSjP5Cpz4KBl455TlB4lwg5fNbU5UN+LvPmD0muLc/oDTUsOnE9eyzxM6Vk+ XHkt144Dayzmix9SetPP9sZrruPAuRWX1vVQfuC+MfLU3MqBCya2FiqUXw5s S/KJ3MmBM43sLA7lJ53ZLv+aCA6slprgsaL8lqZ8PDQ4kQPf5bxdRnqRaOfu loO5dzjw4U63ofwNJFLl1YiZLuPA5z8UrcIpf7elRcfZczlQw6EkTM+NRLBS +dSPFooT296dos6HnPju65ozHNhSGPGk24nyTya+GfmPA1/PPpoMoM5THEcm p0bECAasOt/TaU+iEe9nd4MVjWCP8Xu7EhsSvSwQ5eZCI7iiv/7zP0sShTvk dWueNoJjL7eUmBmQSKPrT29kmhEsfcmottYj0YfdLoM1GUYw0eMhDeiQyC59 6ldwiRG8StdK19MkkUKvDX9emxH0m1T6Vk71m1dxXzW1VI0h/69NdwrESKT8 XD5M65ExPBWxezi2h0Ahy1TdViFj2D7atPL6VwLdi2SZba4zhs1HhbeWfCKQ laEp/4XPxlD49GxYQzuBfG5uuL4gaAJnR99Xv6onUHpcSsN7TxM44dm34fsD qr86COjH/zaB/+5a3WPHEGiueWzkq6UZ/Pvta6OPOIGePajd7nh5BXS4caTd xN0Q/a646BaqaQW9mt/6vtmuj5alBhibJFtD+eWj/L8f66INPLK/EvZA+Cvi 3OwFQx20qX7/sTVlq+AzpmpQcgELNR99K7Ljuw3sM16WxfXTQvGrCut69Ozg 0X2GaaXymmjU7d/YlnB7uJKsOy35Wx01OHtKG193gGKdC64K/Oqoz0Nrd9A3 R1ggHBawKLkcHVg9WzUstRrec9vlkWKjhiqSHWKjrJwhoT3EE5Osiiy66BF+ sWvg3OX+g88yVKh/852B14vXwvMdYVtO+Csj56S5qe6Ha6EXk22p562MQuaU krSerIU6/YGD7zYoo5vdW+88qFoLCYH0J6zVykjy3vDk6861cMXec5L9Rsro l/2/hCk+F3j/wWjbM1FlVBatle+yyQXuMEp78biciVqGnFZc3OwCK2KLwaUH TDTiF9bQudUFWu75cyDqLhNp2pWMbdvlAj/u6uK1ymKiS5IW5ofjXKBP4NTZ j2eZ6GChS13eHRfokn/gaVgwE6Up7fUdKXGBhyXWOAcHMFHJuQs/yXIX+Mo8 PCHAl4kGIzuknmMXOLZ5/5SvGxP52Gz1aW1zgRame++FrGSiqEfxI/IfXaBB e/6h3eZMdEE775h/twtcbtw/GGnERPX04azBIRf4123bw9M6TNQXJ2HCHneB HGcZ8asaTMQ3zX59YNoFhu1/xF+gwkTK2929n85R+Yocv1GhwET/+14D/u97 DfR/StZwhg== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, PlotRange->NCache[{{-60, 60}, { Rational[-3, 10000], Rational[3, 10000]}}, {{-60, 60}, {-0.0003, 0.0003}}], PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Im", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "3."}]}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",", RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",", RowBox[{"\[CapitalOmega]c", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "3."}]}], ",", RowBox[{"\[CapitalOmega]1", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",", RowBox[{"\[CapitalOmega]2", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "5."}]}], ",", RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",", RowBox[{"\[Delta]1", "\[Rule]", RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"d", ",", RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "8"}], " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}], ",", RowBox[{"0", " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJw12nk0Vd/7OHAiU+Z55pqne81c492myzVEZGzUgCZ6Z2qgEhWShBChTEmo FFLcZxsilaFSCplShkwZiiLf+1nr9/vnnPWs9Zx9znn2Xuc8r7U2YV+I+8FN TExMIYzD/85m/WE/NjZccK53YYhT3iL9U92dOdpfF3ySWWAyqWiRHpHVuZj2 ywW/Ks888LZskf7QU21NdcYFb1urOrS/dpGu1N3P7dbngo+HdI7e716kc7+w Jt1+4oJ3u5g7dbMs0Qcr+f9DhxjjpX6SCz+6RI+5UP7r/Dtn/GbtQlex/TI9 QezI6+IrTjjvXE2+vudvumyLWmGonyPmskF2uvGr9HWlIBFLbRoeUFLxLWde o+eFkraVT9ljhWwiqpfboHd8XrzW/JyKdZObRKRtmUF6i0hUQQ0V50uGt0o5 M8NRc6OgmEdUzHHviyBhOzNw559ElLtUXJO+nmZ+gBmcD6zPP0ulYrNPQh21 cczwapbNveoQFYPf1YHmVmZoZZEUviNGxcaSzIO+rpuATkRZZ0PtcHPuU9fu UBYYOvg6IjzYDq9tgCI5mgWY8rw8jx6yw0fqw/pLLrGANe8xQb89dti+S1zg 5k0WaJ29mWToZIddYuI93wILdDxYPD+tYIev17n5Z/KwwoDu3UN+72zxNdc/ LuWVrLBqyGtmpGuLFwLz4x5wsMHJw8UNsVq2+OrKtXF7ITZYyTNHb1VtcfJj H9YJGTb4xX7E7qisLc6o+pBA0WeDhc9trgVbbHFZiG2O8242+BEdc4D3uw2+ Zd9S8a2aDb68WLr6PdsGL33xcXY+wg6Nnv3DGaw2WLaw/lbPPAesFGctnN2w xuYxFO+qfxxA+uXJGvjHGjvRlFtzuDkhO6Nb1XjeGmt4hf66rsYJJ3pfBPf2 W+Ovrc2SPP6coOT7cE3ssTXWr5Q479jDCZd2XhS/6W+NT6Y37KO2cIHTfm23 HLoVJhVM6T3q4IbhByub++qscLOpbMSbL9wQttb4XLzaCtceuXt4eYYbbt3Y rppx3wqnnSksOc7LA7Ntp/6lZFlhDlqBKq8bD1zXaim/dMIKB5HOXlz8wAO9 yz6cJ1SscCZ1/vjgNC/sj7/Q5JCMcGIFv/WdYn542V99OD8B4W0H/7iefMAP JO1JwV9xCNuvDZJ96vjhzwfX/YVnEP40WdWq18EPKYoyrP+CEF74N8iyfZkf 6um1do9tEKb96G91sxcAtanP180WKDhPR13j4oIALKag0YkJCv5QY9h4dV0A 6MZ39TKGKPhLxWLFbQ5B2H4x7P38Gwrms/xa/01WEM7L84mU3KVg/+ctirNO gvDJyzaLfxcFT0d1L7OUCkJCc2XetzZL/FSw2eVukBA03fHnedlgiXVGH5Ur RQjB2jnhqLLHlhi/rfR+GCsEweanfUPyLXHak96vC3lC4F5tJ7waYYldZLSk VD8KgeTdgQRuFUss5PWwere9MJQncoXrx1lgxwtf9pYaisC3oIavIqctsHiO wpiEnQjI2h93XwmxwH4+SSm3totACstH7YYdFthJnu3Nh1ARCI+6M0XVt8Bf 3/aXST4WActg8l6/UXMsSFLO2mwoCt3bApxikDnemki9q2ovBq1qupsEjM2x /evt2U3eYvB84+/T20RzzNO4WBgSJAYlFddVsKQ5vjwZfZApUQyiOBuYN5bM sFzF+4yNDjFQaxR6GnXPDDvs3r3pqq84xOg0Kp0UNMOdP4cuPTonARHsSf3s nGZ4d2BjZ2uqBBwd9ErN3DDFpn25Ez+LJcAnaXqjZtoU77pNlEh8IwGkCbH+ 5VZTfMZ0m1arpCT05QdfDz1jigWuvZ+58lwS9Pik/wWPmWCC0jMlDz5pyJDR f6/fZ4LLKuol7FSlYVXTsXSlywRX/ihy9KJIA3Y46X7huQmmq5PNe0OkwfVC T8mNVBPcRbsS7ftOGo4uJ7nWIxMsyzvHm5orA8X967c5c8m4S86kIHarHHBM CUd0ppIxZ5y149vDcnB0RdMpLZ6Mr7RF8lIvy4GBiN+ydBgZ70y6w1uC5aBp aw1Nx4mMS+fesRZJysNgY/CC16oxFou8H6uZJg/ipUM2RZ7G+PTvA2bz6QSQ bXm1nuVkjG9EldVfKiaA0nB17VUrYxw9f03JsIYAOuJJmpFEYyzRz+/f10sA +3iykONmYzxQxvTYSVoBIoKuj849McJcJYf2L91TgA9qNjFmwkZ4mF1o35vP itBnSzLT4TLC1dJym5tmFGF4r8SyEpMRrhclUD4yK8F01lwQ77QhdpniPbFD QwlYOW+5jTQb4sc5a6+HopTAYHJJ7nKoIXY1SFbhUlOG1Hsl9HfvDHAMh2FV b5YKbKffw2HtBtgi+5tKzAMVEH1f3iSKDfD85hhpl1YVyFmravWrMMCPHzzK d1lSgSJX6By9bIDfK22ClW2qULvcO7hgboA1P+7abSysBgNWnBuCd/VxyRHn 9DM16pDnxc1cnauPXdXPXeN4pw7+R/hYvNP18T8nUcGmGXX4ni7CnhOjj42P 7VCsV9aAuXECn+JOfXyty33kY6YGbEo2ldMX0MftCuMK63GaoNp3hOJxRg/P thVqL1wkgo/K8z0a/+nh/jNu9bVlRIg/wXWeOVAP+63fzm/sIsIE1z38wF0P 8/punSmSJEGZ2Xcrbg09rA6p6c8fk4CUu9f2xSddfNTv9mLDojbsnnxw4Fan Lmb+0t1zhVcHrhluxIW26OLmxQ20V1EH5jtyXxAe6mI5MsU2xkUHHv3ro569 rIsFy6yPVBbqgMFeT5qxESPWk/q4xUcXDpQXHeLV0sX8H3Ky94Towo2VxYRv BF3c6fDXcOSSLvxKSX2VxqOLmZKeFITU6EJtY5fT/JgOzsoT9X8hpgemio5b 76Xp4Llt5z7VftWD82+iS4xGtbF8qq7ypiID8PNyjqR0aeMTtn0zC2AA+sOS Dg712rjAvaNffMAAvi/WTvpmaGMBg4T+zSKG4CK1oBXtqI1Fwy2OHE8wBMnD AY+bq0jYj+fyq4koI3jC7ordYolYX6to48R1MiRfl7nue5yI439fnxp8QoZA qWn/fbuIuE/3dt3VT2SQ1E5gCTMm4qzfgnnV8iYQ49VMzfyhhX8p3A82eWIC W4uNO754aGG6hX/A/glTmLSW7zuspIlx6jN278sWkGd2efwLnyaelQ86fqrW ArYbzC65/dXAz+V6eZbGLQAr1/MZv9PAIrK7e37SLCGLw8eO5bwG1nhlwcEj SAFq57WHOf3qeDuJct7OF0GB78alN6lq2Dx4JIBP3Bp83APSKWfVcHz6M0tN Q2vgdeq4U3VIDZ8Wnm466G4Np8xz6rOQGpY5VBKjd9Ua3OSMFw7MqmJZ4oVU TlYb+DcWvGudpopNtA7+OL5sAzuOD+qTmFXw18MLj9M+24FX3AwX84wyPpi6 wVL2yw7cstZG3n9SxpdqWQJuCVHBFkumnHqojHkrtEw4XKhA4veebtmjjLtI zzNyGqigphTQnOmkjFfaiHF6n6mMJig8+7CxMu6TidBIWKKC+N40B34+ZRxk 8pY1QMMeNj3sKtpBV8KD7u87jqbaw1rz4BlSmRJePuE1nnLfHn73zrgzZyjh sdcD7R4t9jC9sYX57jElzJ7R71W0ZA8fXB12LUgrYfHbl6UWXR2ge7+3wQsO JawoMHws5aADvIoM2JK1pIh7BK8eKD3tAPT8uDqLN4q4sqG9yrDQAUrnsEjC GUVcZZU8bjPjAAUs3dM7AhXxcRFipsE/B8gVG2omeShipp32f0/z0iCVsv5f j4Yidr7HNPJLiwZJHty0u6KKGD3aFqtoRoNLgVLypzcp4v7ZNLl0BxqcuWbS KdengBu6dtro+NMgotCheOGFAl5LEjnncZQGx2u9o148UsC5Y8cJZRE0OPw6 wCMrVwHL91Tb6JynwYGhcI0jCQpY7IKf9Gg8DXYvxjFbhitgQX9d5voUGviy p3/i91fANNv0Q88yabBdqvDBV2cFXHHtyvznXBps1a66VENWwAt5c15ihTRw sGnclaCkgGPDLlwMuUsDG+9ug538CjisdiN5qIwGlkeGtmivEXApE6HqQAUN yOdmR5knCDglLH3HWiUN9NLW63reE3Bu4VfVogc00LrLff0uEPC+SodvvoxY 5blU0On7BKxSGXJDipFP6NKguGQSsPthhZDx+zSQ/moiKh9LwBzHBoael9JA 9LfDzEIwActl2V3NLKIB/xaflhd+BDx4+LrXqXwacMkF5mRRCXiLZaPn3ps0 YNWPOHFEj4B73rYNO6XSYIN6kWYpS8BPC5MSzRJp8McvXV6Ai4BX8zoUtWNo sBRc+PvrsjzW+vzluUokDQLDRncLfJXHB6vcascZ9e87RWi17JbHRap0kU7G /Gw9t5d4tEEe3za3PtXnSYPGuPz0m2XymMnl8hMeGg0MEgf/tmbK4/Da16+C GPNdek1m/1KcPH5zqGNumrEekrNzdF33yGPmCCeVCB4aMN/uy4pylseb3W9e O7vmAGHFEkxlJvLY9FFATc2UA+x4mNnJKiyP7+9Rnqe3OIBbkmpv2HU5vEEq 7Q0PcQCjzOLiriNy2G1byR0rHweQKVAM06DK4V38e9g8kANM1coJDP+RxWeF mm5u53WAuK9iTk4HZPH50PlY8wJ7ODx7Q6LEUhav5XQW5160h22rQhNMErL4 i7NM8/4ge5Dl479Y0yGDW/r0O3S07OGpKQcQjGWw80LBimsFFfLsLl2NEpDB nVtO8folUeGiG+vO3h/SeFI6fWD2MBXcA5hWk25L43Cjxsw3KlSYvr6it8Ip jcXfvW37dtMO5CcnSjoHJLHdl8Tetf9s4XJme/KZC+I46nkvd/AWa1A5f/Jj ma84tlYQFWIetYKWIFXZPh1x/Cy1S73mqRVsMr1YQR4Sw6DTZp8ZYAVRA+jN spkY3nq3N6ygBcEJwlPO48si+FPt2s4cCQoIcAVuy38jgu2I0gU+nZbwcEHk ZmehCJ4KJPFDrCXMNIeqEd1FsEXsuFrmvAUEBWjbT1UK46bOhqWed+aw+35J 3IEgITzsxfG487kprKd5vkmjCDH6uVv/RUeZwq0oVuFmUSEsPJJb9sfCFD67 7CskvBDEEfwHzPY3m8D2eZmmQYIg/sg07vq7lwyLn95w8q4KYBHuhFjlfDKk Np7ZZtEtgMtmmwYVA8nQlfp5OOesAKY7UE5dWzUGR8MbGz79/PjE/Lc9AmrG MCljax9fxY9XVARePlw2gni2xeTaBH6838HytmSLEbzodZMVJfPjcJEwBdp+ Izi/JH66RJ0PvxPr05stM4QjZ9mXs29x4+YnAh78uw0gSUT5xX43bvyse5ea sakBlJdb39Bi5cbRy79iVkUNYLYv2pB+ZAseEA796PhOH04YL4WPmHLhHnJk /7KrPqR1ClDLZjlxbE5Fe6eOPjw5qC0aWsCJx/LbpIwF9eFX2uEaVi5G3JVb 9+CjHpyaH/6l+pkd+ziLHRYJ0IPsy/9a55PYMSVrL6+lkx48k5XOrEPsWOCG SdWkjh6sOXsbO5Wy4e6ugz3N67pw/l5HZHDkZnzK5+q4T64uXN73bOWJCAv+ Y9bkVLegA6WrvS+j2zfhSTdn2u4hHXiZspxFjd6EY7NYPgS/0QEu0DH5NMaM jw42aXfc1YFkqbun/j5mwtk5Q9x++3XgQVULrSWQCaPo3NNGHjrQTRuVuCrF hM+mzYqH2eiA4rxpmAXbBlxwjObjVdYBjXuqy7FFa5DBrCNP/qwNR3v33RDh XoP0liTJJro2VG7OM7wb+hdq+Y5JrBVpg+4+4YhX1n9g5y3PushQbTiR4iq6 s2wVnCQsKdU7tOEJPbFmRmAV3CMy07JttYEsxfybf+Q3cB2Xmtgurg2naeaZ BQ6/Qf73d0UVFm2oj4w0Nnj4C0wICcWZsySg9MxEep9bhoO3Lh3Z3kYC6tW+ lVyZRYjuzeRnO0+C8hte34nxC1AucoX7bwgJhPLevW9Y+AlP34kWRu8lwXDl q8ovbfPAXG3kqmJDAvta6q1jevMgOqPWSzMkwY5zF4X+mswBG9f5wWVVEvy6 Hd5uOjYN3meOt47ykqDl0bEiv7of0MOTG0JgIcH1poPnTidPwRXsrz72mwha Y56Gz8gToDHs2ftzlAirSy78fTzjEBks+cP0MxFaN1N/rI5+g/Pm97eydhPB X9XojsnVrxCY/6xeGIhAIpOifPeNQtudYEu/WiKsOah4nzIegVZD/3/SD4nQ 7iurd5N7GNxcKz123mPc74OW5InmL6BEPHlbrJAIbb+kux8d64dHpKltW3OJ sE+c59JPsc/QfMxseCOTMZ7Juplu00fwkH3UqZlGhMwdMz+PH+2Bmerb998m E0Ev+svdh6Lv4N/Af/w/E4mQZZHzfDimC7o0bt9JuEyEzvNnVPd+fAXOlfW8 OXFEYGnZkTak0Qr+tiGCyheIQGY339h9rhFG6yNPqJ4nQn86+WP93ToI66rc uHOWCFSp1Yrnbg/h+jBbRno0EfCl76JT33MgOzNJeiOK8T5AEjacukDJoAZe HGHEvwoSb1wLuks5pPi5w4yRz/+addFhSzXF2oPyj4cxXomtrZTjPjrlT5uA hs85IsgONd4pHmimWM+NhkjGMPyQM2KoEv+SUqq/Z3V7LBEe+zC/KtHvoBRv df7LfokIkMj/IG2um5J6JL5aP4EISofkVz3s3lMCJTlDPyURIdFex0Y45wNF WLAv4VcKEeaU0dWe+V5KBpbakXyDCNtZ3XrTqX2UvFJmj9vZRHg2uofgeWuA kp/YPaF1mwhyjSFHRBYGKY4+A3kGJURYprdtvOocodQUkctrHxNBrbJL6f7q KOV4VCDF4DkR/HJ7aVeUxihPbBMPk5oZ9TkznuZ0+jvFlXTtVF4PERYOzz3V LB6nNKX7/RQZJIKy3+8vW7onKKa1Y2q8E4znJbOrvVH+QXkdcSUybp0IDap8 LuVu05SnX+ROs3KSYF5U7ETSmRlKkb+PEKcICTyXVeqd385Rzu3a5lNEIgG/ r2JpgOUChZu656FNEAlefv76IW54gXIw07bq4CkSxPgVsRReWKSc9UJu2ldI sLBDec9Q6xLlJGU8Dz9k+GzgW9J60DLFjGOfUFILCfbtKnkmteUXJcjyxH22 zyR4v1tV1Mf1N+Wve/oxAVZtSBoat4n4+Zuy3Uqnq1hSG2z3lv6XnrZCGY1z bv6py/he+Kt3dPeuUvJo24Lr9mlDxgHNONreNUr0oc+ajh3asPXbj0eBm9Yp +8Q/SHyZ1Aa2gPKhi0XrFC8tpaRcFh2IDCSaNU38o1Rv2hSrq6ADWtVip3Kf MiFKSKuvzwEdiF/+fa2ckxk1WW/+sRSuA2OGn0qe+zEjv4s8hzbF60BuTVbP 5zVmdCsmcVtEhQ7wPpXQEbViQYP//ZCYXdeBwyurVOVUFpS+NKdlKaQLreS+ XQZfWVDCTVl2bnVdOFuXfcX9Iiv6LyxlUNVLF+aeSY0nt29Gk3J8FSkMLzr/ /bueK8mGDkYNHNro0oVSswHhiiNs6Bq/1NLqpC7srb9l/ZqHHSVf/lZzU04P uhtk8tjdORDpWVZQ7XU90Pq3/kS0kAO1s3lP1z7Qg3jLwdfKSxyIW653w71T D6wgb9UmgxN5IcWte3n0oQrLeZ7v40JXZFjrt6Qx/m/NBO7VfTxIdvePSCu6 AXBbWo/mVvKgvN/31HjGDCDu6b6n1n940AXWwuiTXIYQUVF4IOk6LzqruLFH 39cQfDKVG+QwH3Luk4va9c8QrlULGxfyCqAx+pD9+SBjeLOgVBBuIIAUAvLa 32UZA4eOIY+DnwCi3txa9aHdGM6XeX6dLhZASktegnNEMpzIz7hmZCGIfrhN 7o/6RwbPBPGJ9iNCqOCOf7l0oymktqp53LouhPSbVeNT1kyhk8WEHlwrhC6N 8nE/IZsB9axvuhCLMJKuyBFme2wG5NBstCtbGJk0CLRXPTAHqV3SN+dfiqAP f8PTM9osYURH3lFMRRxxso54fK6wgoCUDTMRV3F04iSTt0OvFUzNDRKFToqj lG8xPX1M1rBQmSvA90ocGZZbpfhst4ZNRKnPbMESSHf0oJf+mjUoqYsG/aqW RFMXRYs+OdpCafyy79KgJHp2ReyMcpgtaE30OC2wS6GcQRM+lGsLBnfTtGd9 pVAvHHB/MWsLdsoCv7+tSyGt7kHpXcl2EEDgvvTBTgbZn5QN531GhanzPyLf B8sgDvuEd7pfqBA8/OrQ20wZpGPQVvN8gwoR+QkuHZMyaGeGxJ4pa3u4LMMu 8uKqLFLalWzC3WgP3NHf2ZprZBF5mrq9ftAeUgZerOAhWdR+8dfdor/2kJUT N1CvK4f8pOSLOfUZXpTYVPTkgxxSLjxDvZPpAFqnRm5U/ZND8rs8PJIrHcDn 6LDNJyF55JAmT0hh9PMDr8Hwo7k8sqb2RLQwfJl35gHJc5s8Au5/H+eZaLBX M1+156A8Im8l3lcWosFY4lmJd8nySKTwr0a+AQ1KTIMFtxXKI9H/PJ8P2dAg aGrXlu5aeeR6ZE+ivDsNNLJdWF3fyKM8xRn9vXtoME2zWO8YlkcuXOJZuUdo ULmq9ct5mXH9MOrvZfjy+D3pudecBBQ//+0gL8NHer7cE46yBNT9cOsYYvhp mWNtuF2PgKySeaghDF+dyLXhn6QSUC+9PO00w1/zulcoHDsIyMJE5fUVhs+O tb4LVg0hoK4DzBmFDL9N+UnmUWMJqFaL93MTw3dBc/4dBzMJaIHZ7vEUw3/f Yu+txd0noOiq+Chphg/3if/ULAICSnrk1PI/Pw6Xk3c0vyeg07GSbv/z5W6r 84mj4wSkIswj+Y+R3/+hrY55jYDqO+RdDzF86nOYb1KeXwGd3h7tMsHw68d/ XuJISQF96SkuiGb4dntanv0esgLK7cvi1GL4963q94izzgoo6N5w0K//+bie WJK7VwEFCmV0DzH8/MYt/EN9mAJ62up98gfD147f6lkH4hWQDge5QTqBBm2n WA3+3lJA068K5CIZPrfldd4v+UgBZXFZWv1j1LepIC3V5IUCsrRtHa1m+BIZ 9zf6fFZAYf0TI3cYvmx4rfAzckYBCWvKGrcyfPl06ZFrjYgici/Fli8ZnjRK WD37QV0RlYUNbK8k0uCxjFXlkoUievJdP+6LLGM+qd3c+gGKyDyPUqu24QCF WbPtD2oUUftIw+e5WgeQJxqtdr5SRNkvzpfkFDHWW2O02uygIuo+51/4JMUB sqa4L2uxKyGd2KPZKNABks01be95KyFxAUsBK4YfTw8H0gtWlNDNyT8aPfb2 sBL2YKaRWxmFD+TJ/0e0h3DO39Ij8sro34DXWKOgPRzXu3RGjqaMrpUvtyQP UCEgroh866YyYhUnJlodo8I2tZGqG6YqqOu9uq/6JTvwer2yzc9FBf257fa7 +rAd+AXz/5Tdq4J8Sp5y6LjawYEnFO3Siyoo3IMYvSxmBxEo7/6zbhVU+tJG hvmeLWT77CgaClBFQtqD/168soGx+A831NPUkGlI4NAVMWuY0JwxmC1WQ4PE DymC61Yw08naU/VUDfVbBgc/Yfjyl7CBoPmgGqqP1A5xrrQCjjupyVvV1VFn tuTvQaoVEOtcL4eCOtJ2hYNMZxFETLafbPihgSLHR7fNcFtCngytX4xJE51W 2/C7O2ABbdteWpwQ1kQ5sR/Ha8stQPxZ6yZVC020wyvu0oCLBTxLbE5KSdZE s2fRmm66OfzTbLi9X1cLSTdKrUzomIHKXnMWup0W2mY5Kbe22Qxc058fFPfT QrN7DOr39ZvC7bU6jY4LWuhO89EvapdNwbqj5olRjxYiGyp3XR01gYvBD19y RhKRVvyrYN9SMlQWaGseuEJE/Mq1c/9dIMPHj5VX6flE1MXH2fVxJxlUKBXu oS+J6JTkr7xYQTK85CsbGJAgIbjkt2lHjDFwPyqcf1BPQk0n/qMmHjWCV6ec uDWZdRDpbqS+argBKEiFLpdx6aC5CBJ3ra8BnK7PHtQQ1kF83LfLTlsagPrG 5EMNVR20j3XlSg6HAcTHxXtquOig4MkRW3K+Pthfe5GnfpMRcy1dv/BBD1qK KLpqurroVNIrKNyvC9LUQMlSU11E57g/Pe6iC2HjySxqtrookPK2xIOsC4oa gx9UvXXRkdfeh27z6MKFB1GnVaN10fTU8f7Nz3TA6llds0q7LtKcNN7NaE2A 3qXvpeyvh1jJjzZbfiNC2P7LfuGH9VDKoZePFBn9pPrvvt0vQvUQf3QaweYO EdJlLwQevKSHBD417yXuJsLhY90ni+/roSeDQxoFfVoguuVYjvIvPaRdnD1a 8kUTgqklw8pX9JGF/MVQBU4NUOpbHQtP10db/C/7B8yow+djLpMvcvXRufFj FR/fqoPtjaWfBx/qo4s3LH6a5qiD5Jg1S8kHfaRkFurDoaMOrTFDyiryBohJ uKf7sL8ayDaIH1GpNkALP/2dxUdUIEBCfpsVGKD/7jtSvF6qQEW4qvHOdgNU qGz3qP6BCpiTjFhSvxggXo/JWuZzKuCX75GzvtkQtdSps+2XU4EbMcmve7wM 0YXlq7xmgcrATWXVil0xRPJKnKVaAkqwvWCLYN4mI5SwFNowsqYIOf8EV55y GyGWTd0r1ROKoFFLaJmVN0J3XNLGnmFFcFCj7PSjGSGbbzkvtU8oQizX6STd bCNULucbcr1PAf50zk0PmRmj6b7vNpVAgIt6Q4kudsbIqm3ScuUBAfgzOtWe bzVGN98X7vO+TQCVXRUHMvyN0X+ES0nbYwjg/uPwgPNlY8QpTfSi2hKgjP37 67p3xujRmz0aEx3y4IcGytIOkVH7GtE9ZFAOvhW+dmAOJaNNM3HMrc1ycJz9 +ffgKDIaIL4otbwnB5c6byo4XiOjogP3fqeHyUHVTu9spmoyuqEvu7uLWw64 Tr1LOMZkguLuXORwspGF549eBtlnmiCv9fsBC63S8OnLkYlzd0wQV82hIqNK aVji5At6et8EaaodtMm5IQ2kfZ6B6tgEGUkvNbYckIYCwdGDWyZNkOGncyWp rNKQGPp3X5epKXrsuL1hiiYFfoakXd6Dpmg5Jq5EbUoCIv3fDlybMEVfh1au C32QgPSrYTtfLpiiqZLzt8SxBHR+e7bDhN0MuRrz+x/PkADrDHs/KR0zlN1Z 93ebrQRjPe/1HooxQ7T/pHTrisRh5WnatkBlcyT02oTCFikGPtOyCQskc4Sb jldLBIhBnVwZjiabo4r2gEaKpxicvoS1053M0QWfQa1mfTFY85jhafzPHDlc Vd9V9FMUmOaoryTp5khmR7VM3XFR4FD+Y93pZYFaSt+fiz4jAkE+F0/77rVA F9zGBKuOikD7Ff6qsUMW6GGBueqvXSKQuKBC+BtlgTgu+EeVIxHgxh4bqoUW qCxEL7qLTQT4d1Q8j5mzQBR6wqmBG8IgcX2vgWG8JQpedX5wiS4En2rELqdc t0THma4utTwSgoyBzs8/si3R3389TXzFQiCoZnGuoMIStbSYPH11RQi4QOIV 33tLdOzyWfMeXyFYm363Z0qGgp6IjTxWXRGEYQe7K/mPKYh35/TgQQtB8GAS +RkXgtBVVz5P43F+iIp03JIVhpDOUtRXxwF+KJo9p3z/FEKlVnc1Dr3lh6WB Kd+3sQjdPHmz7MVzfkivw00yWQhlRY9PrqXwQ8+Jo+k1GCG/ityTPhb84Pmt 2XhCwAo9zfoEb035wPvVibNOT6zQj09XqA/nuUHe7tYSe50VsqlNP3hjmBum 4MXhlgYr9I82Ih3fzQ1nq8W9LdqsUGjHddGMh9xQcpuurd1nhYbM9a+4/8cN SxFcI4JM1mhImCcQLW+BVMUCmz4na/Qzn5ByhW0LdEa95Tj01Rp9yXex++vE CSP9PXOJE9aoePQCxhacsGT66WP5jDVqz7m7I1WbEyRWB4vmf1sjMXmLZ75C nHAgfBqd5LZB1qH7syL7OeDvMfZTlw1t0D7iuOjYMQ5Q22MxWXzZBpklXx9T zmGHWKt77aOatojl7WTiY2E2aLlpTZ/WsUWPRhd4PTnZgG2hv+qXoS3a198f vLG+GRILeG9xIVsUaGKRGzy+GVJYwoL1ttuiXpOwx9XPNkPeC0uhC1G2iDZw 7vvgvs3wlNazk9BhizrrbrXtrWOF2W0bc3uC7ZDvUl3g3mgWeFeRhIRC7RAt +mdiVhgLVHNKXm+NtGN47vi9j0dYIKrRQI8YY4d0sw81HfBjAS7dw2F/0uwQ Cr36ps2YBZT5P6yk19mhsSL9rKLFTbCzs4z5FSsVHa7Y+Sc9ZBO8dvQSMsih olvcCkXWkczw3VPl2IERe+TZ7JZ1jrxBD6P9bv4hQEMeTK3pj2zX6E/jqecj zB2Rl+yc7+vmVbppH2/orvNOiHPsRsPDoN90kvCnfTmVzqj0627P0ehluuPl P0vDj52R9xA7ZTB8mR7wR/qySp0zCkjqujd4bJmeP+x//1GzM5Kt0F6e3rVM 56/4sdj2yRnV+Yhuplgu03/abcQtbXJB9lnfFWo2luhPIlXuuni7IOsR76bP F5fo3VMOJmk7XdCW1ZHTe84u0ad3HXn9yd8FndZl2zoZsURXtn04t/+oC+pV 4idzBi3RM/hNyadjXFD+n8NtpxyX6CfvubSX3HdBT8vIllL8S/R06eM7ph+6 IMftyeYjHEv0h9dSZ3RrXNCfiEsq95mX6JPhvQIN2AVN7Fx/5Li4SPez9vd7 /8EFfWmb9376cZEeUR07Ld7vgqrZ9A/kdi3SU9VKzu4edkFr61l2l14u0l/x /iiYnHJBs2s4av+zRfr3GB5D7XkX9LGOucP78SJ907J2W9iyC5JI3z/uWr5I lw1y9332xwU1SGm1OxUv0v/f/jb0//e3/R+fTfKC "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, PlotRange->NCache[{{-60, 60}, { Rational[-1, 1250], 0}}, {{-60, 60}, {-0.0008, 0}}], PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Im", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "3."}]}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",", RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",", RowBox[{"\[CapitalOmega]c", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "6."}]}], ",", RowBox[{"\[CapitalOmega]1", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",", RowBox[{"\[CapitalOmega]2", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "5."}]}], ",", RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",", RowBox[{"\[Delta]1", "\[Rule]", RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"d", ",", RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "6"}], " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}], ",", RowBox[{"0", " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJw1mnk0VV/Yx83zPM9T7nXN83y5+5oyNkgUkaTI1EAqUimkkspQUmkyNCkN iuI+G6kImcpUhkJmMvMzvOdd633/uXd91zl7n+d8v3uf83nWOsoBB933sTAx MVUSP//7b9kVNbq+7oafCFi4/bs6w2gvvT/p9J8bVnGfvap/Y4YRndUwkz7v htdOSHZE3ZlhFG2nrKiNu+EynYhTbE9mGKqNXXxbOt0wWfuKh2PVDIOv2kbn 3hs3XLyeOL53fobR/VzoMDrghlWHl5SW/GYZ8WefzZ9pdsU128orRC3mGBck Q7/mXXLB0SqTl55sXGAofKQ8jPR2xlqeXz9Jxy4xVlWDxa11nXDs+Mu8e3P/ MXIidbY+G9mId7ZdOj4kvs6o75i5UvXBAf86+LWOm84McrziJx+8dcBCPY0N ok7MEEY1CY5/6YCl8PtzG7YyA9/d44hW4IBHOElyHnuYwTVwdep9mgN+uaz5 YDmeGWonONxfHXDAviWmU3s+MsMnVhmx+5IO2Ew54EilGwswtFHWqUh7fH3h h6hmFCv07PsafTTCHj9muhieG8cKTDme28MO2OPJT5aNqudZwUYgXMR7tz0+ YsRSb5HNCp8mbqYYu9hjstRIWBlmhfoXM2fGVOxxhJPjUzlBNvipX3DAu9kO G5ybdkx6yQZLxgKWJvp2+BjF+FWNAAccD8krP6dlh/3JOjVx0hywmENFTWp2 uDO8otFclQPmOUPtwxTsMOVAU1ONOQdMd3ze/IDXDr+buX7KeR8HjMbFBwoM 2uLPqqfLv5dzwK/q2cuD2bZ45UXo8OajnFCxvav3OpstPmv8tLtznQsW87Km T63b4G37egaH+blBZ347W9CyDZY+UCrALscN2dcb1UynbLCw38X53WbccKSt OqKtywafs0n58PgwN6juLFqRfG2DM/1VeLMHuSFpV6LUzT02uNlcl8W7kwdc 9upuucWgY80Vi+9843zQ+2KRvbOUjj+OcTYcW+WDqJWKD1LFdOxjZKn4j58f bmd6qF1/SscfrG4LCuryw8TnE2tXs+i4yfei4PJhfrim9fFZ0hE6Tvzjqnh7 mR/a5nZwHyHTMW1gZDxNUhDCbFSgSJmOmWNo7mPqgsB0ZTRqUo6OjyyEhHpS BYFCOdUbJkrHZ837BX33CEKM98N3QUx0nOUkcMTkmSDIw/g+306EuUo5na6r CMHe5LOVjqkIH2zf+TqgUgi+dBWH3L2AcKN8k8PJOiHQ0R0WmU8gjn/5ZHv3 hxAsf9+892Eswt02MU+YR4Xg6gZ5trVghANlY+PNxYShjPHO/rUtwheDBl3P BAsDZaTjmuU0DZMvxMV+khKBmavo99AQDf/UPapPVhUBhmmBwfUeGj7zx2Pl qq4IeCRGtUzV0fCWcB++ZAcROKMkKJ5fQMOiLSJlq1Ei0O5plyXkS8M9DxMH xFpF4ELV85yBz9bY02Q2MvCWKFTe38P/pdwa37qrnej3WBRWToudfPLaGjsd jRQNficKEdSYnQfvWuNj3mvsT1pEwb3YXmwp2hovKNsPjPKJgUzBzwt8ZGt8 veEiNe6sGDy7yHPUMMEK3210d02NEYeB4PI/4jFWOLr1yZ3HF8VBYeMh98WD VngqLeBjW7Y4XGX9oVvuY4VvDNXxhn8Qh6Mn7484GFrhpqpDA6dWxcE6wszf +zcVH5JeeumTKAGNW/e7xCMqFoj0P/A3VxI+UfRZhE2p+ET/Zu1dbyXhw/p/ Jfe0qXjq57rUwGdJyC+8RsYyVBz8+vCQ4agknOQuZ16ftcRzu/B/XwykgFIh WnLysSXeIZAQNVEtBfF6FarHRSwxZ/GfROVVaYjmTOni5LbETvZb2vyEZSCs 2zPtxroFzhXHvW9IMrAjZWz97ZgF7v72pPLpJhnQGZLsmvtkgd1k9gfV3JeB zrsR1yJjLbDsJ5lLI66yYCAotxbRb44ntdzMeEvk4Lq8YYthpzkmYZmPxU1y sKTp/Gjxmzm2Ca3ZnTAqB9jxuPvZD+ZYVyuxO1VRHjafbc3PTDPHc6ZK1f4X 5CFsLmVzGTLHj0txl1mgAuR1rd7jvmOGHaWRaaScEnCNiEU3pJnhPOU1nlZN JQhb1HRJTzbDoby0/1wslcBI3HtOLsoMb8ZTk/HeSlC56a2TnosZ7r8QHsub rQTdFRHTnkumeGfTpH2FvDJIPeqxzd1uiv949Q4ZmauAwsfa1SwXU1zeFFF6 3kUFVHuL312mm2Imm+KkBV8V0JNK0TymbYodq+lCuudUYGOymagzuykeD7rV yPZNBaKDr/2efGOCc/TZixPCNsB3im28pZgJHhi4Lv0Fq0KnnY6lHo8J3vLz WCOtTRV6/aXnVJlMcApPfM6vcVUYy5oMFhgzxhKZ9m0psiRg4769pa/KGLPO 1W2qOk4Co+FZxfORxnhXvEF3jwUZ0h7nM5qbjfCqBNJP7FUDD8ZjHFVjhI18 dV6kL6uBRMuzSglshO8kq2k0iFHg1sqrT96FRpj2aSDtixMFcjdDw+/zRnh4 Ohp+FVPg3Vxb9zTVCJM6rCt6r6vDTzr3ukiBIRZmH3mqe1oTcjz5mIvvGOKF cNULiXc1YU+oIKtXhiG+3VfQKYY1YTBDnPNWvCEe2GlY0cesBZN/lQU37DLE cvsuSdgkawFLqoWiobAhvhr4csOle9qg1hlK2xZrgNcKxnYcYNaDHeQPuzUO G+Dn6uI8/pJ6kHyE5wxzkAHOPipvdFZbD4Z4HuMX7gZ4u+nprc7eevDEcpDO p2GAd3AetJsp1gOdO/521e36+Aar5eTMUX0w8t/uZGqij+9vetbyT8YQAp/l HhDQ0sfJ/319sWRiCJmLMxcGlPXx8WjeNpNthjB/Na02nV8fBwgd79uaYgjv Kr65TPXr4S9n9jgIMRuBxQbnTY/T9XDl76V3DbNGcKYuLt/kty5+c2JfzCF2 U/D2dD1G+6aLNZ6Ia06STMGwV8bRsUwXC+WpTmQ7mMLgzLvhndd1sSXNXuR4 sim4yU5rxTnr4tRmi1lLATOQCdn/uuqVDvYL9jkcpGwObzg34y3ntPGlp1+k Nf0tIfWa/LWdh7SxX9DLvh8JlhAkO7YnwFcbm32+u3rlsSXI6F5gjTLVxh21 R6dUZiwh3rPK4caoFk4vl3ucmUSFTXmm9b+2aeE7qPd+7TMrGLZR6gxR1cQx myLrlPppkGN5/u8vQU2cLPUTb2JD4GE0MbvlPw2c9ubwyz0SCDCpTNC0WQO/ vfrTZMUcQRbXDnvWMxo43yNupvIUgk3M4B4dqoG17mzYtO8KArZlkv+wpwZW WJK9WXMXwcHRmZhv2hr4xNX4cw2AwKHhStGtLnXMIT185vwKgpVP8+UCn9Xx lzvLtAUeOrwC36/xr9SxQ+9FHQlpOsi/1BwMuqCOTx/uTtthRIfmx2kznVHq uDkt+eYxOh2SHywxbfJXx2ZXMmaom+gwm/5Z1shUHZddzDV6tZ8OT1J01AtU 1HFurDqb3xE6+CdmmsgIqOOryHi5II4OX6P3bmUaoOBUjYpagXQ6nDlY6xfZ SMEhN8I4KXfoYBKsHzb4gYLfveTVb8+nw4Od60l1aRS8nevYr/kSOuxw359B O0XB+/N3+AZU0EHApf7+qwMUfLbd7pNfDR0+2hq9IG2n4KHjiw0jjXQ4Qb1V loUoOGyzkwN7Ox10jFlqebUoeOuhVdHCbjr0ax9oOyVJwbrlN8z7+umQTW7s /8dCwZwFUi33RuiwRdF0OnBCDSvufCU5OkkHDqmc9bYONXwk7qA3zNKhTIid 36VaDev9+Mojv0SHI9xhMowiNfx8xqqYdZUOaiwtavq31fAjn5eskUw28HPZ 3Dj3vBoeSpgqD2G1gbSZezaSkWrYR2atZoTdBhzHOLdc9FPDzNy+WjOcNrDW H+G76qSGW8cduBK4beDNr+8hh4zVsOelxrt3eGwg5Af1+B8lNbybeWUb4rUB pW8PEz351PDDzJLcMEJ//8yTXrNAxoOT3/Q2EPoiPnyP+oeMhzAuDiTGo9L2 whcNZDzckyRoQMw//5L2QeU9GbevbzFLIa7/7En+l8w8MjbVV3WMIuoLeMj/ g4t4RZbHhEeNstiA1O2oP7EnyfjgYLzgzDodGjK6piaCyDg4ij85ZYUOCZdt 1vZsI2P7Y4eDSxfpYJH0mPe7NRlXT4l4xhL+TZ0SknbUIOPfGTeFWgl/fQ51 G+owkzG7hNeBrQN08EwY52EeJ+GWrQty13uIPLJW+lraSXgrWZcnroMOdljm 6okiEq5jlmOyqKODdat6kOttEt64ZHVQrJoO5kNm1orJJNwU3Pj7ZjmRv5DX 2MfdhE509n1RSAeK6v6qGy4kHF0/6GKXR4cNZkezQ0xJ2C1Hhy/1Nh2k/NMd hQRJ2O/pjLfzRTqwFH3L9WGoYsOXV98XBdBhpao7VueJKs7co7fPZAcdFtrG 3Zmvq+LU0wWhSW50GFvnZS4IV8WmxiFvr5rS4ftmR99pOVW87UfF7dvcdHg0 icUvxG7APNccjFcLEDxgbRzzCdqAMQc5O+oWgjuSPVU62zbgMInOhr5UBGm0 1cOtGhswV+be1IKjCGKvmDcodqrg4Gh3ww22xPNB91XSWzMVHBCafuMK0MDR tsL3gqoKLth5y8KrgAa2Xo1Gu4RUsEyblMKmKzQwOz3xm3lIGUesNpb82E0D 5W8aNLcbyvi0iLD3I1YazEY8XPgzp4SHau0Us3ZYQ1DUbz/hP0r43p/dL2ft raHzhPIn60YlPJuSkn3b0BoqEu5m3HyihNt/pSS2CFpDavYt/c27lfAbt8Zt q1+tgPleZ9ZJVyW8aK/4vvWDFUTlSTM9MVfCYttcWtefWoFP0Y0GNjElHO66 LOFx2Qq2pKi1RV1TxMfJabocHlZgciMv71uoIj5wa2g9xcEK5B9siNJwUMSH nE9PhJpbwcg7ReHeZQWcHSTmbahkBY2Vd3osvitgbwMfdzkxK3hXL/s884UC tljQ9vfjsoKEP5IuLoEKWIo7xmjiHxVCJjKl860VcCXTuiz1LxW2LokOMUkr 4I8v2nz+/KSCgqBQ4tt6eSwSvuudVQ0VSiy4QNlUHifyPr6lkE+FHPukyyeF 5bEdFnYxyqFC4ha2XW2jcnile6vwg+tUcN/PtJRyTw7f6+B8lJBMBbPDpz7/ jZHDu04/qlmMp4LiyZVMm+1ymCy7mlsVS4Wxa4sGi9xy2ENk8rfPISo0345m 3tYvi5lET++lhFKhtGD2WyFDFls8U+p02k+Fe6+O5HDdlMVF7MWfYQ8Vksqn wvZGyuLz3L0FF3ypEPYlwpLhJotb3a3/5e+kwraWMW5piiye8rspLulJBYvu kPZIFln8g1PmbIc7FZSGh/IbfsrgTrcTd8c3U4Fjdv9R9Xcy+Pkx3WZ3NyqM r/XbJlyTwfjK/RguFyq0cu8V6QmVwd0ObnP8TlR4L9bXa+4ggx/azmQHbCTq U9z9IkOJ0IOA2R2ocF7jV9zksjQ+mnKkZN6OChHGPq7O36Vxt8e5RiNCe6AO mbwX0lj7xEYPsCXqc/EaXr8gjb3NxVIyCa3s+f2dd6A0fn3Av/wtobn2bEsq tpbGuY/7NVSI8ROhTR5C0tK43fW9WBuhW6M3bwidkcJv1o+XtNoT9cXX/6uu l8Khetu2yvxvfSkuWOmRFG6z15cqcCTqu1GTGntWCtc8+2ob40wF8pnjP57s lMJlMV0BVa5U+BisptCpJ4UZzidcfQl/9m79sY+bSwo3XtdedCD8Y7FILDTr kcRc/Uw+p7cT86sYzQW9lcS/M7OD2An/abx/qDcuS+Iv5n4C7buocPInqpuz lMR2g7Z9fvuoIFs9KUoSlcSFtvV/hEKIegtzfDxGJPBF/jPavAepsHBqZeRV lgQedOfRbT1BhetBTw1+H5TAZb2CL+6dpoLRFu8Y4Y0S2MS9kuNlIhWOKJdw H5oTx/k5A2VZaVQQ5gnaerdOHC9cqmwLv0mFomnxmw0PxfE9djvbs/eIfKsi Kdru4nh/utmxwBdUCN6vu3HkuRie8j7MPPGNCpybu1Olk8Tw+T81O+60UyHf 9PIPR18xLDKh/OFsHxX+cI3uK+AVwyfNZkdHZqjg9zQ/ITBYFJNi7vQIylrB avr2unSaKK59UxC9iWQFt0+yiVVJiOLBHtqtUl0r6HALeKhcLYIDsmMrhOyt wGNKvrJbWQS/eavQdO+wFTgbZ67v6BLCjulCv8yarCD0FOdc9m0+HDKzKYFx 3xpSxEnVe7fwYWHqUvPm59bw7JlNphYbHz7GQxUcfG8NE51xxoxQXhyv4rFT vtUajpjOHu2z4MHC/5wSb3HQ4MRU77xaByf27171Wg6hQfb5tU9TKZy48OCl o4HHaPBeQe5GKeLE79m2dFedo8GKq5epyyMOfHvYvdLvNg3OPK4/FnGMHW/2 2B04UkeD8wHvF9+Is+KA+PEqO3EEj5bavsTVsODpsAzrMRkEX67OZTnEseCq kjyu80oIeEDPvL2fGYc5hjVmaCJIlS048d9rJmyskOLMTkfw4tVHp49BTDji bqCnpQOCRqff0pdlmXCdTornHhcEG6Ysoqw41iFsa2927HYEGo/V5s7lroCu qKdTdzCCsLaATHG+FRC7m8h+IRzBc/Yc44LI/2DvfHmu0hEE+gFi0bU2yzB6 l1VePBaBmSzzglDfAiRITlhypyCIcaLeeOC4AB4LLW7CVxGUHTtmalQ0D+xk zUusGQhorePHvE7PAX3VzzmPeJ85XO5cvCM/A0PY78L3xwieZXoOaidPQ+Dj DopEIQLRnOaW8ul/cMCt9DqtCEHv89rnvz5PwYv6yL8ubxFsfOdwO9xgCgJR 5jadUgQ+pxNF/zOfBP3+1/cWPyCYv3e0xqJ/DD7f0GGzq0Dw8WV4rnfpKEgp 2736WIXgWuW+0zGpI8Ay3XJI6xMCrf7txu/NhiBkw+G9RbUIlmbdhDr5/8LZ v67WdXUIPrE7jC79HoCP1xyPNTQg2KNmct/88h8Ip97dn9iMQMdM5+TOgN/Q 0hrSYt5K8LUj2euEaR9IjVnztn5HULNTweAmXy+gUY+JbW3E9b5ryRyp+gVv Csf8StsRfJ6Xa3wZ3gXKFzbT2ToRBEjxJ/2T7AAmlZZYoy5iPvNVS/3KHxDA 93Pe6SeCGz7j/w6FtYKRWe9tu18IDOJ+FRRJNMMZygFv1W6iX7C69aE3/hvU z4orDBO64Uysmv+PWogSu9Oe1oOA9aNPeo/GJ6DN1J9U7iXy5KSu+52ugIVN aesZhO7KMPtRVlAKH3wnvcYJ7SC7VPhhSxE4l3Gc1ugj+pOkQYmRwVtQoSp5 yJXQWqAjZjxylvZn7CRlG6HnH1zMvBJcQItzfVVgTWihr2wzjrzFNK3QzZMC hM63s5N1DmDQeEx4WD8S8yv0VNzP+1lF614pHvIl9NCtPmNy8heaX5vNo59E va93MNfmG9bTVJrLXBCh4aLQi/TJRhp/v3NPMnF/qgeUlrbZt9B+PdU+/Jbw 4+JGPVuxW99pXfPlwjWEX5MkdLl1qo22XSi0BRN+erBtactw6KQNd5bU3iH8 fv97t/L22z9pla+tBPw7EChWHAwVn+6mXVC695aTyGeO8Xm9tqGPVmHW8YCT yJPy/Jvq06XftMV5YxX/FgTed9qcLqn208r8ouNymgh/Yv+mu8QM0uJzv3vU 1yOYDpks0cz7SzM8nyjH+IqA5L3wi7dxiCaWYOiVWUPUa8ZJqSON0k4E6Dcv fERQribo9mzLGM2k9WH4uUoEUxKSR1Jix2mKcVsM5ol+bvscucy1aZI2/3EP S9p7wt+dGx7tt56mRRqfe/noOfH86PjzPaF3mnZP4gFD6ymCeO9c1odnZ2hS Ot1PMwm+nPYh7e75NEtrnvoRKXkPQYufmsSOzQu0zktynv1EP5nS89c2+t8C 7eTUo8msSwjs/B8dzkhfpGX947E2Po/gzR71+sa2JdrF8/tTyEQ/ej1QM8HJ f4W2t3Vi70IIwZ8Doy+DWFZpR5f+cM/tQ8Cx/1lPYu4qLbBNrPyXP4JjQdqW lUNrNP5T/6SPeBLrp1jyxJ0SJiTMovvyNUIgUCKtJ0FnRdvJxfs5RRCELC45 kNJY0VsJS7dJXmI/mnX6Gv1hRVq9ppRadgSnSrMvuSeyocoy3qriaRpMvpf9 m1rDjqhbHewmCf5tLJfP4XTnQq0vnMNMvGiQXqXMtxTAj56ncnOqxVsDn7XN 7zvP+dGrqZk7n6OsIaEkoMRmmR8FX1m5cjjYGqILHwamXBNAg28lQgc2W8OO G6RyRSyIriQJOgcrWsOVYjHThwLC6KBDskRxhRXUTas+OGokjAQuu+/wf2sF XHrG/I7ewohrIuKSKsG3Z55s/zOWJ4xqJaby/8uwgiN3r18xsRJBh3fqNawf sILtF6SGakJFkdZIxhtTGStI+0TZdvuaKPKd9mwbELKCBlZzRsQ7UUR+1+FS xmkFDqd2ZoiyiqHqjv6ZgTmCJyOzkW+2GGpf2Zvv0EqFqKInT3WxGIoa+oq3 1lHh5fh7CZZBMdTE0v8y5SMVNIK7xvL1xZHK7eqGzGKCN3zlbk59EUcaa2Vf BLKpsCNbi61qgtBmV468SqdCRhv1YKaYBDLj8XO9fJkKfO6+9hb+EsjrmovW GMGvjlfCi/iSJFBQjNza4ZME/9bFyfY8lUCIzeyGwTEqrDnk/Du3IIFUGE1P gsIJnkt4vstTXhK9FVYY+hVMhWMVjM8UW0n0uN34SFogFd6sNRj8FyyJTva6 qSX5U2HKsudOfaokerrPrL+U4CWtE5Nc995IIqZSjwQdgqeC365HHumURF7C p/r6Cd7KnRHssWOSQoPxSy2/CB7r01NyliRLodu8ew1ktlBh/9V1S/HNUmi9 QsgnmODZkclubdHjUmgl+WsZJ8GzEZsZisL3pRAPz/k9SwQPTj+/IyxYK4WK tQ9vsSZ4MVogjpV/Rgq5rtVfbiN4cjl81xyPnDRSKmuS+UTw5ql6y79c9tJo VOTEHA+hWbRlOzgipJGK/26pAoJXk1KWa9luSCOrpbSYW4TmGesoY8HS6Oae IMFhQqe6lD5nGpZG2bvtP10lxos+zbq3JiyD2nuOX0wnrpfFczxtxUIGdV5f sZkmeFouxCthea8M2rvFtrmQqPdejUn0YooMOvBzTfwzwa+q6hLB88UySO9i /6A1cb+Pkud2znbLoGTlg1IShB9aQ60u05yyKMQl57jbNoIHN76xmtKTRSPe r78NEP2BUUG67sROWeQfPNrT4030PxyRymNnZVHQS5N91N1UoO53Fx15KosE 9MbFVvZSwZ4kvDCwKosqxTXyCyKoUJswNfSHLIfSL2c1ZERRYVP/t86+zXLo 144bz//GUMHzYSrj1305JEYdqsVEf9TJElHUVSuH+s5p8jleJfgxwO1Bx4wc sj6gIGCaReSnzJf03V4evQ/YMef2mMjvzOixlgh5lDUcdC36FZFfb+2Bphvy KCLopzdXGZHX3Qtu9cPyyHZhd3BwI5HXWjDtq4gC4nnhyWnaReTl56hfY6mA XpinJh8cJPhfnlO8+rICahtr8lJYI9Z73CBH1VsFNGRdlJnBYwVXf1Yv4h4F 9MU6JCNK0gqybiX8LNNXRFTO7/yHDazgkTRL7pvvisi6JeuPe7gVsV77Ml+t KaKhgYPnBOKsYEdYr227qBKaKIAbekS/+/MrGP+gKqEAg0zRvOdW0H/xlHRz qhJq6gs8aDxvBXNcK701BsroOI9JV/t1glfv2AoNOyijrNNKFL5n1jClf4nG 5aOMQnOztqZUWMOIt0yOwzlltOQadzRk3Bp6n5n5VLUoI6abTQ+8HWlQt+Xo 97IoFTTLfDHeiQ2B80AZ289kFRT8b/rKYyGCT06wGf13WwVdHXirKCWPoPJB epp5tQpK2YFbpEwQlMy+3PxWfAOy4LvPFEHw5MOsiZoXbzcgeskw3wGCn5S0 TZYaajegLNM2+0fE+zSnIo4y0b0BjbMm3WvsJ3hlhO+8FqcqCrHdyNG8QvAt VdPusZcqGhus2u+iSQe+piORX0JV0d/PnO/Pm9Dhwr73D/6eVkU3rb+63qDT ISHViZn8SBWpWmuKk7zoENMbxHiwqIpMvm1sLTxNh8WoF+MVfCQkXbL0zeQC HY5yL8j1KZGQ8i5Dlbg0OhwySIpVdCKh9fJWe9NcOkx8qn9i7UtCu+QTx/Oe 0SHUR7zT9zAJteefy/78hg77E3LNbt8koSaTc0YyH+nQLzUW9KGQhFI4VnY5 fKXDnkLDG50VJPSKqZlVrpkO3fTYT0vfSSjv7chEVjsddv2onJMaISFnf5H5 99106AjhIZmtkZD4lnnWM/108Fzf6uElQkYtrpKSg8N02Erpe5VpQUakwIcv Ls8Qx78ubvV2I6Nh58nyxAU6eEcI/VPwJyPvFlE20n902C1MufrnCBkJ8TtY hKzRIfANTfdRIpnI30PTg9kGgr28GsKyyGinhWxxH6sNhC9HhOs/JSMO+PdF mMOGWE9JfPPlZBScxBv2h9MGolHO0/eNZJQFTe+2c9tAzJ9i59N/yIipV78z iMcGTifVD9vOkxHS+i0uzWsDCeoDyVzcauhF263KYEIn162o1cuqoYvpzm6e hE45KPb5mo4aOnpY36yPGH9NRGu/J12N8I9dlpvQ14tt2WU91FDop+UH9Vw2 kL3DJ7dnvxrKvVGfpkPUk/PfEdvcE2pIqfBdpSa7DTzMufg7OEUNvSrdo1TN YgOP6A/ite+qoce3Pz9fXqfDs/5SpemXaki9SCSpboUOL883wduPaujGyIEW iyU6vNUY9ottI+bnL2m3n6PD+3qmNdqIGponBY+NT9EBDkndYVtVQ+b5UicM x+jwUVSPWiNIQWaH7Fcl/tLhy9uNXZdVKOgaaZjnZh8dmleipSUdKWjz8fMH Yr/T4cfd1JIubwrCCRrUXw106LLJ97oXTkFjtvezez8T6yf5e6Z6OgUJ3F9i fCuhw5DmuNFEHgVlGP++Ul5Eh/EGttZXJRSkJ32eeesjOsyLGYlQuynodxw5 Mfw6Hbjup6VuUldHVx1qqPcjiP1i90RblKqOXIJOfu/ZSwfhvxV1bZvUUe3+ wM6GHXSQ0f7HsydKHUWLF+35SOwf7dLN5yNBHa1kJldbCNHBYFcQ2axZHb3m /PtDnZUOJuunqlf61dHCO7GLP+YQIPvnrEk8Guj12uSvgwQ/uzfxncnaroG2 TfsrtxI8GT1cc7x8VAPtM/zsPr+B2O/yTl2STJqo4lEnxYDguc9bv1gdEdNE Fq71r+lMCKTef2JRs9JENjs+76t5R/TTF6tSrqZqosDrntNjKjRY0yy/t1df C4mtNFcqT1pBYkTRF+5j2ijiCuXm4DFLeP5AVzPwkjY6D29k0rZYwo8fzy8z 7mojkwZa3WZ1SyDTCt0jv2ij/v8afnF3WcAXwSc/f0rrIO6M1qhCmgXwvXw4 9aJMBwVaqDEpCJpD7QkXPk1mPTS4/eHVhgYTUJGNnHvCo4daWJJjy56bQExZ dreGmB7SkODoaE81AfX14SINNT10ls1/8c5mE0hOSN6u4aaHGkb563e3GMPG K9U56jf1UPeqqUzvHyP4mEvTp+jro8EtdL9eiiHIOQTJPLLQR7G3aCyVAoYQ 9TeVlWKnjwYkVeaaZg1gg0b3dzUvfdQ9e3wttsIAzr44GaMWp4+0qAufp3cZ AP19aRW5Rh8dC83TMLutD4xvhp6kPQZo0/VlN28LPYjae977aIgBYuKv+7RA 0gP1hU6/6kgDRFt9Nl8qrAcZCmeD9iUZoD0X2Ls8W3QhJLzxeN5TA8SctqMw 2kQXJHjDb5HmDVClR/3nR9w6EOGQ30u6ZIgCiqlXUK8mqHYu9R/NMETxuzlV H4MmdIS7DVffMUScSc8Wne9qgl3m7L99RYYIJP4mmO3WBJl+G9b874bISjTf 9XmfBnyK7yGRlYxQs4uz170pdVAolwolFxuhXlnPkAJDCuyXVtpKByP0Vfvr HEmSAoVH1Ux31Rghc8c4jfZlNaDqmLCm/TJCAZf73nyvVAPvu9turbIboyCr 4KuU7WqQGZ/6tdXTGIndcuX4epYMfA5sWucWjdGUQeVz8roqeDzgFclhMUEF EnzHHYdU4daayGIJnwny+ZkpdK1JFTTeKX+cUDJBrwfiPTJzVcGRQtvl7WSC nHB1l7+rKpzjiUnRzzZBK0W8jmUPNsByw+RYj6Upyia9YDkcrAKJBj0X3exN USZbiYOIlwoIXW+gfNhkimQXrpnW26sA2bcw8PoeU3TKOXvblQ0q4D4a8tP1 vCnyz36ybN2rDE84B7+WNpuiw2dTXyv7KYM3+vkk/YAZUuhbGS4JUYKBh18d mSPN0E9y9GbjXUpwiPPDYMRJM2R/nr+12k0JkhpuqjhfMUO/zg09UNFXgle7 vLKZis3QOVLwhdR/isBzovlCOJM5+hP/wtBCUhE+vPwSvPGGOQJugzqFOHlo /xU6dPq+Obovv9fhYoA8zHILBpc8NUcCUgsbZR3lQSdge5A6Nkdffc7AM1F5 eCDyex/vMHH+rsLSxGdycDHyv4BvFhaogsTd0NIvC97GOr5e3RYosevARqUI GTi2p+nnlSELJH72gmuZlwxkXI7a9WXaAk3VZSwcpctAw8B7H3NOS1R3jSuY Li4DNtc3esvqWSIV2bhhA4Y0sZ79vXriLZHBRcnCbeLSsFiSvjWIREUXFCvW qW2SsGNM4cK0DhXt3fHB9VC1JJQqPsFxZlT0uc5va8lrSYhJwroZLlR0MFJ1 NfGqJKxsG+evOExF32DQTcxFEpgmHWplGFRknuC9oa9KArhIyzYNnlboykf/ xyFV4hC8IzFmp78VaugQDlp6LQ41l4Re9R+wQgrlndo3c8Xh4jRZ+b+TVihB KPogb5I48OFt62oPrdD9e6vL75zEQcin8EP8pBUSrOpKk20VA+lr/kbGydao qzpH7sCsKLS/lTx/9Zo1Gg8v59D5KwrXfzZ0jGZbozwf3ktMnaIgQrE6/aDQ GuV2HhJvAFHgAelawRZrZGmcqsidIgorY827R+Rp6LBJxNAEWRR6He0v3X1N Q+yr7A1r+0QgJ2Ll13IZDbW8rDP18BaBXRmv9Tw/0VAEPU6keJMIdPQo/+Dr oKGXHJK/skxFoDl6TSlmjYbOqLkp/OUWgYBmH58nqgjpb5zwvVYkDNuYxP8l HCRwwDSC+p5dGE4ec+bNikJo8pDEVPyyEOROnCY9PYHQv7/hfNsnhWD258jO pnMIcbE9ocl3CEFGKa6Uz0LozM7lDsNCIWg9EpbxFiMU6juaEOYlBNsHqkyH hOmIvQWfcQ0SBK/aI6dc3tBRfMfmrFIhflCyvz3LWUpHubH4yiYmfhiB6pCP 5XT0qutI9b9JPjhVLOVl9ZmOhHl1HwV844P8ewxd3U46Kh9MOz6Wygez0Tx9 Ikw2iPZ1kCVNiA/SNjyw7XSxQcn54ZfeyfNCw8kmrgN/bNBdUs5W513c0NfV OnlxyAadeLDG6HLjhlmL9h/Pxm1Q0Whe+QkaN0gvdedOLdigzd+QYZcKNwQe HUPH+WyR2b7vew1GuOC/cM4T541t0avgYltSLBdQdlsN5523RZkl6elleZxw jv645remHfpW+480LsMBH2/aMMb07JDwgYCxQ4IcwDHd9Wre2A6xMNPrV1k5 4OIDgds8yA6dvKL6zmCcHa6yRkUYeNihQJdjclyYHXKqrUXPnrRDU33ve3YE sUOJU+su5Xo7pDhlc9C9jA0mtq5P7o6wR9I2ZSt1cazQXJiCRCPtUUKRWtVs FCsUc8tc+3TMHvUvKuephLHCyQojA+14e7Rp/2TuVW9W4NEPiVpOt0eGnDlz b0xZgST0fTGj1B6FrFxZk55hgV0NT5hr2RzQ0b/20noRLPDV2VPU6JYDkW9s cGQUMwxuJ4cH9m1EkiUVdRU664wop4WqUWEnNBnEvO+r2QqjJNnhTDTVGZks i17+9HaJYdEpEOl7xgVl39wK6j4LDB2x9oBbz11RMSlMxu3QHMP5/PJs72tX 9Hv6SLhT8Bxj/7LceXKpKxJOP+3g7D/HuNu75+nLKlcUxjF/cueWOYZQ4ejM 53ZXFBCqdLtQb47xz349YZbFDcWUU9+oT88y3hwjF7h5uaHH4jbR3sdnGY0j jubpu9zQGHeqSt+hWcaYb+jX9j1uaDHJeDz0wCyDZFc0uTfMDV1oPdB02XuW cV3Iwiwm3g39k6g5w2I1yzj+2K0m/6kbohim9TxjmWVkyB3yGStyQ5N3RHii /pthFF1JG9d/64aG/sZuoM3OMIaPtgmXYzd0//glyb6BGYa3zR7vlu9u6FdJ 5ZttNTOM6OJzY1Jdbsjm5i0Oi8oZRhol/5RfrxtSt83XU/0ww6gVGH0wPOKG 6vLILGyFM4zBeH5j3SlifBZ/7lLeDINlTvdz1JwbOvSRS3QmZ4ahEOy+8/2y G1KS8XKdujHD+L/vgdH/fw/8P5ata74= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, PlotRange->NCache[{{-60, 60}, { Rational[-3, 5000], 0}}, {{-60, 60}, {-0.0006, 0}}], PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"MapThread", "[", RowBox[{"Equal", ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"DMVariables", "[", "system", "]"}], "/.", RowBox[{"\[Rho]", "\[Rule]", "dr"}]}], ",", RowBox[{"Collect", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"eqs", "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.", RowBox[{ RowBox[{"Complex", "[", RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]", RowBox[{"a", " ", "i"}]}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"i", " ", "\[Phi]1"}]], "\[CapitalOmega]1"}], "\[Rule]", RowBox[{"2", " ", "E1"}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "i"}], " ", "\[Phi]1"}]], "\[CapitalOmega]1"}], "\[Rule]", RowBox[{"2", " ", "E1c"}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"i", " ", "\[Phi]2"}]], "\[CapitalOmega]2"}], "\[Rule]", RowBox[{"2", " ", "E2"}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "i"}], " ", "\[Phi]2"}]], "\[CapitalOmega]2"}], "\[Rule]", RowBox[{"2", " ", "E2c"}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"i", " ", "\[Phi]c"}]], "\[CapitalOmega]c"}], "\[Rule]", RowBox[{"2", " ", "Ec"}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "i"}], " ", "\[Phi]c"}]], "\[CapitalOmega]c"}], "\[Rule]", RowBox[{"2", " ", "Ecc"}]}], ",", RowBox[{"\[Delta]1", "\[Rule]", "d1"}], ",", RowBox[{"\[Delta]2", "\[Rule]", "d2"}], ",", RowBox[{"\[Delta]c", "\[Rule]", "d3"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", "G3"}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", "G4"}]}], "}"}]}], "/.", RowBox[{"\[Rho]", "\[Rule]", "r"}]}], ",", "i", ",", "FullSimplify"}], "]"}]}], "}"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"DeleteCases", "[", RowBox[{"%", ",", RowBox[{ RowBox[{ SubscriptBox["dr", RowBox[{"a_", ",", "b_"}]], "\[Equal]", "_"}], "/;", RowBox[{"b", "<", "a"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"StringJoin", "[", RowBox[{ RowBox[{ RowBox[{"StringReplace", "[", RowBox[{ RowBox[{ RowBox[{"ToString", "@", RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], ",", RowBox[{"{", RowBox[{ RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",", RowBox[{ RowBox[{ "\"\\"", "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], ":>", RowBox[{"\"\\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}], ",", RowBox[{ RowBox[{ "\"\\"", "~~", "r_", "~~", "\"\<,\>\"", "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", RowBox[{"r", "<>", "a", "<>", "b"}]}]}], "}"}]}], "]"}], "&"}], "/@", "%"}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{ RowBox[{"ToFileName", "[", RowBox[{ RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\\""}], "]"}], ",", "%"}], "]"}]}], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "1"}]], "\[Equal]", RowBox[{ FractionBox["gt", "2"], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "E1"}], " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}]}], ")"}]}], "+", RowBox[{"G3", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]], " ", SubscriptBox["R", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{"G4", " ", SubscriptBox["r", RowBox[{"4", ",", "4"}]], " ", SubscriptBox["R", RowBox[{"4", ",", "1"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "2"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "gt"}], " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "d1"}], "+", "d2"}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"E2", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{"Ec", " ", SubscriptBox["r", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{"E1c", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G3", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "E1c"}], " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"d1", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "Ecc"}], " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{ RowBox[{"(", RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{"E1c", " ", SubscriptBox["r", RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "1"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "gt"}], " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"d1", "-", "d2"}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"E1", " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{"Ecc", " ", SubscriptBox["r", RowBox[{"4", ",", "1"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "2"}]], "\[Equal]", RowBox[{ FractionBox["gt", "2"], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "E2"}], " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"Ec", " ", SubscriptBox["r", RowBox[{"2", ",", "4"}]]}], "+", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"Ecc", " ", SubscriptBox["r", RowBox[{"4", ",", "2"}]]}]}], ")"}]}], "+", RowBox[{"G3", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]], " ", SubscriptBox["R", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"G4", " ", SubscriptBox["r", RowBox[{"4", ",", "4"}]], " ", SubscriptBox["R", RowBox[{"4", ",", "2"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G3", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "E1c"}], " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{"Ecc", " ", SubscriptBox["r", RowBox[{"4", ",", "3"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "4"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "Ecc"}], " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"d3", " ", SubscriptBox["r", RowBox[{"2", ",", "4"}]]}], "+", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"3", ",", "4"}]]}], "+", RowBox[{"Ecc", " ", SubscriptBox["r", RowBox[{"4", ",", "4"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "1"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G3", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E1", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"E2", " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "+", RowBox[{"d1", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"E1", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "2"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G3", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E1", " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{"E2", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "+", RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"E2", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}], "-", RowBox[{"Ec", " ", SubscriptBox["r", RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E1", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E2", " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"E1c", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"G3", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G3", "+", "G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "4"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E1", " ", SubscriptBox["r", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{"E2", " ", SubscriptBox["r", RowBox[{"2", ",", "4"}]]}], "-", RowBox[{"Ecc", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{"d2", "-", "d3"}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"4", ",", "1"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"4", ",", "1"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"Ec", " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ", SubscriptBox["r", RowBox[{"4", ",", "1"}]]}], "-", RowBox[{"E1", " ", SubscriptBox["r", RowBox[{"4", ",", "3"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"4", ",", "2"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"4", ",", "2"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"Ec", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "+", RowBox[{"d3", " ", SubscriptBox["r", RowBox[{"4", ",", "2"}]]}], "-", RowBox[{"E2", " ", SubscriptBox["r", RowBox[{"4", ",", "3"}]]}], "-", RowBox[{"Ec", " ", SubscriptBox["r", RowBox[{"4", ",", "4"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"4", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G3", "+", "G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"4", ",", "3"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"Ec", " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"E1c", " ", SubscriptBox["r", RowBox[{"4", ",", "1"}]]}], "-", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"4", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "d2"}], "+", "d3"}], ")"}], " ", SubscriptBox["r", RowBox[{"4", ",", "3"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"4", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"Ec", " ", SubscriptBox["r", RowBox[{"2", ",", "4"}]]}], "-", RowBox[{"Ecc", " ", SubscriptBox["r", RowBox[{"4", ",", "2"}]]}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"G4", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"4", ",", "4"}]]}]}]}]}], "}"}]], "Output"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "1"}]], "\[Equal]", RowBox[{ FractionBox["gt", "2"], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "E1"}], " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}]}], ")"}]}], "+", RowBox[{"G3", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]], " ", SubscriptBox["R", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{"G4", " ", SubscriptBox["r", RowBox[{"4", ",", "4"}]], " ", SubscriptBox["R", RowBox[{"4", ",", "1"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "2"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "gt"}], " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "d1"}], "+", "d2"}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"E2", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{"Ec", " ", SubscriptBox["r", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{"E1c", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G3", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "E1c"}], " ", SubscriptBox["r", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"d1", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E1c", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"1", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "Ecc"}], " ", SubscriptBox["r", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{ RowBox[{"(", RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ", SubscriptBox["r", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{"E1c", " ", SubscriptBox["r", RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "2"}]], "\[Equal]", RowBox[{ FractionBox["gt", "2"], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "E2"}], " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"Ec", " ", SubscriptBox["r", RowBox[{"2", ",", "4"}]]}], "+", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"Ecc", " ", SubscriptBox["r", RowBox[{"4", ",", "2"}]]}]}], ")"}]}], "+", RowBox[{"G3", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]], " ", SubscriptBox["R", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"G4", " ", SubscriptBox["r", RowBox[{"4", ",", "4"}]], " ", SubscriptBox["R", RowBox[{"4", ",", "2"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G3", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "E1c"}], " ", SubscriptBox["r", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{"Ecc", " ", SubscriptBox["r", RowBox[{"4", ",", "3"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"2", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"2", ",", "4"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "Ecc"}], " ", SubscriptBox["r", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"d3", " ", SubscriptBox["r", RowBox[{"2", ",", "4"}]]}], "+", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"3", ",", "4"}]]}], "+", RowBox[{"Ecc", " ", SubscriptBox["r", RowBox[{"4", ",", "4"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E1", " ", SubscriptBox["r", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{"E2", " ", SubscriptBox["r", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"E1c", " ", SubscriptBox["r", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{"E2c", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"G3", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"3", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G3", "+", "G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "4"}]]}], "+", RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"E1", " ", SubscriptBox["r", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{"E2", " ", SubscriptBox["r", RowBox[{"2", ",", "4"}]]}], "-", RowBox[{"Ecc", " ", SubscriptBox["r", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{"d2", "-", "d3"}], ")"}], " ", SubscriptBox["r", RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"4", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{"i", " ", RowBox[{"(", RowBox[{ RowBox[{"Ec", " ", SubscriptBox["r", RowBox[{"2", ",", "4"}]]}], "-", RowBox[{"Ecc", " ", SubscriptBox["r", RowBox[{"4", ",", "2"}]]}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"G4", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"4", ",", "4"}]]}]}]}]}], "}"}]], "Output"], Cell[BoxData["\<\"dr11_dt = gt/2. - gt*r11 + i*(-(E1*r13) + E1c*r31) + \ G3*r33*R31 + G4*r44*R41;\\ndr12_dt = -(gt*r12) + i*((-d1 + d2)*r12 - E2*r13 - \ Ec*r14 + E1c*r32);\\ndr13_dt = -((G3 + 2*gt)*r13)/2. + i*(-(E1c*r11) - \ E2c*r12 - d1*r13 + E1c*r33);\\ndr14_dt = -((G4 + 2*gt)*r14)/2. + \ i*(-(Ecc*r12) - (d1 - d2 + d3)*r14 + E1c*r34);\\ndr22_dt = gt/2. - gt*r22 + \ i*(-(E2*r23) - Ec*r24 + E2c*r32 + Ecc*r42) + G3*r33*R32 + \ G4*r44*R42;\\ndr23_dt = -((G3 + 2*gt)*r23)/2. + i*(-(E1c*r21) - E2c*r22 - \ d2*r23 + E2c*r33 + Ecc*r43);\\ndr24_dt = -((G4 + 2*gt)*r24)/2. + \ i*(-(Ecc*r22) - d3*r24 + E2c*r34 + Ecc*r44);\\ndr33_dt = i*(E1*r13 + E2*r23 - \ E1c*r31 - E2c*r32) - (G3 + gt)*r33;\\ndr34_dt = -((G3 + G4 + 2*gt)*r34)/2. + \ i*(E1*r14 + E2*r24 - Ecc*r32 + (d2 - d3)*r34);\\ndr44_dt = i*(Ec*r24 - \ Ecc*r42) - (G4 + gt)*r44;\\n\"\>"], "Output"], Cell[BoxData["\<\"C:\\\\Users\\\\Simon\\\\WorkLaptop\\\\Home\\\\RocSci\\\\\ NavySTTR2011\\\\mathematica\\\\code.txt\"\>"], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Version using real DM variables", "Section"], Cell["Remove explict time dependence from the density matrix.", "MathCaption", CellID->540592006], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SetOptions", "[", RowBox[{"DensityMatrix", ",", RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}]}], "]"}]], "Input", CellID->227015699], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",", RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",", RowBox[{"Label", "\[Rule]", "None"}], ",", RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}], ",", RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output", ImageSize->{432, 33}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}] }, Open ]], Cell[TextData[{ Cell[BoxData[ ButtonBox["OpticalRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], " supply the repopulation matrices." }], "MathCaption", CellID->164472800], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"repop", "=", RowBox[{ RowBox[{ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", RowBox[{"TransitRepopulation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.", RowBox[{ RowBox[{"BranchingRatio", "[", RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]", SubscriptBox["R", RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input", CellID->358732873], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["R", RowBox[{"3", ",", "1"}]], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "3"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["R", RowBox[{"4", ",", "1"}]], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "4", ",", "4"}]]}]}], "0", "0", "0"}, {"0", RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["R", RowBox[{"3", ",", "2"}]], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "3"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["R", RowBox[{"4", ",", "2"}]], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "4", ",", "4"}]]}]}], "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["Here are the evolution equations.", "MathCaption", CellID->2682843], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TableForm", "[", RowBox[{ RowBox[{"eqs", "=", RowBox[{ RowBox[{"LiouvilleEquation", "[", RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//", "Expand"}]}], ",", RowBox[{"TableHeadings", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}], "]"}]], "Input", CellID->161699191], Cell[BoxData[ TagBox[ TagBox[GridBox[{ { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "1"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{"\[CapitalOmega]1", " ", RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "1"}]]}], "+", RowBox[{"\[CapitalOmega]1", " ", RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["R", RowBox[{"3", ",", "1"}]], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "3"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["R", RowBox[{"4", ",", "1"}]], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{"\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "2"}]]}], "-", RowBox[{"\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "2"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[Gamma]t"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "2"}]]}], "+", RowBox[{"\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{"\[CapitalOmega]2", " ", RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "3"}]]}], "+", RowBox[{"\[CapitalOmega]c", " ", RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "2"}]]}], "+", RowBox[{"\[CapitalOmega]2", " ", RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "3"}]]}], "+", RowBox[{"\[CapitalOmega]c", " ", RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "4"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["R", RowBox[{"3", ",", "2"}]], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "3"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["R", RowBox[{"4", ",", "2"}]], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{"\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[CapitalOmega]2", " ", RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{"\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[CapitalOmega]1", " ", RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{"\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "2"}]]}], "-", RowBox[{"\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[CapitalOmega]1"}], " ", RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{"\[CapitalOmega]2", " ", RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"\[CapitalOmega]1", " ", RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "3"}]]}], "-", RowBox[{"\[CapitalOmega]2", " ", RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "3"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "3"}]]}], "-", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{"\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "4"}]]}], "-", RowBox[{"\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "4"}]]}], "+", RowBox[{"\[Delta]c", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[CapitalOmega]c", " ", RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{"\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{"\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "4"}]]}], "-", RowBox[{"\[Delta]c", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{"\[Delta]c", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[Gamma]t"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "2"}]]}], "-", RowBox[{"\[Delta]c", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[CapitalOmega]1", " ", RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{"\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "3", ",", "4"}]]}], "+", RowBox[{"\[Delta]c", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "4"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", "3", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[CapitalOmega]1", " ", RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "3", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ", RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ", RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ", RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "4"}]]}], "+", RowBox[{"\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "4"}]]}], "-", RowBox[{"\[Delta]c", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", "4", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[CapitalOmega]c"}], " ", RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{"\[CapitalOmega]c", " ", RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "2", ",", "4"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "4", ",", "4"}]]}], "-", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxDividers->{ "Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {}, "Rows" -> {{False}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], OutputFormsDump`HeadedColumn], Function[BoxForm`e$, TableForm[BoxForm`e$, TableHeadings -> {{ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 1, 1], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 1, 2], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 1, 2], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 2, 2], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 1, 3], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 1, 3], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 2, 3], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 2, 3], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 3, 3], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 1, 4], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 1, 4], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 2, 4], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 2, 4], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 3, 4], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 3, 4], Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 4, 4]}, None}]]]], "Output"] }, Open ]], Cell["Make plots from paper.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", "1", ",", "3"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "5.9"}]}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",", RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",", RowBox[{"\[CapitalOmega]c", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "5."}]}], ",", RowBox[{"\[CapitalOmega]1", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",", RowBox[{"\[CapitalOmega]2", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "5."}]}], ",", RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",", RowBox[{"\[Delta]1", "\[Rule]", RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"d", ",", RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "5"}], " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}], ",", RowBox[{"5", " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwtmnk0lc//wG1FEq59d6+du7jWy70yg5DlyhKKlEpkSYoUfUgSKimtyhpS oiyRSGYiSSGJEiWFSvY1Kfzu95zfP89zXueZM8/7/Zr3zDPPOUPac9B1Hw8X F5cg5/K/O6svYnR1lY3/m6oflp8hgp6aW5N2f9m4n3rxH54jgsj09tnLC2ws tm1h2P83EZS5a/3THGfj1lwB/ap/RKDW0Sfk3MvGbQf5ar35SUCoyZKWW8nG rp3yAx0KJND/QPQQDGTjbwcu2e7cTAIn40sW4jodsbHV8xCFPBI4Ix38+vY5 B/xjhGxReUgFKD3Xyg/3sscTMyc0DlmrgmW1/ZLmunY4R8A5gaKlBrLDaS4l v2zx+lOjQ9XG6qDt4+yFxic2+OinJ+Uf2RqgngrTY8OtscYKj7N5tib4YyTM MtbbhCcUmlLbRLXBM/e+gWt8VphW9cdP8KoOcNir65xRb4FvCIL4PYcoYG9y fMPmVIgFaemmrBAaONP4IHu42RzbVe/LOe1CBx0u/g4noRnmDmvYvr5SD+iL KKyEDpni3fXFfJsNDIDM3S9WBe4M/FBQM8dXwghcKiqs7+w0xLYhC8P3dBlg a30RjmgxxBe9r+AJBgNIvStpkMKG+M6Y03tDyAAZ/ypeeN03xD8UVeKbnRmg YAtq/5ZkiI/bno5Yc5gBquc/9M+YGeLkrrKLHyoZ4JPFulWxOwbYKrLJejfL BGR7CHFXZRng1X6lx+1WJmB3sAiv5xUDrDAQZWLmaAK+X5HkzzhpgHVfSfJI +5iAyR8kEdUdBtj2devcy1gTwJPKVDYgGODWXV8j1zaYAM3eYOB2XB9nGAVf XGdrCrZpPNmlc0gf8xTWp09tMQXJhwXjuAP0cfoZ8Lxzmyn4KViES131ce0n 28ykIFNwj/XdQkhHH9sVJpeVnDcFtCzfTU09evjsqdM6xZ2mYOdIqV9mux7+ NGt0UqPPFFwwWk0If66Hl44M4fRBUzDVltVEKtPDHidkan3nTEH5Sq9NbJIe Fn9zO+yIJBMY+rrbMYz1cBNtlrzXnQn8SgoChSl6eNuIyi9VHya4ujh7Zpik h8nvHRu6/Zhg4eKlV5c36GHzrFfr1kcwQfWzNw5TQ3TsJDcZU5rGBExVe6ei yxyu4n8X0cIEQQdvhMadoWPf4Hx1kQ4myHjyM9XzBB3/+f3j/qX3TPDPLenN mmA65mdoibgNMsHThOfOeyzp+FvUuO3dv0ww0SF+yNSEji/1lZ0/zs0CSop7 00RpdLwUFaNswM8CsVXcnfWydFy0pivaUYwF4lpjCo2/6eK58U0lEpos4OXh eBS80cV/FDvrCsgsYDAgt3lznS5e2xTxQprOAt9nq0e2X9PF4fnrbQpMWADH JNbuOaWLCf6ikXVmLHCT3/1ccJguvrbLTLwKsgBbfoYSY6+Ld1uKjG3azAIa t/HyaYYuji2JaO11YAEu3QvtqWq6+K33wb1OW1ig0pISlrtCw3tDWQOv3Vkg tXUJFo3SsKb/2a1d21ggwKOFUNFDwy4nvDOrvVlALsj/YWMFDY/pfcpfv5sF 5mYNE1pzaHj9+qHe6L0s0BbD696dQsOiuoSuZ/tYoJC/U70/ioY76NmNXwI4 +aflLnz3p+F7c6j3XSAnf/mDzZNuNJx7Pcc2K5gFDG9vTF+ENByTtNWIdYAF hHWFArlpNLzypv91SSgL/HjcayooT8PCuST69EGOD8siQXEBGt63vv8U/yGO j9ajffLzVKwo9GB4gsMRHjYlat+o2O/laljhYRZwGpCIob6h4jtEgjk1nAW0 ggbZxnVUvOfs6O54DnPPlSuBIirWMfOdKOBwb0zcpO01Kr5YyjdzmcOV/Fuw 8ykqFonVPebE4dQ0xbTtYVQMsuaT33H6D5Af273Hh4p1ubS0VTgMb9fqB9tT 8e88Fy9TTjxyumd4IxhUPLjmkZxMGMffY8+u/9SoeFbRed9TTn7tlhq3TxOo +CZ+q6fFyf9u69yR1BUKzriYH+HJ8XPSo9Hm+igFux4eVrL/n7+BNOncHgrO Pn9QadWf4y/I9+fdJgp2G3rnc8SP42+OVlNeQcGqp3yfF3PG62fM8pnaHAqe 36pifGsnCzTwt3o1plDwZPbPy1s545uRdpPcGkXBRRS7J889Ob5uM9o+u1Gw 1R9a23tOvWjprs3+Dik4hzG1J5JTTzw1XaGTVAp23/FWpt2GBapaD4lyC1Cw T7Oy7C1OfaZ6wK/r5snYy4tvQZbBAvsHhCvEvpGxkLCQjI0eCyjMFbup1ZFx FE+37kM1FliIiVajFpGxnMOV3GlFFnjDbzdvdI2MpaIvOPZLsUC8/PdrtmFk 7GIxQ33KmV8jlsTeIDUyPnHiaEjIMBNks5J+fBYh4+C5x+XafUyw1XBizvmv DnaJ2BAczZnfWL1OhNGpgwUWc+3e1DBBpJKq4r2nOni3nvPUm/tMQJE+q6NY pIMbJ9nCPreYIF1gmzVvnA4ujflwUzKJCZy4kWtksA7Of86I3hjFBHxL6r4j Hjo4sHu14lcQExwcnY1+Q9XBBWWpvO2OTGDTfqEso08bP7zq+PS0IGc9ebHw VLhZG//du1GkcNEUVCCf1ycrtDH/nXSPjd9NgWI5+XvAGW1M39+f0YJMwdzl ZnlDhjbmjvS20gzhrLcpNO07KtpY8W1ibJu7KfA9fdVYTlgb5xjNXPtkbgpe R+514RrWwlwihy/TRExB3vbVxNZLWrhkOds+/K4J2ObqfwXEamGNl+RhvfMm QNih7VZFoBY2WBPk7XjIBESZZdSlQy0MlWu+pTJMgLMyY8ZvQhMfvpFZqFLH AGtlslc/fNTEa0269dMzGKBOdM0GhyZNPM3NfrgzmgE0ed5p6mVq4rLOipWP RgywMhTqs2yniUWS0yZDCoxB5efuoDAjTUzeuHXBMdYYBL03OzZI1MSy51x2 RHoag+5mwcstvzXwsamFhjx+Y1Byr/Dl1dsamPpbuGPrLiPgHdZvQOPWwEfu K9mvjBoAj4RxQe5xdfxE8o8PeGIAnNP/fX3Xo465WzdXdpwxAJuw3MWoMnXM p7v7zg81A0AT9Rx7vksdx3cL71njpg94yt4UeNerYc1fOQe2XaSDu5NY8sxx Vdwb4qlrZqEN8ng7xrwDVLH398mk6idaIEv6SyPNTRXL6Vl4njTSApfA8qEu HVVc1HJEUkNTExy/YNqu3KuCPdk71Jp51YGTbkXiIxMVrHAo48mFYiKYC83/ PThPxHOKN4tfCIiCgIhvOwmDRCyisylvt5ww6I0ivTDvIGLV4mq1XHUh8Cwh 58qNe0R8ps8ib9RKAKTezNDbsouI9/95VXo5nws4p2h+iEhTxhq27Oe3dneY G1+/fftNsDJWLXx4bnIgz1wxTzVCx0YZby0f38Yt1Fz/q1qZMLCkhGVVH+n7 hg7WJwxKOzj4KeH0F/PCeZML9Y+ZAojEUMQmaeMJ26r5UbZ14vn/CIpYQjuo P1ljHTrtzLfjw6gCzrMVM1hzURC5+nP9SclVwMck8/7ed9mAxtIW9RfXcfip b7elLQF1ZkZyuw3J4zJf4ZKgHwRUc2fuzf16ebx5e0fXhQQxlPh0KmRvuDyW I3o3NFWJI+LIz8L2T3L4UXSBeO6sJFo7539Eu1oO50puvHTwuBQaXxmySkiT w18r6TNULmlUK/F1wNRGDosHyDgc5ZJBW+FHudulsvj00e60LZ9kEdPBc2T1 jCzWsa0tL3SQQySP7movP1nMsnYKma+WQxPBb7eKysrivzlvxBKS5FHS9ZbU 4/EyeGN2xdl6HkWkEXfs/b3tMjjCamFsz25F9Hy/plIvXQaT+HteXK9TRDzM 0/dNvkjj4q7l2lf7lVCuiuF8wCNpPOFhEdtdo4TA+kGz6+elcfg6B76z/Mro v0+wdZ4ljbPeOGUJ3VBG8k2T4uri0ng+41/IyCdlVHs/23vrLymct6hU80KY iH7H/vtVkS6FO23Kj9+2J6JrAcX63w5Kcfa38geZ/kRk6OwVTbCVwnryarut 4ojoMOnxurB5SYxpwpcbSomIIBjgktMqiSV3PiuyaCKishnJG+35kvjO1a5A m49E5NT3fGA5WhKvdkn5d48S0XhjuBbVVRLTPuaYz/4jopQSlbAd2pLYtjAm p0CIhHSuvq0+xyWJxcWDwYQcCbXExK3WfpDAlOgL/V2aJLTfX9f21wMJ7HXf 1trHgIT4t/SnyiZKYDeLRcuUjSRUyDj/frOPBE61HCnxtyGhTUQzpWOGEtjV h+wzzSahQYHRfXfWS+BHsYl6eltJKH76xv3338Sx/cQhQfJ2EiL2bp5fUyuO d/dJvhrcQUKo4beZUZo4tnT3cPPdRUI7iwsT/PaL47c5P5Jv+5LQ8mX31stA HMe9C3Z8zOHM//gkGqXE8WzFjZgsTnvmvofeM+Ni+GxWyJ/tPiT0kb0nn9Qk hgfifW7McN53zJgw6pwphm9VF+iHuJOQlDLWjwsXw2HnEq6+3kJCVfwHo0vt xfC66MwUSTsS2jql2NBPEsMpnZs+OVmQ0GxP6zrhPwTMKpmx+M+EhC49O+6y sYOAwUp+eB6NhOj3dG6E3CHga6Vuyi9USejNpY8DGbEETDt05NeoNAmFHk/W eu1OwKWGUYdk1pOQkB8jbIlCwIGiHrbOy0Rkb3R1dVufKCbOp/6Z7SeiEcVN tskVorhCtvHl/nYiSl47m1p9RhTL2DW/XqojoqYPzkpSJqK44UtIT9J1IvLD q/usRURxV6t59LlTRLTG1cd7pFUEi9XWnngaSkRxczLRhdoiuOH0pl1PLYmo vily3ZoeYUwm7wm9TCaiv9e60vcmCmNgNWF/V5yIIk0vVhMHN2Br2YOpZo3K KDiWf/5mphDeNv+vxumXEkqRVG/a6yyECzaul8usVEIlJZZXKXxCuFSuR6Ut RglN9MYY1QevxzH12TbTQkroMGPuyFemIF56cmOqX0kRRU0NLGh+5Men2XbN c5Ly6GbSyoupFH78hnqseO1bOVSrpHC9BvJjkUgl6y3n5NA/R0+Gw921uChK OOfasiyKK2o7Gnp0DVZ5vDR99KMMStpTu1gpyYsDJ8wJsoel0N0/H17GtPBg /46O5ykqUujlxfl0mxgezH1KR/BopyQSRHTTniFu7O7hNVlHl0Sp8nei/j7k wsGzIU5BP8SRTpHm/KmCf+i4xFv6MiAgm/O9i1mKs0ir6qdt/25+VHLV4zs1 eQbF9A37GJauReLZne+ezkyjjyquj9T+rUEDD149+Nw8heYyV+QHr/Chhdwj LcyhMbT7obyfWQM32q1pfMv0/CB6dmzd1w6lxXqc+F3q1/cMpMzb2NtjWV5P QTQJo1/xgF0WckUl4Lr5Qt7Zqxf23wHaSxqRrgt15oWbNsnb76kHxSpZlKDX neborGjp5ckO4Pqm//ze6SHz+frm1VftXwGX51err0vz5qLbVe/6m8+Aqx5c KR891oKXHwe7EwZmwMr8xMN+GX5w0quANz9+FizQPxwP7OUHM97qu768mAMd irKW/7zXgXc7NaW2bfkN0reww5K3CYFrfuQEO99/YKjjaK25LAE4DY+WB/As g9Lr4yO6RwhgrX/Jl9MFy2Ba6zOzuoMAjgZQWQ0/V8CXmiCj44ligFIlHZX1 mAvKJK+tiBoTB8KPZelSFrwwb/SVOilHCgQt/rFRv8QLLX/Pt7TMSIEXJr0+ hoO88EXHzYOt1tIgtubmOdfTfLD+IVG0fUQaTNbK/0htWQO9o5TlLbVlQcdT xWx+VwF4uNY6IvukPKCsLFdK5QtAR/ckUuFLeZBs3v9afU4Auu65XvVIWAFY oOw/VtfWwRc7wn/3XlcAFVjZPa5XEJpzaa0kZCkCYW6ukAvk9XDpv6+l2p8U QZDFQHz2f+vhMmPwwG1ZJaDSkFtWpyQEAzfHUfjTlMDlRpLQnz0boGjmjbLy MGUgZG75LevBBqisFFjddUsZJDze89hyaQNsrZX2f/5WGUTez/dLSROGOQLE rEUpIpjQfM7U+ywMdx5YWBClEkFA3pDoey0RaLQiYXDKkgi2XVd/qoxF4AbJ 4CP7g4ngp0C+3bc1ojDw6pH5rlgiULd5WFlJFoXiX4odUtOIIBu/O7v9qCh8 HGkj0FtJBL3Lg/PkLFHYoyqVs6+JCKRYc74rDaKwJtfiAL2bCC5USTDyhQkQ KXeWH5khgtYZtbwjhgQ4MftOYmSVCAToRhs2exHg06bB5PNCJLDpgPUxuTgC POg+FbZLhgTi7rkPjt0mwE3D+VreqiRQ92OfE3pNgMmFpXwxVBL4oxZZkzZN gDz18m7PjEnAeE+imp+0GHReyvBWAyRwOOfaBeONYlB9+8iuPBsSePCpcElg rxjUiCRmMtgkMCpbva8vWQy+XlazHXAlAS3P5o77D8Tgd3PBy+meJOB35QMr rksMts3E3d/hTQK5b38Uui6JQVl3e6y1kwQ+CS8S1InisP9W2fTiLhKQcRSI +W0tDrVF1+xr8SUB9zMyP1uCxWG2jyrrGocvvdByy0wTh0UrS5e8Oe3beU3r Q6vF4W8+pbOSPiQgaGGnbfFZHKa2um/E20nAJnb7FXFeCdgUs7HF050E4p8E rg5rSUDvQ9/se7aQAFqMCnrsJAEPxAUNbLQjgX9GZ7vPRkjASDtclGBBAibh N6HPTQkoEWbdcteEBCLK7hXrYgmY2HfWr5BGAuXjtVI83yVgx5zw7SiO3wmd 1ye71ktCxUHuGiVpEtDZ3zdWqCcJ3z8T6UpbRwL+t0c9ozwlIX5Jp79ZIoK8 b38bHGIk4RvvE8LvfhGBvI/CjamXkpDd+T1WuZlTXzcpfI0TkjDTt7re9yER XPlgdvCqhBR0M/jzeXs2EQi5+lgzfaWgrEDPhX1hRLD5woEyoUQpiPjiqYc8 ieB0a4z8l2Ip+DXwUYPGRiJYscmePvVbCjYyWlLj+YiAmfBgh4eiNNwgN5ax qVUZHH1W36xlJQ2NvD7T6lOUwRTrS1ZbqjQU0v3uZbtGGXylE+2lNWTgl+bq RUKXIvC/uMqS3CIDd6ULSOyMUgS/Jvup4sdkYPFzt2RDeUUw8yCLIPJKBqq9 dhgK3KoAIoVjeDfMysDIDfwe9aPyYOnAjnlBBVkotvUnK/mEPOChyn9cGyoL NyuYHQrOlAOJKUuv+K7LQuIOUxijLgcExz7W8WBZ+OzdrjPz92SBeHF67gpB Dl49QZMXKZYBatpS+xeq5GDmZ1X/RyekwN3k+e1z/XJwx8G3ji2jkoDys8th hl8eOhuXfzXdKgkM71zWndguD6lp0UqmchLAWp3we3hZHiorbAmfjiYAf5JQ Yre1Iqxi7D4doMEPfsWNHn0XqghdBpT0n59fA0IHXgW+va4IT92z+pU8wQsi c86w20YUoaosTM/J5AJJivySTeeVIL1O75WB96z5XVmegspuZeg85iPvIzZc Py/wb6BFnwR1a3qkdczF0eEsK9ERGxIMO+Go07hFAk3pnQMC3iQoUiFjyN4j iX55yWXbnCLB6Tqz2g9npNFAiYl34zsSzPvaL8EakEetzke66yJUYEHGjpAJ exVkP1zH9ylZBWbSb4V2dqug5ig+w7+ZKjBlqKM40lcVNeRdvmTapALN1F8Q uiLU0OO58i2PJFWhZtvMq+p0DZSfPtFS+kgVut9knvZ4roOIVOM/7a9UYRT3 DeMwGzLKfhajNdGvCoOOPYl60ExG6b+Ekij8avBi8+rUsWYKSjUjbyryVINl jaW3Ip7QUPRAQH3eohr0+P5psJChhxYjSsefCanDJyfpwWZheujIut8KX4nq 8F2f0Zz+XT0Upp94XNlOHZb+nJRiSekj/4QCk8wb6jA0rLc+8Zc+ctH6WnGV qQHH226Mfz9siDxeL7p4sTVg55+FyFdZhsgrVHRayVcD7o39Wyb+0hD5VQLd u6c1oIvQUvh7OSMUCbOLazs04GTKFJavMULRg1X2JwY1oMktv26dL0boRGLb iNUC5/nPT+9y+IxRcus/zTZ5TTj+Kquvjm2Mbm7zLvjirwnbR6Jt3vQYo+y/ h60KojQhebY5VHbJGOVnn/22P0UTDilp/Ncmx0AlQzXEmXJNeO/MCC3Si4FQ mEwW37ImBDvLcgc6GWgoufuq9mUt2IjlzMfvmqCf5HHDidta0K4w8RF8ZoLG 2/m6Kh5rQYmtqi82fDRBCxKGYmb9WvBdi3uSLL8pErh1KdVJWxvW/BhIlfMx RUKb7lHFzbThrT+56T6HTBHhx7PWD07a8E/+Pm+106ZIjjotuDtCG64/auxl WWyKqDVbksKRNqS1UrqGp02R/o4ADZNObZg4nqIdwsNExquxTf+GtGHEzXye k2JMBK0f8CYK6kDc+7vWW4+JNv1syrNX1IE1Zlnb1CAT2Z37bCFC14GVI3sX 4pyYyPWtUFy6uw4c0x9/8DeQiTwi1JR99uvArmbeJIWjTOQtbVZPOq4Dl0PP f3x/ion8fIL/3cvVgfeOvfFVzGSiyJGWY09HdWCo2sRn6ZdMlK1o1yfNRYZP 7nzk4nrHRM0uLzceliDD/ww7ff77zEQytS94NDeSoUJm63GTaU68E9b7TrqQ odLW1xePLzFRoEpTc98+Mjz0OjlpOy8L1Z5tTLmYSoaCtx7kjomz0Ld6y8lf eWSYxRZZKZBnofWzz1ysq8nQNvtHxYoKC+3wxlJLX8gwJ2DP4Uw6CyVcAFFb 58iwOSM6Y9CYhe431vc9EKDA0ujWbZ1mLLRCfpq7V48Clwxq80psWUjD14y3 3poCE1tLaRmOLLTlypN9Ml4UGHfsCJvhwkLHXjJfHg6lwHGfhIh4dxbK/Vej 0xZPgQHXyJKx21noJd30vOZ1ChRyS8wk+7DQtN/jyZPFFChvEh6e4stCcjcY rp8QhfM9Slm5tZeFLNseVRp3UaB1qmr2AX8WCuI2lk77SYGCLxgPpvaz0GWj qqjRfxRYrBqZSAlmobpAw0/WBCos4jaMVjnAQkNZD81z1anwodKBnnehLCTU qX9ryZQKW1QbRi3CWMhwbQWvuxMV6vAeWzpwiOOHqedfuocKQ9SP2Ww/zEKn Q8terjtKhWe8XDasCWehB3m6ZL9zVBhz2jT5MIffv39wvj6HCrcsiozlcXhF kDYlU0mFLsd8A69zWAPcdw1/SYXRA/4UFw47hVOq2j5RIfAS93nL6f/onWJp rWkq3KomoizL4dw+nej4NTTI9eVZmjYnnpci9z59kqXBUg/PDl5OvFNW2oBB o0Gxpqbpu5x8ZI/dvZVmSYMVJ7sE5Dj5WpZo8o150KCAvKraNo6PoIFCf5tg GvR5S3fyC2ShSxIaLbknaHAuxO88CGChJ5tvk/9epsG2QImhX34cP+X5U6V1 NHhJRb2tahfHz7CKm+BbGrwnruv8YQcL+cjmVfkN0+CQslxrK2c8H5zMjZYV 1oVOMQN+DDeOjyrlz+EquvDILke3B1tYaHUkG7Qb68KfR9s//3NgIWfXLL5T u3RhXe03qLaJUy+JCgGfw3XhtUfkthXAQrdqM1oYybrQM3+DTyWLhWZUbqaO lelCo4T45of6LPQqykGIzE2HjieONsoqs5CKfPj8PUE63HLGzc5MjoWi6272 60jQoVXQ0LCVJAtpr46U6WjS4UHto+V861koOSHZXYdNh7YVbfQd80xke6Ep W/sGHdasDm3saeLMT/p4UlEeHbqKWaSlICZaeCtxSLuEDit631JoNUxUKOFn pY3oUOX7+AqzhInW3uT5qTVMhyNGVnOJaUz0vADoaenpQa3z9myL7UykYBMg d5epByMbDkn9dWGiiB+pvFqb9OCM6Lpdd+2ZSFWnv1vTUw/upPc+62cxUXzp f9GaMXowuc/hWaMiE1nU1jRqtOjB0Ki9V8q/mKL6NwYe6rv14Y/AFvoUZ72M 2JvkdSRIH1adXY1tdzdF2r97dzaF60Nyg8/1u2xTdEUpPmBfoj4cWH393nmj KQo60HHsdrE+7OmNMYxUMEVS6w9kqC/ow6sDZXyMXhMUalM4oH7OAMJLhm4n t5ogpacywRpVhvDPrCPhqx0DLbVPjn1hMeBwa2B5k5YRelL+cr/tdVMo4SL4 2m6/AVp8fNklQN0M5pTv/ST1XA/JpvkaGiWbw2vWFbekDtORG5fkdMJBCO+7 6qhsyqchz1eHYx0qLeDeEBvZUycpqP2/twKBg5ZwvdLquZoGHXTKoqjlG3kT nNx/Yg9bWhtNuKxO7gq1htqHw1+15mui1/Ye4oYZNvBaOs/A+QMa6Lu7xgG/ r7YwY4eHZ7+5Ooqw+904SrCDNynbX8YDzn4h2SYu0swelrVbUqy9VRGzVzjc J84BRu8ayzOKUuH8PffsyXjgCOViwk/zPSYh+6SluYGHjnDMQj25pZKE/JcU kjRqHGGdbuWjC+UklDOwu7i80RHGB327olxMQqL3R2ebexzhat0PK3Y2CU1b rybM8bDhtXfWX78kkFDlUY07bE82TBjM6/7sSkIdvzabXt7BhjJ+XSrNW0ho zCf4dc9uNly+GJtc7khC6pvKJveGsKHBibGbZ2xI6Joo0yT6JBt6aoi12jBJ 6FgRu6WwmA3D101+mSOR0BWFMO+xMjacbieETSqRUNmFS+N6j9jwSOYNkVF5 Eho58oHwFLOhG+FW9LAkCXlZ7vZ6182GHcIq09/XkVBk1akxmT42XNiwPDay loQuaRXG7hxgw0PHe2bHeUnolfBo3sgvNrSN2Uf8s0xE309uMNKdYsPFAzzW XH+JiGdetzling1XEyIPCywSkdJ+1+21S2wY4mNylzBPRP9/HgH+/3kE9H+e DALX "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, PlotRange->NCache[{{-60, 60}, { Rational[-1, 2000], Rational[1, 2000]}}, {{-60, 60}, {-0.0005, 0.0005}}], PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Re", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "5.9"}]}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",", RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",", RowBox[{"\[CapitalOmega]c", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "5."}]}], ",", RowBox[{"\[CapitalOmega]2", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",", RowBox[{"\[CapitalOmega]1", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "5."}]}], ",", RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",", RowBox[{"\[Delta]2", "\[Rule]", RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"d", ",", RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "3"}], " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}], ",", RowBox[{"3", " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwtmnk0Vd/7x83jdS8ZEq4hwzXfc64xZO/MKYUiQyQZKqVBaNKHCE1K0Uxl ppIkqXT3LpQ5JUOaJJlDxhL6nd9a33/OXa+199n7eZ73ez973bWOWuAe92A+ Hh4eJerx/7+WHw8M//vngs0eP3pfL8sEnU9uj63+64JfkRmrOQpMEHWlefLi jAtONtEVu67MBCUe2vOsny54nWvw3r0sJtBo+Uhz7XLBtPKX3bormIBWY2N4 q8wFTxzVaPqymQm+FEvugztc8M4Gq2qHXCaIO353JvbdWmz4oi3PzEIZnFwa 1pB7eg3W+dMi75eqApSrtbMjfJzx4nrLqcwoVbCgsV3Wmr0aj464Z11hq4HM CEO3u0OOePRGjNMeseWg6cPkuapnDng4pEO6Z3A54BrAK8ci7HH72zPLH02q gz8mdEtT0g6XeEr2P5DWBC88PnZfErDFgQ+rxbdZaoE129iu17mr8IsZ34Kq GyywLfn4S6cUiAskPrstCuuAk1XFmT9eW2NCYHri2hld0OIWsiYOWuGxsfV/ eD30AYehtBjeuwJbVCqHPltqCOQLvtrmeJhh8YzaU794CSqf+oUra8xwaNDV jgxBAmh0P3p8dpUZnvx2o9BJlACE/Bm9aAMzLBJ8vPyqJAEck82lnQXNcPdp BX9tFQJEbU/tGSszxVfas1pGLQnQpm0bZyljijOeCTS2RBCgy87QkhAzxSsl G66aRxOgO2DZtAaPKVYRCI7OOEyAkStj2+kjJpgIydHxjyOAgOgN129VJnir p3j7kxQCGA9OqSRFmGD/hrXMpgICXCjM4757Z4wf+N3cNP6BABu5hfhAnTHe e8fEvvATAeRa776Uw8b49EWzFr+vBLg+X/rK554xzmntP/qklwA561FzT5Ix 1jy+cfOKMQI8nu74MmFljOeimH/X8JPgsNjH7jQjY5yhnfGwXJAEVipfekx1 jbG0/8tRRRESYKfevsNLjbHitc6bbTQS1F8fH+WbMMI/Zh1f8cuR4NMq0X9L 8o3wcGeJ3QoWCTI9abyPMoyw6avmhzY6JNgaxuDflGaErwYWetvrkaAvTVb4 epwR7uC3GTNhk2CsX42hvtkIX5/a/PyFKQlK5zWkatyNcEA+2HLBnAQHpLSl Q1cb4d6Du2N8LUjw28Jw6R1TI+y+Q6WpfSUJ+FIsVIykjHBs6BjvHjsSVGet VGsTNsJJOh/e8DiQIPExVI9e5ODauFbXU44kEP/mwHo2zMHdRD1fgjMJZIw3 sG1fcbD693RzhisJ2p08yR+VHMx74GyprxsJrvp5GyU95GDJxqdCN91JoJy0 xazhFgcXf45uFPUgAasrDGw4wsGp+py8Xd4k8NJ6tkV3Hwd/aonjO+5DguT9 YrG8oRzswTibeNqXBANihfi+Ower9HnvPOxHAvlNv7sTnTjYtGbXkS3+JFid 7cjrb83BfsWf5My3kKDIsm8VTZeDPxs4rakKIEFXkkngdxUODl+efCFyK5XP +4TjT2U5+MeHu1ghkNJP9X1WqjgHz63tvlNK8a5d6lXbean56wd0Vm4jwY2K /d/BLImD+LUkn1LcJPCSf+lPErvtTjfSCSLBoquUxmgPiZ3nGrefotgwI8Cu ppPEdrSF+M8U+w/eD7rRTOLJM2Ney4NJcM7kX0JENYk3HBF+5kUxjluX6/yU xH0XYUwsxeNNGTVqJSRObjXcf5ViVYWfP37nkvi63mJYNsWuIVZCLddJPCe3 3yqT4tjS01r5qSQ+v/pH2UmKHyx2ORxLInGZx+q8YIp7nHVDPWJIbLRF6xtJ 8ZLLh5L0I0hMb7lmMkrFZ/O9Np9/B4n1RXwjrlG8ny1f2+VP4r/sBztMKc46 EjrwYCOJf3Uf7X9B5d/6ulzkpDOJY/mMnllRLCAjpBMASbz9zOfSPKp+xgEe q81MSewUqHjjH1XvoLs5O+j6JG7WULVzpDj99+TJH2okHl5WFh1D6fPKzrao cimJw4WN+bMo/WbOX6i/KEHiVHZqaRmlr9bnb0M7+Ulcre/m9ojS31OHFLf5 Q+BhgZSi7M0kePzizZrxXgKfYTeWO1H+GZBQ2fW6i8A2Z/sXFr0ov/iEn8ls IfBSsTJW1iYSHJygNa2tJPDGVbMOxRtJUGC9+ad6KYEv1hg0yW0gwYdTdyT+ 5hPYyC99UxjlZwt153WFFwkcsKcnvcOFBDv3XA2PPUngPnXjjtE1JLj+bCBl 038EDpU9b/ZrNQnmNyS9EQyj1v9QEVZuTwL9W+1jnwIIPF9TWHfQlgSbRzQl yzwJnGI46qO5igTPE6pdA20I/FdpNcvKigSjLdL7VpgT2Mx97WDuCur8MLel ShpS8TXHjPymzvuxR7zvuMsIPM2YQN4kpX9jTJ5pDxsvPHeo/adBAh/PtdHg DRu/5Im06FMjgVG3gpNTJRsfKk7WeaxM9ZPJx4Pel9iUHwLuLpUngYvihH6M Mxvbv/wV3SRK1TsXL5wwY+P23X5CfEIk4GGfa07RYOPjTT9CVPhIUGajv/fW oiHm7detlp4jgMLOkIdVpYY4RxUNfxogwNSkcULjTUOsmscr6k7106YYfo+2 M4ZYtG69dTHVb2NTb830hRjiyPsykortBOiv6FohpmiIq1ycVPALApQJr8eu 8Qa4Rau8WzCNACmpzFTvvQbYqGl9w9uzBAhVHNka6GeAr9ommcclUfuzT/If MDPAP6trH5yk7os4zyqHy8P6uJC2kWuxhQA+3alLb3XqYz4DBT8lL+q+2Bkw UFCjjw+ebL3z1ZUAAzELJ5/e1Me9t6b3iNkQYF2uWdPnDfp4fb+r6dByAmiz hTL7oD5+x9s3+06BAHxP3oePGehjsVbW1etLCPCocZ8kr4g+HmltTmug7kul qTsbNCr18OHx/7bB52wwaKPatVNDD1fXxeW3qbNBpmVS/2eGHh4qX7+rXIIN NhqPTrn+1cVa04anbWcNAdasZJi908WTnrwvAuoMwRURL3v+WF18dKQcXdlh CByaz5Vc/6iDq216h1KvGoD5VzPP6a918Ey43dR8jAEoRX4NcaU62NDcDdMC DQDzgV5f6Elq/k0b/mU6BmDq4mtFYzMd3PTD7eiHUn2Q5f0vsfGCNjaM7Fcs LtMDXu4haeCYNs5uOv7e4qIeoK9pul26QxsnyM+ahu7TA4esrldegdo4Npdj mKmvB1xVzCaCRlnY/sEnm9hMXbDYG+63sJqFO7Mz2xb36ADfvV+MDHm1sOjP PQyHei3gmfBTjPenJhbofbHkcoYWcL0y/621UxNfiNbOTtmrBeywwvlDJZr4 yUJtaISsFjCU3DRSvUUTQ6dPE8t9NQFfyZscX64GNterv3yvXR0UjGHZk0fU 8dGltRFZaapgKjx79vu0KuYXuDofOL4EhB7o8Zf6roqbksWa7sYvAV2H1F5Z t6jiR7bvsv/KLQEvEm6mXS1SxZ2ysY8er5QCKdeuk+u3qGLnP1wHfXkGcD3D 6jiQqoJzw8xa67eIgAoLEaRmxsQEp7Ei8cWMdaZ94tmjUkx8K+/ArtXEtPUJ V4HNHcNKeDzX9SHr9qS1ewjPnzO3lHDL0d1fok+OW4+k/ub8FqXGi1eGu430 WqsODuQ1f1Kg+umeq1qsh1yhqZBInccUi/qF+ryv5v5c7LVNSFXAPLnVe+Ln 33CfynzrXuGggLGo9N3LPB+5G+EHhdz7y/Be4cZ7g0YD3KTLdSlHjsvjbuG+ V1EaM1yt2IPtRd7yuGReemJ3+Cy3ejtLuYuQx9vBmi1vH/7m8lmcuGf+dSnW fmgVlkP85R79BBunLZfi2PfmEny//nEVa8akNaWXYuOrw317TvGgp/cyfTcO yWE7LcFX3ct40eyx+aHSK3K4dsq/mST50H61CtG907J4oPVC6jwUQFJioW43 G2Wxagb3XjBXAJVMyF5tzpbFU9uEHLRXCKKfVRHaBu6yOCE8zaVQSwhtD2E7 DhXLYPOm6lDymzASXv8lZVmiDBWPeMVfJxGUZ3a23clPBgeF7dvOXyyCvosM B+eLU3zvwU28RxT538lLCNoujUU+dJ949FYMLVz0aLwIpPEne99z+uri6MZR AZkqOWmco9aZ8nafOPrgEpitVrME19Icj9wWoqGDplLDrjeWYCfdjqH6tTQk p4I5sRFLMGzV9VA5T0Mbx5kvv6gtwUcro4ATXQJNdjaK0v9I4YA3jo1KqyXQ hRdH3Fa2SOFKoneXUpwEIop0r+7Kl8IinM23HMsl0JsLH7qvH5PC2gKesjcH JFD4kWTtBg8pPOKeV6guT0e0ILO9c/pSOIfeu6Pdjo6cTdL/eX2UxNrJuUkN 6XQ0yLRzTC6VxOZdMr2ST+koWWgy5fFJSTwX5rbj1Ec60hq73d4XIIkF7OqF LOboqKbDVVnOXBJrWDR2qMkxUBD+F2zPoNaT/rPcjs1Agu5+voONDBwFn3ln 2zOQjfqzIccjDDxwtHypjTcDxU7JH87TYeB3u0yWq+9kIG5NlKhgJx3vj00L XX2Qgf5een9lWyIdWykULT6OZyDz7Rztl8Z07HpSX2v/GQaKWnH+sep3CWyV LWt35AIDPRQbdfgvVQIvcRP40Z7OQOMf17R/BhKY7n3jWfIlBjK8VxhsNUrD zTt6b6alMVDYMeHpazdoOPNxVsriOQY6I6tZs82Vhsf7orO8TzLQ3bs26foC NKzNw2u/N5aBmmwDgqcfi2Mls3YRh0gGGu2KMeGGieNEsbRrX0IZiLH/umCS iji+NrUNr/RiIEL0Sdv6VjGcXJbgHerAQG632nPlk8Swgv87vy0cBtpvNhX5 zUIMXwLrPusoMdDFZimHolFRHIXy/tXzM1BZMFsuIksUH4WI33GQjtrm1/ZZ eopiVy1zkNVIRzMXd5YLiIniMvos89s9Olqql5zY9FwE14bcVxM5S0fmL3M9 L+0TwXftwr4p7qSjQ+PdM6wPwnizGY+3kjIdXUtafDV+RhjPqEblLpmWQE+V lS4/gcK4fNa6XaReAs2v3WS2pkAIL4kv7REJl0DM3gPCMpuFcNHjzcNKKyWQ 9ZELHZ8YQrjZOJK0F5NAsYVN0eHRgvi92ez5/kwaug2HHc30BLH801Nbd4XQ 0MsOEXmerwJ4Jljws4I+DQkI2VWkOghg7fmlv8RKxVFS4NPfZbL8+MChxLNt BWKo4E9HbUwdHz5WecHePlAM1Z6fvuIQw4d7RH020hTEkBgiVnT28mKfPdKO FQmiKEUx/9Dfhzx48KN7NeEognQLWdPxOfNol+uzWslEQbSrIzBdljaPyMbx +naWICoWzDTJj/iL6itc5L1qBRAZKBNVbzOH4n564zxBAWSuyDsr+W0WvSuP H9Pfz4ccznb9zmBOIptI34Wd5CL3brpnn0HyBNKFX9bybFrgSme+a30+8Qut XQTRk4fnud3F9cWfX4+j5erXFFncOe7Mrcg6i94RdOz7U1O20Sx3K8v09oqz 31FmVfChra/GuDixT26o7zpab3ljv2xfHlcfGcqYDB0HUUtlty2Kn7OeyTqV fm57PlhM4Il9b/LQOs/OTtE5kAu2BB0WtP9Za41OSd6/ONYCEm9on16BPlpP c1//q2/+Bs6Y0kv2L4xYS3qrF4RYT4Di+qDBc0Pz1rUfvrcldE8Ahc7mMLfO Bes4nxz+7OOT4GXVhjZm9aL1hK/mlq+vpsBAl3NjvTMPaPVnyXmtnwV0zd4d igw+cOZrv23Ur1lw8vXJ2zYxfMAuoGBf2sXfoFK8R8FwiA+UbdVpaun4A2yu FD0kMT+4FKSXsDpgHshXfHenbRYE634MPwjlWwAy/xVaRyFBIBRy9+uJnAXw xEmWJ1hNCESHGli+HFgEprYr/zzoFgL6j5YeyqjggVKOKQ2ctSIgeXr23F1R XnjlBNIZyRIBvSadec98eGHUMr3tP2dFQEb5lfcf5nkhV0NvsvCGKKBXLCPk VvHDtbd1PUGLGNj5+4+D5gV+KKn0b1+YvDh4Zd7lZ/ydH5Zq/fcq118cHHty 7bT7CQEo07E8SueHOOj6czhrazvFnU76wZo0YGrh+2QvSxDi96bvLm6jgbGn iv0pdYJwYHwu4v4HGlj79+9ChoIQrJb1Cz4nJQEKLD/J3AsTgu2cVxwnRwkQ UHnDpkFCGK4TjTTVuysBKuePenf5C8PqHivG6o8SQH6l397B+8JQu8VWjCVC By3PmZnC7iJwbl6sRNyXDvQXF8rkskVgSnzMc6E4Oki2/tKgOSUC0w6/fViU Qwe9x7g9xvaicEZ6q+BEDR2sQpl/bC+JwkrzAtDRSweZ/45JbugXhUoRfeIe vAwwB7awAs3F4LrAF+wQRQbwjAXW+06KwfD8/rOCRgxQilU8YrvE4Dv9Mi1D Jwag8/LsOqcnDg8nv5X/6MMAO1d1H888Kg6Loz/fFg5jgFdx+Oq9JnH43p+m cv8gAyx/eaukUpkGbzg0SjTFM8AxvrjXDXtoEDeH0vzOMECXzdYvXZgGzZ0K unwuMIBp/KrpQSkJGOsd7fMynQEuVqnR/gRKwOPZ/50/d4kBaNY2PRnFErBi y56iiTQGSKgIrLCZk4Cnjq3QFU9lgAVOfEq/PR2mLJhrt59igKh72UFnUulw hJjsdD3OAKOsagvyMx06jCWcPRjNAKFZvZLt2gyoeo1e5ryTAbqVBPsPH2BA ToNyZzWVn9dlzecqmAHzchSze6n8B0SyV/cISsJdJ4o+5RszgKbDw7IyPUlI XycXRlNmgMD4KpUkN0loePHhBklBBsjErae8oyVhi7/tsweDdNC18H1aL4N6 /9yGvtEGOpCznApYfEmNx2eseHWHDs49kjHLpktB+ZHqlJVBdNA4oZEVaSwF NeLVFrus6ECEMJFw8pGCae8C90lI00Fskcf3kVwp2CkyWWJQQfmpP3gdapCC OXoVf5YlSYA/GlFPUn9JwVvrfoArGyTA/puXzpmuXALXxoisXP2DBoo/5c2J bFsCayPfJx8pooHhZY+DPyYvgefryHnr3TQQlNZhGft+CZyaXkI/PCwOPE7K D9SFSUN5ydmapnoxcOGV9oYbqdIwtnCfRfpRMdDMv4Ib/lgaJve/mJ3QEwMO x7zTpPll4EYBnoyoeFFgHnEN+l2TgS0rhycbZEXAgZKiO2wsA602vRHfXyYM Hvx8KsfXJwO9Tp3+WOkqDHS3fxzJI2Vht4FQtvNxIaDop3R1vFYWGmdU8abX CQCva/oCVaOy8MDFcJ5iDwGQ1mG1J11GDvJki8XGf+UHNHc/e4sAOdiyUy17 /wgfWHTI/BU/KwcrO9ZUvxnmAd8IVeelWvKwxOFeVLvIH+uQ8/8sZdfLw4LU t5dh1az10NgXA+mD8pCnapAhemjGeqI4Q4pRLw+9fvyeG2uftOYzUPwgFL4M wg+Jr5OfjVhr6Mhtn3mkAKFLgE8lu8Y6RI2W2GbPhDyPF3Pr/Ge5Q7HD0a3h TKi9mZn4Re4PN7y7fsfby0zolbBJzfbtHDfq5kmXpkEmdB3j3sxbu8hNYgrL 1pxVhgEXI7/ie3yoYBlfTlmbCuQ5Gr5tx3dRNC0y313HUYN8i/3CUq4yaH+G reSggxoc32DURFbLoHHyNBDxVYPSJauerTKXRUM+CpkO8WpwoF5yN1NVDnXf NfetalWDFyRD3daMLkWNrpFtlQeWQ/ljjkE/YhVR9pXRuvvl6pBHitZ6iaOG VA1M/zTXq8MBl62VbaFqKPNFjPboF2r8yTXL1htq6MoQLUlfWAMWN1aNCAgt RylWenaFmzTg2WKeGLW25ehwdyg367cGZI9Wq7gEayA37W+l6RZaULtHX/aw Iwt5Nvx283HRgtxTzh11e1jIJ1zyl3KAFvw0qXqs/jILBZUBdsEJLWgzKRny uY+FomDmnactWvB9q5OCbZw2uublm/M1hAWD5XxuDOTpoMy/+21zDrEgfULl IbteB2VnnurZfoYF7c93BGj+1EF3e5+oTjxgwUWP1iNKHF2E9spnCCywIDDv 3mBRoYt6k9vSdS5qw6HpznK7R3poQO+n8WiuNiyL2V56pFUP/WwWeF9aoQ3l Hm1+EPhLD83IGC+x+qINtQ5ZH12lr49Ebl9IWaejA+0YplpOmfrI4Mn6pAik A4WKDYJLIgwQZ3Oolvk7HVii8Hcd/1kDZPrvWM18rw4UC722XizPAEH7Yv5E MV2Yal7/xaTDALm/pcVe8dCFBcV552imhihqsO7g82FdKFNkXibcZ4gymas/ LuXRg/NbWd+Pzxui1261K/fL6EGJlX237ixhI/mnr/hYK/Xg3C2XVmFrNnp6 qurM+RQ9+KLb7caf82zUw7UZG8rSg/IqrBdjOWwkPvnCzf6xHvwuuzH3cgUb bfbFcnNf9eBPG8O2xS9stKj3/NY2Uh8uG7spwZQhkFaAFT/XXh96+9zn9ikR aH3as2B5H3343upP7GlNAt2af6LbdFwf6mTe9ww1JZBNU3mZ6Xt9KLpmDXOv J4FOhJfUikYbQJ6OOFnB8wQqzmLrBZ02gI/pQQm3LxGovb34LPemAUx+bx7P zKD2A/fcI2oNoJwqWv+okEC1jKJPn5YZQu8PHjNhLwg0bqsDzAwNIe9gzGPa awItO1hwO9XGEDZ6/LY510ignd15IQ5hhjDC/+U7iw4C0R5kj9+vNIQzk6uP GQ0TyPjH8g1ibw1hefxfy6ExAvkty3oU9MMQZh/P+5UwRcUXd+vwMjobZh9r 8gxdIJCre4ZA/BY2LNwsHdkvQaKDiUqhnyPYkH7OYGuNFIluP71eZ5bMht63 l289KUuiieXXUkZK2PBgRFhOtRKJ6g+toenxElDoeaovQ5dEyxUjpovECGgX J2v3S59EhyuvfdGVIaD/3zEPLptEOv8GS3RZBDybPvVSwYREsbekrhURBDwY LZZQZEaizlUr4nUtCOi20sVCy4JEyQnJHrouBBQ8P76ux5pE3Zol1kWeBKwL /ySpvopE5q87WLoBFNeInXO1JdGAKGtOJ4KA3NyR+P2OJHI8V5Opc5WAHRMF VzrWkSiT+JlUmEXAT4zipHhXEs28ldmnc5eAiXL+pUx3EuXJBNnqIAKGlRw5 wPQg0eKj0/qFtQR09JoPjfckkeemh7I67wjYW+qyvnMTiYSu8Q1o/yDgeXGh 4vU+JPK31H1bMErAXYO/ju33JVH5J7en2r+p9fgrZhI2k4h+7FB2AS8JhyJd ViX5kShY5fYZbXESLip6nDrkT6JKXBtZIEPCxlSVBd8tJJIJHPfXViahiMGd asMAElXnAFKbJKFC77b53K0kUnIIVSiwIKF6/AR2DiTRgf4Ufm07Eo6HCMZ3 U9yYXD6S70JC76U8u0K3kUhd90sbaxMJBTSncr5SfLhBEOUHkLDM9bbn6iAS vdtlUMDaScLaO5GFORTr0j1S8yOo/R6frflF8fH7Rw+zYkj4NrXsHRFMoi7X nG35iSRcygz6vZVizkTDWtZ5Eraa1/idoPjUxUmT/KskpPXd17lOcY+xogor m4TPTt85nk2xRbuNSP5dEh5dPpaSSfGF6J2/tMpJOHBk64EzFA/JX+jKQ9T8 g1e9dlO86umTKq06Em5Z9yVgFcVXfL/dzXtHwtxmVqkIxePzIpe0PpFwMEt5 XxUVr1Mm8V/eDxLm31Z6uY/iW8Bru9YYCYvkDeqkKf7d/Z9b3m8SXpGSKCqk 6uF6PN9Ci48DvQr1ko0oLlB/o54nzoFK24oSH1D15KmZoWnJcuCto3616hR7 hSjP5Cpz4KBl455TlB4lwg5fNbU5UN+LvPmD0muLc/oDTUsOnE9eyzxM6Vk+ XHkt144Dayzmix9SetPP9sZrruPAuRWX1vVQfuC+MfLU3MqBCya2FiqUXw5s S/KJ3MmBM43sLA7lJ53ZLv+aCA6slprgsaL8lqZ8PDQ4kQPf5bxdRnqRaOfu loO5dzjw4U63ofwNJFLl1YiZLuPA5z8UrcIpf7elRcfZczlQw6EkTM+NRLBS +dSPFooT296dos6HnPju65ozHNhSGPGk24nyTya+GfmPA1/PPpoMoM5THEcm p0bECAasOt/TaU+iEe9nd4MVjWCP8Xu7EhsSvSwQ5eZCI7iiv/7zP0sShTvk dWueNoJjL7eUmBmQSKPrT29kmhEsfcmottYj0YfdLoM1GUYw0eMhDeiQyC59 6ldwiRG8StdK19MkkUKvDX9emxH0m1T6Vk71m1dxXzW1VI0h/69NdwrESKT8 XD5M65ExPBWxezi2h0Ahy1TdViFj2D7atPL6VwLdi2SZba4zhs1HhbeWfCKQ laEp/4XPxlD49GxYQzuBfG5uuL4gaAJnR99Xv6onUHpcSsN7TxM44dm34fsD qr86COjH/zaB/+5a3WPHEGiueWzkq6UZ/Pvta6OPOIGePajd7nh5BXS4caTd xN0Q/a646BaqaQW9mt/6vtmuj5alBhibJFtD+eWj/L8f66INPLK/EvZA+Cvi 3OwFQx20qX7/sTVlq+AzpmpQcgELNR99K7Ljuw3sM16WxfXTQvGrCut69Ozg 0X2GaaXymmjU7d/YlnB7uJKsOy35Wx01OHtKG193gGKdC64K/Oqoz0Nrd9A3 R1ggHBawKLkcHVg9WzUstRrec9vlkWKjhiqSHWKjrJwhoT3EE5Osiiy66BF+ sWvg3OX+g88yVKh/852B14vXwvMdYVtO+Csj56S5qe6Ha6EXk22p562MQuaU krSerIU6/YGD7zYoo5vdW+88qFoLCYH0J6zVykjy3vDk6861cMXec5L9Rsro l/2/hCk+F3j/wWjbM1FlVBatle+yyQXuMEp78biciVqGnFZc3OwCK2KLwaUH TDTiF9bQudUFWu75cyDqLhNp2pWMbdvlAj/u6uK1ymKiS5IW5ofjXKBP4NTZ j2eZ6GChS13eHRfokn/gaVgwE6Up7fUdKXGBhyXWOAcHMFHJuQs/yXIX+Mo8 PCHAl4kGIzuknmMXOLZ5/5SvGxP52Gz1aW1zgRame++FrGSiqEfxI/IfXaBB e/6h3eZMdEE775h/twtcbtw/GGnERPX04azBIRf4123bw9M6TNQXJ2HCHneB HGcZ8asaTMQ3zX59YNoFhu1/xF+gwkTK2929n85R+Yocv1GhwET/+14D/u97 DfR/StZwhg== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, PlotRange->NCache[{{-60, 60}, { Rational[-3, 10000], Rational[3, 10000]}}, {{-60, 60}, {-0.0003, 0.0003}}], PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Im", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "3."}]}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",", RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",", RowBox[{"\[CapitalOmega]c", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "3."}]}], ",", RowBox[{"\[CapitalOmega]1", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",", RowBox[{"\[CapitalOmega]2", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "5."}]}], ",", RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",", RowBox[{"\[Delta]1", "\[Rule]", RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"d", ",", RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "8"}], " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}], ",", RowBox[{"0", " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJw12nk0Vd/7OHAiU+Z55pqne81c492myzVEZGzUgCZ6Z2qgEhWShBChTEmo FFLcZxsilaFSCplShkwZiiLf+1nr9/vnnPWs9Zx9znn2Xuc8r7U2YV+I+8FN TExMIYzD/85m/WE/NjZccK53YYhT3iL9U92dOdpfF3ySWWAyqWiRHpHVuZj2 ywW/Ks888LZskf7QU21NdcYFb1urOrS/dpGu1N3P7dbngo+HdI7e716kc7+w Jt1+4oJ3u5g7dbMs0Qcr+f9DhxjjpX6SCz+6RI+5UP7r/Dtn/GbtQlex/TI9 QezI6+IrTjjvXE2+vudvumyLWmGonyPmskF2uvGr9HWlIBFLbRoeUFLxLWde o+eFkraVT9ljhWwiqpfboHd8XrzW/JyKdZObRKRtmUF6i0hUQQ0V50uGt0o5 M8NRc6OgmEdUzHHviyBhOzNw559ElLtUXJO+nmZ+gBmcD6zPP0ulYrNPQh21 cczwapbNveoQFYPf1YHmVmZoZZEUviNGxcaSzIO+rpuATkRZZ0PtcHPuU9fu UBYYOvg6IjzYDq9tgCI5mgWY8rw8jx6yw0fqw/pLLrGANe8xQb89dti+S1zg 5k0WaJ29mWToZIddYuI93wILdDxYPD+tYIev17n5Z/KwwoDu3UN+72zxNdc/ LuWVrLBqyGtmpGuLFwLz4x5wsMHJw8UNsVq2+OrKtXF7ITZYyTNHb1VtcfJj H9YJGTb4xX7E7qisLc6o+pBA0WeDhc9trgVbbHFZiG2O8242+BEdc4D3uw2+ Zd9S8a2aDb68WLr6PdsGL33xcXY+wg6Nnv3DGaw2WLaw/lbPPAesFGctnN2w xuYxFO+qfxxA+uXJGvjHGjvRlFtzuDkhO6Nb1XjeGmt4hf66rsYJJ3pfBPf2 W+Ovrc2SPP6coOT7cE3ssTXWr5Q479jDCZd2XhS/6W+NT6Y37KO2cIHTfm23 HLoVJhVM6T3q4IbhByub++qscLOpbMSbL9wQttb4XLzaCtceuXt4eYYbbt3Y rppx3wqnnSksOc7LA7Ntp/6lZFlhDlqBKq8bD1zXaim/dMIKB5HOXlz8wAO9 yz6cJ1SscCZ1/vjgNC/sj7/Q5JCMcGIFv/WdYn542V99OD8B4W0H/7iefMAP JO1JwV9xCNuvDZJ96vjhzwfX/YVnEP40WdWq18EPKYoyrP+CEF74N8iyfZkf 6um1do9tEKb96G91sxcAtanP180WKDhPR13j4oIALKag0YkJCv5QY9h4dV0A 6MZ39TKGKPhLxWLFbQ5B2H4x7P38Gwrms/xa/01WEM7L84mU3KVg/+ctirNO gvDJyzaLfxcFT0d1L7OUCkJCc2XetzZL/FSw2eVukBA03fHnedlgiXVGH5Ur RQjB2jnhqLLHlhi/rfR+GCsEweanfUPyLXHak96vC3lC4F5tJ7waYYldZLSk VD8KgeTdgQRuFUss5PWwere9MJQncoXrx1lgxwtf9pYaisC3oIavIqctsHiO wpiEnQjI2h93XwmxwH4+SSm3totACstH7YYdFthJnu3Nh1ARCI+6M0XVt8Bf 3/aXST4WActg8l6/UXMsSFLO2mwoCt3bApxikDnemki9q2ovBq1qupsEjM2x /evt2U3eYvB84+/T20RzzNO4WBgSJAYlFddVsKQ5vjwZfZApUQyiOBuYN5bM sFzF+4yNDjFQaxR6GnXPDDvs3r3pqq84xOg0Kp0UNMOdP4cuPTonARHsSf3s nGZ4d2BjZ2uqBBwd9ErN3DDFpn25Ez+LJcAnaXqjZtoU77pNlEh8IwGkCbH+ 5VZTfMZ0m1arpCT05QdfDz1jigWuvZ+58lwS9Pik/wWPmWCC0jMlDz5pyJDR f6/fZ4LLKuol7FSlYVXTsXSlywRX/ihy9KJIA3Y46X7huQmmq5PNe0OkwfVC T8mNVBPcRbsS7ftOGo4uJ7nWIxMsyzvHm5orA8X967c5c8m4S86kIHarHHBM CUd0ppIxZ5y149vDcnB0RdMpLZ6Mr7RF8lIvy4GBiN+ydBgZ70y6w1uC5aBp aw1Nx4mMS+fesRZJysNgY/CC16oxFou8H6uZJg/ipUM2RZ7G+PTvA2bz6QSQ bXm1nuVkjG9EldVfKiaA0nB17VUrYxw9f03JsIYAOuJJmpFEYyzRz+/f10sA +3iykONmYzxQxvTYSVoBIoKuj849McJcJYf2L91TgA9qNjFmwkZ4mF1o35vP itBnSzLT4TLC1dJym5tmFGF4r8SyEpMRrhclUD4yK8F01lwQ77QhdpniPbFD QwlYOW+5jTQb4sc5a6+HopTAYHJJ7nKoIXY1SFbhUlOG1Hsl9HfvDHAMh2FV b5YKbKffw2HtBtgi+5tKzAMVEH1f3iSKDfD85hhpl1YVyFmravWrMMCPHzzK d1lSgSJX6By9bIDfK22ClW2qULvcO7hgboA1P+7abSysBgNWnBuCd/VxyRHn 9DM16pDnxc1cnauPXdXPXeN4pw7+R/hYvNP18T8nUcGmGXX4ni7CnhOjj42P 7VCsV9aAuXECn+JOfXyty33kY6YGbEo2ldMX0MftCuMK63GaoNp3hOJxRg/P thVqL1wkgo/K8z0a/+nh/jNu9bVlRIg/wXWeOVAP+63fzm/sIsIE1z38wF0P 8/punSmSJEGZ2Xcrbg09rA6p6c8fk4CUu9f2xSddfNTv9mLDojbsnnxw4Fan Lmb+0t1zhVcHrhluxIW26OLmxQ20V1EH5jtyXxAe6mI5MsU2xkUHHv3ro569 rIsFy6yPVBbqgMFeT5qxESPWk/q4xUcXDpQXHeLV0sX8H3Ky94Towo2VxYRv BF3c6fDXcOSSLvxKSX2VxqOLmZKeFITU6EJtY5fT/JgOzsoT9X8hpgemio5b 76Xp4Llt5z7VftWD82+iS4xGtbF8qq7ypiID8PNyjqR0aeMTtn0zC2AA+sOS Dg712rjAvaNffMAAvi/WTvpmaGMBg4T+zSKG4CK1oBXtqI1Fwy2OHE8wBMnD AY+bq0jYj+fyq4koI3jC7ordYolYX6to48R1MiRfl7nue5yI439fnxp8QoZA qWn/fbuIuE/3dt3VT2SQ1E5gCTMm4qzfgnnV8iYQ49VMzfyhhX8p3A82eWIC W4uNO754aGG6hX/A/glTmLSW7zuspIlx6jN278sWkGd2efwLnyaelQ86fqrW ArYbzC65/dXAz+V6eZbGLQAr1/MZv9PAIrK7e37SLCGLw8eO5bwG1nhlwcEj SAFq57WHOf3qeDuJct7OF0GB78alN6lq2Dx4JIBP3Bp83APSKWfVcHz6M0tN Q2vgdeq4U3VIDZ8Wnm466G4Np8xz6rOQGpY5VBKjd9Ua3OSMFw7MqmJZ4oVU TlYb+DcWvGudpopNtA7+OL5sAzuOD+qTmFXw18MLj9M+24FX3AwX84wyPpi6 wVL2yw7cstZG3n9SxpdqWQJuCVHBFkumnHqojHkrtEw4XKhA4veebtmjjLtI zzNyGqigphTQnOmkjFfaiHF6n6mMJig8+7CxMu6TidBIWKKC+N40B34+ZRxk 8pY1QMMeNj3sKtpBV8KD7u87jqbaw1rz4BlSmRJePuE1nnLfHn73zrgzZyjh sdcD7R4t9jC9sYX57jElzJ7R71W0ZA8fXB12LUgrYfHbl6UWXR2ge7+3wQsO JawoMHws5aADvIoM2JK1pIh7BK8eKD3tAPT8uDqLN4q4sqG9yrDQAUrnsEjC GUVcZZU8bjPjAAUs3dM7AhXxcRFipsE/B8gVG2omeShipp32f0/z0iCVsv5f j4Yidr7HNPJLiwZJHty0u6KKGD3aFqtoRoNLgVLypzcp4v7ZNLl0BxqcuWbS KdengBu6dtro+NMgotCheOGFAl5LEjnncZQGx2u9o148UsC5Y8cJZRE0OPw6 wCMrVwHL91Tb6JynwYGhcI0jCQpY7IKf9Gg8DXYvxjFbhitgQX9d5voUGviy p3/i91fANNv0Q88yabBdqvDBV2cFXHHtyvznXBps1a66VENWwAt5c15ihTRw sGnclaCkgGPDLlwMuUsDG+9ug538CjisdiN5qIwGlkeGtmivEXApE6HqQAUN yOdmR5knCDglLH3HWiUN9NLW63reE3Bu4VfVogc00LrLff0uEPC+SodvvoxY 5blU0On7BKxSGXJDipFP6NKguGQSsPthhZDx+zSQ/moiKh9LwBzHBoael9JA 9LfDzEIwActl2V3NLKIB/xaflhd+BDx4+LrXqXwacMkF5mRRCXiLZaPn3ps0 YNWPOHFEj4B73rYNO6XSYIN6kWYpS8BPC5MSzRJp8McvXV6Ai4BX8zoUtWNo sBRc+PvrsjzW+vzluUokDQLDRncLfJXHB6vcascZ9e87RWi17JbHRap0kU7G /Gw9t5d4tEEe3za3PtXnSYPGuPz0m2XymMnl8hMeGg0MEgf/tmbK4/Da16+C GPNdek1m/1KcPH5zqGNumrEekrNzdF33yGPmCCeVCB4aMN/uy4pylseb3W9e O7vmAGHFEkxlJvLY9FFATc2UA+x4mNnJKiyP7+9Rnqe3OIBbkmpv2HU5vEEq 7Q0PcQCjzOLiriNy2G1byR0rHweQKVAM06DK4V38e9g8kANM1coJDP+RxWeF mm5u53WAuK9iTk4HZPH50PlY8wJ7ODx7Q6LEUhav5XQW5160h22rQhNMErL4 i7NM8/4ge5Dl479Y0yGDW/r0O3S07OGpKQcQjGWw80LBimsFFfLsLl2NEpDB nVtO8folUeGiG+vO3h/SeFI6fWD2MBXcA5hWk25L43Cjxsw3KlSYvr6it8Ip jcXfvW37dtMO5CcnSjoHJLHdl8Tetf9s4XJme/KZC+I46nkvd/AWa1A5f/Jj ma84tlYQFWIetYKWIFXZPh1x/Cy1S73mqRVsMr1YQR4Sw6DTZp8ZYAVRA+jN spkY3nq3N6ygBcEJwlPO48si+FPt2s4cCQoIcAVuy38jgu2I0gU+nZbwcEHk ZmehCJ4KJPFDrCXMNIeqEd1FsEXsuFrmvAUEBWjbT1UK46bOhqWed+aw+35J 3IEgITzsxfG487kprKd5vkmjCDH6uVv/RUeZwq0oVuFmUSEsPJJb9sfCFD67 7CskvBDEEfwHzPY3m8D2eZmmQYIg/sg07vq7lwyLn95w8q4KYBHuhFjlfDKk Np7ZZtEtgMtmmwYVA8nQlfp5OOesAKY7UE5dWzUGR8MbGz79/PjE/Lc9AmrG MCljax9fxY9XVARePlw2gni2xeTaBH6838HytmSLEbzodZMVJfPjcJEwBdp+ Izi/JH66RJ0PvxPr05stM4QjZ9mXs29x4+YnAh78uw0gSUT5xX43bvyse5ea sakBlJdb39Bi5cbRy79iVkUNYLYv2pB+ZAseEA796PhOH04YL4WPmHLhHnJk /7KrPqR1ClDLZjlxbE5Fe6eOPjw5qC0aWsCJx/LbpIwF9eFX2uEaVi5G3JVb 9+CjHpyaH/6l+pkd+ziLHRYJ0IPsy/9a55PYMSVrL6+lkx48k5XOrEPsWOCG SdWkjh6sOXsbO5Wy4e6ugz3N67pw/l5HZHDkZnzK5+q4T64uXN73bOWJCAv+ Y9bkVLegA6WrvS+j2zfhSTdn2u4hHXiZspxFjd6EY7NYPgS/0QEu0DH5NMaM jw42aXfc1YFkqbun/j5mwtk5Q9x++3XgQVULrSWQCaPo3NNGHjrQTRuVuCrF hM+mzYqH2eiA4rxpmAXbBlxwjObjVdYBjXuqy7FFa5DBrCNP/qwNR3v33RDh XoP0liTJJro2VG7OM7wb+hdq+Y5JrBVpg+4+4YhX1n9g5y3PushQbTiR4iq6 s2wVnCQsKdU7tOEJPbFmRmAV3CMy07JttYEsxfybf+Q3cB2Xmtgurg2naeaZ BQ6/Qf73d0UVFm2oj4w0Nnj4C0wICcWZsySg9MxEep9bhoO3Lh3Z3kYC6tW+ lVyZRYjuzeRnO0+C8hte34nxC1AucoX7bwgJhPLevW9Y+AlP34kWRu8lwXDl q8ovbfPAXG3kqmJDAvta6q1jevMgOqPWSzMkwY5zF4X+mswBG9f5wWVVEvy6 Hd5uOjYN3meOt47ykqDl0bEiv7of0MOTG0JgIcH1poPnTidPwRXsrz72mwha Y56Gz8gToDHs2ftzlAirSy78fTzjEBks+cP0MxFaN1N/rI5+g/Pm97eydhPB X9XojsnVrxCY/6xeGIhAIpOifPeNQtudYEu/WiKsOah4nzIegVZD/3/SD4nQ 7iurd5N7GNxcKz123mPc74OW5InmL6BEPHlbrJAIbb+kux8d64dHpKltW3OJ sE+c59JPsc/QfMxseCOTMZ7Juplu00fwkH3UqZlGhMwdMz+PH+2Bmerb998m E0Ev+svdh6Lv4N/Af/w/E4mQZZHzfDimC7o0bt9JuEyEzvNnVPd+fAXOlfW8 OXFEYGnZkTak0Qr+tiGCyheIQGY339h9rhFG6yNPqJ4nQn86+WP93ToI66rc uHOWCFSp1Yrnbg/h+jBbRno0EfCl76JT33MgOzNJeiOK8T5AEjacukDJoAZe HGHEvwoSb1wLuks5pPi5w4yRz/+addFhSzXF2oPyj4cxXomtrZTjPjrlT5uA hs85IsgONd4pHmimWM+NhkjGMPyQM2KoEv+SUqq/Z3V7LBEe+zC/KtHvoBRv df7LfokIkMj/IG2um5J6JL5aP4EISofkVz3s3lMCJTlDPyURIdFex0Y45wNF WLAv4VcKEeaU0dWe+V5KBpbakXyDCNtZ3XrTqX2UvFJmj9vZRHg2uofgeWuA kp/YPaF1mwhyjSFHRBYGKY4+A3kGJURYprdtvOocodQUkctrHxNBrbJL6f7q KOV4VCDF4DkR/HJ7aVeUxihPbBMPk5oZ9TkznuZ0+jvFlXTtVF4PERYOzz3V LB6nNKX7/RQZJIKy3+8vW7onKKa1Y2q8E4znJbOrvVH+QXkdcSUybp0IDap8 LuVu05SnX+ROs3KSYF5U7ETSmRlKkb+PEKcICTyXVeqd385Rzu3a5lNEIgG/ r2JpgOUChZu656FNEAlefv76IW54gXIw07bq4CkSxPgVsRReWKSc9UJu2ldI sLBDec9Q6xLlJGU8Dz9k+GzgW9J60DLFjGOfUFILCfbtKnkmteUXJcjyxH22 zyR4v1tV1Mf1N+Wve/oxAVZtSBoat4n4+Zuy3Uqnq1hSG2z3lv6XnrZCGY1z bv6py/he+Kt3dPeuUvJo24Lr9mlDxgHNONreNUr0oc+ajh3asPXbj0eBm9Yp +8Q/SHyZ1Aa2gPKhi0XrFC8tpaRcFh2IDCSaNU38o1Rv2hSrq6ADWtVip3Kf MiFKSKuvzwEdiF/+fa2ckxk1WW/+sRSuA2OGn0qe+zEjv4s8hzbF60BuTVbP 5zVmdCsmcVtEhQ7wPpXQEbViQYP//ZCYXdeBwyurVOVUFpS+NKdlKaQLreS+ XQZfWVDCTVl2bnVdOFuXfcX9Iiv6LyxlUNVLF+aeSY0nt29Gk3J8FSkMLzr/ /bueK8mGDkYNHNro0oVSswHhiiNs6Bq/1NLqpC7srb9l/ZqHHSVf/lZzU04P uhtk8tjdORDpWVZQ7XU90Pq3/kS0kAO1s3lP1z7Qg3jLwdfKSxyIW653w71T D6wgb9UmgxN5IcWte3n0oQrLeZ7v40JXZFjrt6Qx/m/NBO7VfTxIdvePSCu6 AXBbWo/mVvKgvN/31HjGDCDu6b6n1n940AXWwuiTXIYQUVF4IOk6LzqruLFH 39cQfDKVG+QwH3Luk4va9c8QrlULGxfyCqAx+pD9+SBjeLOgVBBuIIAUAvLa 32UZA4eOIY+DnwCi3txa9aHdGM6XeX6dLhZASktegnNEMpzIz7hmZCGIfrhN 7o/6RwbPBPGJ9iNCqOCOf7l0oymktqp53LouhPSbVeNT1kyhk8WEHlwrhC6N 8nE/IZsB9axvuhCLMJKuyBFme2wG5NBstCtbGJk0CLRXPTAHqV3SN+dfiqAP f8PTM9osYURH3lFMRRxxso54fK6wgoCUDTMRV3F04iSTt0OvFUzNDRKFToqj lG8xPX1M1rBQmSvA90ocGZZbpfhst4ZNRKnPbMESSHf0oJf+mjUoqYsG/aqW RFMXRYs+OdpCafyy79KgJHp2ReyMcpgtaE30OC2wS6GcQRM+lGsLBnfTtGd9 pVAvHHB/MWsLdsoCv7+tSyGt7kHpXcl2EEDgvvTBTgbZn5QN531GhanzPyLf B8sgDvuEd7pfqBA8/OrQ20wZpGPQVvN8gwoR+QkuHZMyaGeGxJ4pa3u4LMMu 8uKqLFLalWzC3WgP3NHf2ZprZBF5mrq9ftAeUgZerOAhWdR+8dfdor/2kJUT N1CvK4f8pOSLOfUZXpTYVPTkgxxSLjxDvZPpAFqnRm5U/ZND8rs8PJIrHcDn 6LDNJyF55JAmT0hh9PMDr8Hwo7k8sqb2RLQwfJl35gHJc5s8Au5/H+eZaLBX M1+156A8Im8l3lcWosFY4lmJd8nySKTwr0a+AQ1KTIMFtxXKI9H/PJ8P2dAg aGrXlu5aeeR6ZE+ivDsNNLJdWF3fyKM8xRn9vXtoME2zWO8YlkcuXOJZuUdo ULmq9ct5mXH9MOrvZfjy+D3pudecBBQ//+0gL8NHer7cE46yBNT9cOsYYvhp mWNtuF2PgKySeaghDF+dyLXhn6QSUC+9PO00w1/zulcoHDsIyMJE5fUVhs+O tb4LVg0hoK4DzBmFDL9N+UnmUWMJqFaL93MTw3dBc/4dBzMJaIHZ7vEUw3/f Yu+txd0noOiq+Chphg/3if/ULAICSnrk1PI/Pw6Xk3c0vyeg07GSbv/z5W6r 84mj4wSkIswj+Y+R3/+hrY55jYDqO+RdDzF86nOYb1KeXwGd3h7tMsHw68d/ XuJISQF96SkuiGb4dntanv0esgLK7cvi1GL4963q94izzgoo6N5w0K//+bie WJK7VwEFCmV0DzH8/MYt/EN9mAJ62up98gfD147f6lkH4hWQDge5QTqBBm2n WA3+3lJA068K5CIZPrfldd4v+UgBZXFZWv1j1LepIC3V5IUCsrRtHa1m+BIZ 9zf6fFZAYf0TI3cYvmx4rfAzckYBCWvKGrcyfPl06ZFrjYgici/Fli8ZnjRK WD37QV0RlYUNbK8k0uCxjFXlkoUievJdP+6LLGM+qd3c+gGKyDyPUqu24QCF WbPtD2oUUftIw+e5WgeQJxqtdr5SRNkvzpfkFDHWW2O02uygIuo+51/4JMUB sqa4L2uxKyGd2KPZKNABks01be95KyFxAUsBK4YfTw8H0gtWlNDNyT8aPfb2 sBL2YKaRWxmFD+TJ/0e0h3DO39Ij8sro34DXWKOgPRzXu3RGjqaMrpUvtyQP UCEgroh866YyYhUnJlodo8I2tZGqG6YqqOu9uq/6JTvwer2yzc9FBf257fa7 +rAd+AXz/5Tdq4J8Sp5y6LjawYEnFO3Siyoo3IMYvSxmBxEo7/6zbhVU+tJG hvmeLWT77CgaClBFQtqD/168soGx+A831NPUkGlI4NAVMWuY0JwxmC1WQ4PE DymC61Yw08naU/VUDfVbBgc/Yfjyl7CBoPmgGqqP1A5xrrQCjjupyVvV1VFn tuTvQaoVEOtcL4eCOtJ2hYNMZxFETLafbPihgSLHR7fNcFtCngytX4xJE51W 2/C7O2ABbdteWpwQ1kQ5sR/Ha8stQPxZ6yZVC020wyvu0oCLBTxLbE5KSdZE s2fRmm66OfzTbLi9X1cLSTdKrUzomIHKXnMWup0W2mY5Kbe22Qxc058fFPfT QrN7DOr39ZvC7bU6jY4LWuhO89EvapdNwbqj5olRjxYiGyp3XR01gYvBD19y RhKRVvyrYN9SMlQWaGseuEJE/Mq1c/9dIMPHj5VX6flE1MXH2fVxJxlUKBXu oS+J6JTkr7xYQTK85CsbGJAgIbjkt2lHjDFwPyqcf1BPQk0n/qMmHjWCV6ec uDWZdRDpbqS+argBKEiFLpdx6aC5CBJ3ra8BnK7PHtQQ1kF83LfLTlsagPrG 5EMNVR20j3XlSg6HAcTHxXtquOig4MkRW3K+Pthfe5GnfpMRcy1dv/BBD1qK KLpqurroVNIrKNyvC9LUQMlSU11E57g/Pe6iC2HjySxqtrookPK2xIOsC4oa gx9UvXXRkdfeh27z6MKFB1GnVaN10fTU8f7Nz3TA6llds0q7LtKcNN7NaE2A 3qXvpeyvh1jJjzZbfiNC2P7LfuGH9VDKoZePFBn9pPrvvt0vQvUQf3QaweYO EdJlLwQevKSHBD417yXuJsLhY90ni+/roSeDQxoFfVoguuVYjvIvPaRdnD1a 8kUTgqklw8pX9JGF/MVQBU4NUOpbHQtP10db/C/7B8yow+djLpMvcvXRufFj FR/fqoPtjaWfBx/qo4s3LH6a5qiD5Jg1S8kHfaRkFurDoaMOrTFDyiryBohJ uKf7sL8ayDaIH1GpNkALP/2dxUdUIEBCfpsVGKD/7jtSvF6qQEW4qvHOdgNU qGz3qP6BCpiTjFhSvxggXo/JWuZzKuCX75GzvtkQtdSps+2XU4EbMcmve7wM 0YXlq7xmgcrATWXVil0xRPJKnKVaAkqwvWCLYN4mI5SwFNowsqYIOf8EV55y GyGWTd0r1ROKoFFLaJmVN0J3XNLGnmFFcFCj7PSjGSGbbzkvtU8oQizX6STd bCNULucbcr1PAf50zk0PmRmj6b7vNpVAgIt6Q4kudsbIqm3ScuUBAfgzOtWe bzVGN98X7vO+TQCVXRUHMvyN0X+ES0nbYwjg/uPwgPNlY8QpTfSi2hKgjP37 67p3xujRmz0aEx3y4IcGytIOkVH7GtE9ZFAOvhW+dmAOJaNNM3HMrc1ycJz9 +ffgKDIaIL4otbwnB5c6byo4XiOjogP3fqeHyUHVTu9spmoyuqEvu7uLWw64 Tr1LOMZkguLuXORwspGF549eBtlnmiCv9fsBC63S8OnLkYlzd0wQV82hIqNK aVji5At6et8EaaodtMm5IQ2kfZ6B6tgEGUkvNbYckIYCwdGDWyZNkOGncyWp rNKQGPp3X5epKXrsuL1hiiYFfoakXd6Dpmg5Jq5EbUoCIv3fDlybMEVfh1au C32QgPSrYTtfLpiiqZLzt8SxBHR+e7bDhN0MuRrz+x/PkADrDHs/KR0zlN1Z 93ebrQRjPe/1HooxQ7T/pHTrisRh5WnatkBlcyT02oTCFikGPtOyCQskc4Sb jldLBIhBnVwZjiabo4r2gEaKpxicvoS1053M0QWfQa1mfTFY85jhafzPHDlc Vd9V9FMUmOaoryTp5khmR7VM3XFR4FD+Y93pZYFaSt+fiz4jAkE+F0/77rVA F9zGBKuOikD7Ff6qsUMW6GGBueqvXSKQuKBC+BtlgTgu+EeVIxHgxh4bqoUW qCxEL7qLTQT4d1Q8j5mzQBR6wqmBG8IgcX2vgWG8JQpedX5wiS4En2rELqdc t0THma4utTwSgoyBzs8/si3R3389TXzFQiCoZnGuoMIStbSYPH11RQi4QOIV 33tLdOzyWfMeXyFYm363Z0qGgp6IjTxWXRGEYQe7K/mPKYh35/TgQQtB8GAS +RkXgtBVVz5P43F+iIp03JIVhpDOUtRXxwF+KJo9p3z/FEKlVnc1Dr3lh6WB Kd+3sQjdPHmz7MVzfkivw00yWQhlRY9PrqXwQ8+Jo+k1GCG/ityTPhb84Pmt 2XhCwAo9zfoEb035wPvVibNOT6zQj09XqA/nuUHe7tYSe50VsqlNP3hjmBum 4MXhlgYr9I82Ih3fzQ1nq8W9LdqsUGjHddGMh9xQcpuurd1nhYbM9a+4/8cN SxFcI4JM1mhImCcQLW+BVMUCmz4na/Qzn5ByhW0LdEa95Tj01Rp9yXex++vE CSP9PXOJE9aoePQCxhacsGT66WP5jDVqz7m7I1WbEyRWB4vmf1sjMXmLZ75C nHAgfBqd5LZB1qH7syL7OeDvMfZTlw1t0D7iuOjYMQ5Q22MxWXzZBpklXx9T zmGHWKt77aOatojl7WTiY2E2aLlpTZ/WsUWPRhd4PTnZgG2hv+qXoS3a198f vLG+GRILeG9xIVsUaGKRGzy+GVJYwoL1ttuiXpOwx9XPNkPeC0uhC1G2iDZw 7vvgvs3wlNazk9BhizrrbrXtrWOF2W0bc3uC7ZDvUl3g3mgWeFeRhIRC7RAt +mdiVhgLVHNKXm+NtGN47vi9j0dYIKrRQI8YY4d0sw81HfBjAS7dw2F/0uwQ Cr36ps2YBZT5P6yk19mhsSL9rKLFTbCzs4z5FSsVHa7Y+Sc9ZBO8dvQSMsih olvcCkXWkczw3VPl2IERe+TZ7JZ1jrxBD6P9bv4hQEMeTK3pj2zX6E/jqecj zB2Rl+yc7+vmVbppH2/orvNOiHPsRsPDoN90kvCnfTmVzqj0627P0ehluuPl P0vDj52R9xA7ZTB8mR7wR/qySp0zCkjqujd4bJmeP+x//1GzM5Kt0F6e3rVM 56/4sdj2yRnV+Yhuplgu03/abcQtbXJB9lnfFWo2luhPIlXuuni7IOsR76bP F5fo3VMOJmk7XdCW1ZHTe84u0ad3HXn9yd8FndZl2zoZsURXtn04t/+oC+pV 4idzBi3RM/hNyadjXFD+n8NtpxyX6CfvubSX3HdBT8vIllL8S/R06eM7ph+6 IMftyeYjHEv0h9dSZ3RrXNCfiEsq95mX6JPhvQIN2AVN7Fx/5Li4SPez9vd7 /8EFfWmb9376cZEeUR07Ld7vgqrZ9A/kdi3SU9VKzu4edkFr61l2l14u0l/x /iiYnHJBs2s4av+zRfr3GB5D7XkX9LGOucP78SJ907J2W9iyC5JI3z/uWr5I lw1y9332xwU1SGm1OxUv0v/f/jb0//e3/R+fTfKC "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, PlotRange->NCache[{{-60, 60}, { Rational[-1, 1250], 0}}, {{-60, 60}, {-0.0008, 0}}], PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Im", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "3."}]}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",", RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",", RowBox[{"\[CapitalOmega]c", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "6."}]}], ",", RowBox[{"\[CapitalOmega]1", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",", RowBox[{"\[CapitalOmega]2", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "5."}]}], ",", RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",", RowBox[{"\[Delta]1", "\[Rule]", RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"d", ",", RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "6"}], " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}], ",", RowBox[{"0", " ", SuperscriptBox["10", RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJw1mnk0VV/Yx83zPM9T7nXN83y5+5oyNkgUkaTI1EAqUimkkspQUmkyNCkN iuI+G6kImcpUhkJmMvMzvOdd633/uXd91zl7n+d8v3uf83nWOsoBB933sTAx MVUSP//7b9kVNbq+7oafCFi4/bs6w2gvvT/p9J8bVnGfvap/Y4YRndUwkz7v htdOSHZE3ZlhFG2nrKiNu+EynYhTbE9mGKqNXXxbOt0wWfuKh2PVDIOv2kbn 3hs3XLyeOL53fobR/VzoMDrghlWHl5SW/GYZ8WefzZ9pdsU128orRC3mGBck Q7/mXXLB0SqTl55sXGAofKQ8jPR2xlqeXz9Jxy4xVlWDxa11nXDs+Mu8e3P/ MXIidbY+G9mId7ZdOj4kvs6o75i5UvXBAf86+LWOm84McrziJx+8dcBCPY0N ok7MEEY1CY5/6YCl8PtzG7YyA9/d44hW4IBHOElyHnuYwTVwdep9mgN+uaz5 YDmeGWonONxfHXDAviWmU3s+MsMnVhmx+5IO2Ew54EilGwswtFHWqUh7fH3h h6hmFCv07PsafTTCHj9muhieG8cKTDme28MO2OPJT5aNqudZwUYgXMR7tz0+ YsRSb5HNCp8mbqYYu9hjstRIWBlmhfoXM2fGVOxxhJPjUzlBNvipX3DAu9kO G5ybdkx6yQZLxgKWJvp2+BjF+FWNAAccD8krP6dlh/3JOjVx0hywmENFTWp2 uDO8otFclQPmOUPtwxTsMOVAU1ONOQdMd3ze/IDXDr+buX7KeR8HjMbFBwoM 2uLPqqfLv5dzwK/q2cuD2bZ45UXo8OajnFCxvav3OpstPmv8tLtznQsW87Km T63b4G37egaH+blBZ347W9CyDZY+UCrALscN2dcb1UynbLCw38X53WbccKSt OqKtywafs0n58PgwN6juLFqRfG2DM/1VeLMHuSFpV6LUzT02uNlcl8W7kwdc 9upuucWgY80Vi+9843zQ+2KRvbOUjj+OcTYcW+WDqJWKD1LFdOxjZKn4j58f bmd6qF1/SscfrG4LCuryw8TnE2tXs+i4yfei4PJhfrim9fFZ0hE6Tvzjqnh7 mR/a5nZwHyHTMW1gZDxNUhDCbFSgSJmOmWNo7mPqgsB0ZTRqUo6OjyyEhHpS BYFCOdUbJkrHZ837BX33CEKM98N3QUx0nOUkcMTkmSDIw/g+306EuUo5na6r CMHe5LOVjqkIH2zf+TqgUgi+dBWH3L2AcKN8k8PJOiHQ0R0WmU8gjn/5ZHv3 hxAsf9+892Eswt02MU+YR4Xg6gZ5trVghANlY+PNxYShjPHO/rUtwheDBl3P BAsDZaTjmuU0DZMvxMV+khKBmavo99AQDf/UPapPVhUBhmmBwfUeGj7zx2Pl qq4IeCRGtUzV0fCWcB++ZAcROKMkKJ5fQMOiLSJlq1Ei0O5plyXkS8M9DxMH xFpF4ELV85yBz9bY02Q2MvCWKFTe38P/pdwa37qrnej3WBRWToudfPLaGjsd jRQNficKEdSYnQfvWuNj3mvsT1pEwb3YXmwp2hovKNsPjPKJgUzBzwt8ZGt8 veEiNe6sGDy7yHPUMMEK3210d02NEYeB4PI/4jFWOLr1yZ3HF8VBYeMh98WD VngqLeBjW7Y4XGX9oVvuY4VvDNXxhn8Qh6Mn7484GFrhpqpDA6dWxcE6wszf +zcVH5JeeumTKAGNW/e7xCMqFoj0P/A3VxI+UfRZhE2p+ET/Zu1dbyXhw/p/ Jfe0qXjq57rUwGdJyC+8RsYyVBz8+vCQ4agknOQuZ16ftcRzu/B/XwykgFIh WnLysSXeIZAQNVEtBfF6FarHRSwxZ/GfROVVaYjmTOni5LbETvZb2vyEZSCs 2zPtxroFzhXHvW9IMrAjZWz97ZgF7v72pPLpJhnQGZLsmvtkgd1k9gfV3JeB zrsR1yJjLbDsJ5lLI66yYCAotxbRb44ntdzMeEvk4Lq8YYthpzkmYZmPxU1y sKTp/Gjxmzm2Ca3ZnTAqB9jxuPvZD+ZYVyuxO1VRHjafbc3PTDPHc6ZK1f4X 5CFsLmVzGTLHj0txl1mgAuR1rd7jvmOGHaWRaaScEnCNiEU3pJnhPOU1nlZN JQhb1HRJTzbDoby0/1wslcBI3HtOLsoMb8ZTk/HeSlC56a2TnosZ7r8QHsub rQTdFRHTnkumeGfTpH2FvDJIPeqxzd1uiv949Q4ZmauAwsfa1SwXU1zeFFF6 3kUFVHuL312mm2Imm+KkBV8V0JNK0TymbYodq+lCuudUYGOymagzuykeD7rV yPZNBaKDr/2efGOCc/TZixPCNsB3im28pZgJHhi4Lv0Fq0KnnY6lHo8J3vLz WCOtTRV6/aXnVJlMcApPfM6vcVUYy5oMFhgzxhKZ9m0psiRg4769pa/KGLPO 1W2qOk4Co+FZxfORxnhXvEF3jwUZ0h7nM5qbjfCqBNJP7FUDD8ZjHFVjhI18 dV6kL6uBRMuzSglshO8kq2k0iFHg1sqrT96FRpj2aSDtixMFcjdDw+/zRnh4 Ohp+FVPg3Vxb9zTVCJM6rCt6r6vDTzr3ukiBIRZmH3mqe1oTcjz5mIvvGOKF cNULiXc1YU+oIKtXhiG+3VfQKYY1YTBDnPNWvCEe2GlY0cesBZN/lQU37DLE cvsuSdgkawFLqoWiobAhvhr4csOle9qg1hlK2xZrgNcKxnYcYNaDHeQPuzUO G+Dn6uI8/pJ6kHyE5wxzkAHOPipvdFZbD4Z4HuMX7gZ4u+nprc7eevDEcpDO p2GAd3AetJsp1gOdO/521e36+Aar5eTMUX0w8t/uZGqij+9vetbyT8YQAp/l HhDQ0sfJ/319sWRiCJmLMxcGlPXx8WjeNpNthjB/Na02nV8fBwgd79uaYgjv Kr65TPXr4S9n9jgIMRuBxQbnTY/T9XDl76V3DbNGcKYuLt/kty5+c2JfzCF2 U/D2dD1G+6aLNZ6Ia06STMGwV8bRsUwXC+WpTmQ7mMLgzLvhndd1sSXNXuR4 sim4yU5rxTnr4tRmi1lLATOQCdn/uuqVDvYL9jkcpGwObzg34y3ntPGlp1+k Nf0tIfWa/LWdh7SxX9DLvh8JlhAkO7YnwFcbm32+u3rlsSXI6F5gjTLVxh21 R6dUZiwh3rPK4caoFk4vl3ucmUSFTXmm9b+2aeE7qPd+7TMrGLZR6gxR1cQx myLrlPppkGN5/u8vQU2cLPUTb2JD4GE0MbvlPw2c9ubwyz0SCDCpTNC0WQO/ vfrTZMUcQRbXDnvWMxo43yNupvIUgk3M4B4dqoG17mzYtO8KArZlkv+wpwZW WJK9WXMXwcHRmZhv2hr4xNX4cw2AwKHhStGtLnXMIT185vwKgpVP8+UCn9Xx lzvLtAUeOrwC36/xr9SxQ+9FHQlpOsi/1BwMuqCOTx/uTtthRIfmx2kznVHq uDkt+eYxOh2SHywxbfJXx2ZXMmaom+gwm/5Z1shUHZddzDV6tZ8OT1J01AtU 1HFurDqb3xE6+CdmmsgIqOOryHi5II4OX6P3bmUaoOBUjYpagXQ6nDlY6xfZ SMEhN8I4KXfoYBKsHzb4gYLfveTVb8+nw4Od60l1aRS8nevYr/kSOuxw359B O0XB+/N3+AZU0EHApf7+qwMUfLbd7pNfDR0+2hq9IG2n4KHjiw0jjXQ4Qb1V loUoOGyzkwN7Ox10jFlqebUoeOuhVdHCbjr0ax9oOyVJwbrlN8z7+umQTW7s /8dCwZwFUi33RuiwRdF0OnBCDSvufCU5OkkHDqmc9bYONXwk7qA3zNKhTIid 36VaDev9+Mojv0SHI9xhMowiNfx8xqqYdZUOaiwtavq31fAjn5eskUw28HPZ 3Dj3vBoeSpgqD2G1gbSZezaSkWrYR2atZoTdBhzHOLdc9FPDzNy+WjOcNrDW H+G76qSGW8cduBK4beDNr+8hh4zVsOelxrt3eGwg5Af1+B8lNbybeWUb4rUB pW8PEz351PDDzJLcMEJ//8yTXrNAxoOT3/Q2EPoiPnyP+oeMhzAuDiTGo9L2 whcNZDzckyRoQMw//5L2QeU9GbevbzFLIa7/7En+l8w8MjbVV3WMIuoLeMj/ g4t4RZbHhEeNstiA1O2oP7EnyfjgYLzgzDodGjK6piaCyDg4ij85ZYUOCZdt 1vZsI2P7Y4eDSxfpYJH0mPe7NRlXT4l4xhL+TZ0SknbUIOPfGTeFWgl/fQ51 G+owkzG7hNeBrQN08EwY52EeJ+GWrQty13uIPLJW+lraSXgrWZcnroMOdljm 6okiEq5jlmOyqKODdat6kOttEt64ZHVQrJoO5kNm1orJJNwU3Pj7ZjmRv5DX 2MfdhE509n1RSAeK6v6qGy4kHF0/6GKXR4cNZkezQ0xJ2C1Hhy/1Nh2k/NMd hQRJ2O/pjLfzRTqwFH3L9WGoYsOXV98XBdBhpao7VueJKs7co7fPZAcdFtrG 3Zmvq+LU0wWhSW50GFvnZS4IV8WmxiFvr5rS4ftmR99pOVW87UfF7dvcdHg0 icUvxG7APNccjFcLEDxgbRzzCdqAMQc5O+oWgjuSPVU62zbgMInOhr5UBGm0 1cOtGhswV+be1IKjCGKvmDcodqrg4Gh3ww22xPNB91XSWzMVHBCafuMK0MDR tsL3gqoKLth5y8KrgAa2Xo1Gu4RUsEyblMKmKzQwOz3xm3lIGUesNpb82E0D 5W8aNLcbyvi0iLD3I1YazEY8XPgzp4SHau0Us3ZYQ1DUbz/hP0r43p/dL2ft raHzhPIn60YlPJuSkn3b0BoqEu5m3HyihNt/pSS2CFpDavYt/c27lfAbt8Zt q1+tgPleZ9ZJVyW8aK/4vvWDFUTlSTM9MVfCYttcWtefWoFP0Y0GNjElHO66 LOFx2Qq2pKi1RV1TxMfJabocHlZgciMv71uoIj5wa2g9xcEK5B9siNJwUMSH nE9PhJpbwcg7ReHeZQWcHSTmbahkBY2Vd3osvitgbwMfdzkxK3hXL/s884UC tljQ9vfjsoKEP5IuLoEKWIo7xmjiHxVCJjKl860VcCXTuiz1LxW2LokOMUkr 4I8v2nz+/KSCgqBQ4tt6eSwSvuudVQ0VSiy4QNlUHifyPr6lkE+FHPukyyeF 5bEdFnYxyqFC4ha2XW2jcnile6vwg+tUcN/PtJRyTw7f6+B8lJBMBbPDpz7/ jZHDu04/qlmMp4LiyZVMm+1ymCy7mlsVS4Wxa4sGi9xy2ENk8rfPISo0345m 3tYvi5lET++lhFKhtGD2WyFDFls8U+p02k+Fe6+O5HDdlMVF7MWfYQ8Vksqn wvZGyuLz3L0FF3ypEPYlwpLhJotb3a3/5e+kwraWMW5piiye8rspLulJBYvu kPZIFln8g1PmbIc7FZSGh/IbfsrgTrcTd8c3U4Fjdv9R9Xcy+Pkx3WZ3NyqM r/XbJlyTwfjK/RguFyq0cu8V6QmVwd0ObnP8TlR4L9bXa+4ggx/azmQHbCTq U9z9IkOJ0IOA2R2ocF7jV9zksjQ+mnKkZN6OChHGPq7O36Vxt8e5RiNCe6AO mbwX0lj7xEYPsCXqc/EaXr8gjb3NxVIyCa3s+f2dd6A0fn3Av/wtobn2bEsq tpbGuY/7NVSI8ROhTR5C0tK43fW9WBuhW6M3bwidkcJv1o+XtNoT9cXX/6uu l8Khetu2yvxvfSkuWOmRFG6z15cqcCTqu1GTGntWCtc8+2ob40wF8pnjP57s lMJlMV0BVa5U+BisptCpJ4UZzidcfQl/9m79sY+bSwo3XtdedCD8Y7FILDTr kcRc/Uw+p7cT86sYzQW9lcS/M7OD2An/abx/qDcuS+Iv5n4C7buocPInqpuz lMR2g7Z9fvuoIFs9KUoSlcSFtvV/hEKIegtzfDxGJPBF/jPavAepsHBqZeRV lgQedOfRbT1BhetBTw1+H5TAZb2CL+6dpoLRFu8Y4Y0S2MS9kuNlIhWOKJdw H5oTx/k5A2VZaVQQ5gnaerdOHC9cqmwLv0mFomnxmw0PxfE9djvbs/eIfKsi Kdru4nh/utmxwBdUCN6vu3HkuRie8j7MPPGNCpybu1Olk8Tw+T81O+60UyHf 9PIPR18xLDKh/OFsHxX+cI3uK+AVwyfNZkdHZqjg9zQ/ITBYFJNi7vQIylrB avr2unSaKK59UxC9iWQFt0+yiVVJiOLBHtqtUl0r6HALeKhcLYIDsmMrhOyt wGNKvrJbWQS/eavQdO+wFTgbZ67v6BLCjulCv8yarCD0FOdc9m0+HDKzKYFx 3xpSxEnVe7fwYWHqUvPm59bw7JlNphYbHz7GQxUcfG8NE51xxoxQXhyv4rFT vtUajpjOHu2z4MHC/5wSb3HQ4MRU77xaByf27171Wg6hQfb5tU9TKZy48OCl o4HHaPBeQe5GKeLE79m2dFedo8GKq5epyyMOfHvYvdLvNg3OPK4/FnGMHW/2 2B04UkeD8wHvF9+Is+KA+PEqO3EEj5bavsTVsODpsAzrMRkEX67OZTnEseCq kjyu80oIeEDPvL2fGYc5hjVmaCJIlS048d9rJmyskOLMTkfw4tVHp49BTDji bqCnpQOCRqff0pdlmXCdTornHhcEG6Ysoqw41iFsa2927HYEGo/V5s7lroCu qKdTdzCCsLaATHG+FRC7m8h+IRzBc/Yc44LI/2DvfHmu0hEE+gFi0bU2yzB6 l1VePBaBmSzzglDfAiRITlhypyCIcaLeeOC4AB4LLW7CVxGUHTtmalQ0D+xk zUusGQhorePHvE7PAX3VzzmPeJ85XO5cvCM/A0PY78L3xwieZXoOaidPQ+Dj DopEIQLRnOaW8ul/cMCt9DqtCEHv89rnvz5PwYv6yL8ubxFsfOdwO9xgCgJR 5jadUgQ+pxNF/zOfBP3+1/cWPyCYv3e0xqJ/DD7f0GGzq0Dw8WV4rnfpKEgp 2736WIXgWuW+0zGpI8Ay3XJI6xMCrf7txu/NhiBkw+G9RbUIlmbdhDr5/8LZ v67WdXUIPrE7jC79HoCP1xyPNTQg2KNmct/88h8Ip97dn9iMQMdM5+TOgN/Q 0hrSYt5K8LUj2euEaR9IjVnztn5HULNTweAmXy+gUY+JbW3E9b5ryRyp+gVv Csf8StsRfJ6Xa3wZ3gXKFzbT2ToRBEjxJ/2T7AAmlZZYoy5iPvNVS/3KHxDA 93Pe6SeCGz7j/w6FtYKRWe9tu18IDOJ+FRRJNMMZygFv1W6iX7C69aE3/hvU z4orDBO64Uysmv+PWogSu9Oe1oOA9aNPeo/GJ6DN1J9U7iXy5KSu+52ugIVN aesZhO7KMPtRVlAKH3wnvcYJ7SC7VPhhSxE4l3Gc1ugj+pOkQYmRwVtQoSp5 yJXQWqAjZjxylvZn7CRlG6HnH1zMvBJcQItzfVVgTWihr2wzjrzFNK3QzZMC hM63s5N1DmDQeEx4WD8S8yv0VNzP+1lF614pHvIl9NCtPmNy8heaX5vNo59E va93MNfmG9bTVJrLXBCh4aLQi/TJRhp/v3NPMnF/qgeUlrbZt9B+PdU+/Jbw 4+JGPVuxW99pXfPlwjWEX5MkdLl1qo22XSi0BRN+erBtactw6KQNd5bU3iH8 fv97t/L22z9pla+tBPw7EChWHAwVn+6mXVC695aTyGeO8Xm9tqGPVmHW8YCT yJPy/Jvq06XftMV5YxX/FgTed9qcLqn208r8ouNymgh/Yv+mu8QM0uJzv3vU 1yOYDpks0cz7SzM8nyjH+IqA5L3wi7dxiCaWYOiVWUPUa8ZJqSON0k4E6Dcv fERQribo9mzLGM2k9WH4uUoEUxKSR1Jix2mKcVsM5ol+bvscucy1aZI2/3EP S9p7wt+dGx7tt56mRRqfe/noOfH86PjzPaF3mnZP4gFD6ymCeO9c1odnZ2hS Ot1PMwm+nPYh7e75NEtrnvoRKXkPQYufmsSOzQu0zktynv1EP5nS89c2+t8C 7eTUo8msSwjs/B8dzkhfpGX947E2Po/gzR71+sa2JdrF8/tTyEQ/ej1QM8HJ f4W2t3Vi70IIwZ8Doy+DWFZpR5f+cM/tQ8Cx/1lPYu4qLbBNrPyXP4JjQdqW lUNrNP5T/6SPeBLrp1jyxJ0SJiTMovvyNUIgUCKtJ0FnRdvJxfs5RRCELC45 kNJY0VsJS7dJXmI/mnX6Gv1hRVq9ppRadgSnSrMvuSeyocoy3qriaRpMvpf9 m1rDjqhbHewmCf5tLJfP4XTnQq0vnMNMvGiQXqXMtxTAj56ncnOqxVsDn7XN 7zvP+dGrqZk7n6OsIaEkoMRmmR8FX1m5cjjYGqILHwamXBNAg28lQgc2W8OO G6RyRSyIriQJOgcrWsOVYjHThwLC6KBDskRxhRXUTas+OGokjAQuu+/wf2sF XHrG/I7ewohrIuKSKsG3Z55s/zOWJ4xqJaby/8uwgiN3r18xsRJBh3fqNawf sILtF6SGakJFkdZIxhtTGStI+0TZdvuaKPKd9mwbELKCBlZzRsQ7UUR+1+FS xmkFDqd2ZoiyiqHqjv6ZgTmCJyOzkW+2GGpf2Zvv0EqFqKInT3WxGIoa+oq3 1lHh5fh7CZZBMdTE0v8y5SMVNIK7xvL1xZHK7eqGzGKCN3zlbk59EUcaa2Vf BLKpsCNbi61qgtBmV468SqdCRhv1YKaYBDLj8XO9fJkKfO6+9hb+EsjrmovW GMGvjlfCi/iSJFBQjNza4ZME/9bFyfY8lUCIzeyGwTEqrDnk/Du3IIFUGE1P gsIJnkt4vstTXhK9FVYY+hVMhWMVjM8UW0n0uN34SFogFd6sNRj8FyyJTva6 qSX5U2HKsudOfaokerrPrL+U4CWtE5Nc995IIqZSjwQdgqeC365HHumURF7C p/r6Cd7KnRHssWOSQoPxSy2/CB7r01NyliRLodu8ew1ktlBh/9V1S/HNUmi9 QsgnmODZkclubdHjUmgl+WsZJ8GzEZsZisL3pRAPz/k9SwQPTj+/IyxYK4WK tQ9vsSZ4MVogjpV/Rgq5rtVfbiN4cjl81xyPnDRSKmuS+UTw5ql6y79c9tJo VOTEHA+hWbRlOzgipJGK/26pAoJXk1KWa9luSCOrpbSYW4TmGesoY8HS6Oae IMFhQqe6lD5nGpZG2bvtP10lxos+zbq3JiyD2nuOX0wnrpfFczxtxUIGdV5f sZkmeFouxCthea8M2rvFtrmQqPdejUn0YooMOvBzTfwzwa+q6hLB88UySO9i /6A1cb+Pkud2znbLoGTlg1IShB9aQ60u05yyKMQl57jbNoIHN76xmtKTRSPe r78NEP2BUUG67sROWeQfPNrT4030PxyRymNnZVHQS5N91N1UoO53Fx15KosE 9MbFVvZSwZ4kvDCwKosqxTXyCyKoUJswNfSHLIfSL2c1ZERRYVP/t86+zXLo 144bz//GUMHzYSrj1305JEYdqsVEf9TJElHUVSuH+s5p8jleJfgxwO1Bx4wc sj6gIGCaReSnzJf03V4evQ/YMef2mMjvzOixlgh5lDUcdC36FZFfb+2Bphvy KCLopzdXGZHX3Qtu9cPyyHZhd3BwI5HXWjDtq4gC4nnhyWnaReTl56hfY6mA XpinJh8cJPhfnlO8+rICahtr8lJYI9Z73CBH1VsFNGRdlJnBYwVXf1Yv4h4F 9MU6JCNK0gqybiX8LNNXRFTO7/yHDazgkTRL7pvvisi6JeuPe7gVsV77Ml+t KaKhgYPnBOKsYEdYr227qBKaKIAbekS/+/MrGP+gKqEAg0zRvOdW0H/xlHRz qhJq6gs8aDxvBXNcK701BsroOI9JV/t1glfv2AoNOyijrNNKFL5n1jClf4nG 5aOMQnOztqZUWMOIt0yOwzlltOQadzRk3Bp6n5n5VLUoI6abTQ+8HWlQt+Xo 97IoFTTLfDHeiQ2B80AZ289kFRT8b/rKYyGCT06wGf13WwVdHXirKCWPoPJB epp5tQpK2YFbpEwQlMy+3PxWfAOy4LvPFEHw5MOsiZoXbzcgeskw3wGCn5S0 TZYaajegLNM2+0fE+zSnIo4y0b0BjbMm3WvsJ3hlhO+8FqcqCrHdyNG8QvAt VdPusZcqGhus2u+iSQe+piORX0JV0d/PnO/Pm9Dhwr73D/6eVkU3rb+63qDT ISHViZn8SBWpWmuKk7zoENMbxHiwqIpMvm1sLTxNh8WoF+MVfCQkXbL0zeQC HY5yL8j1KZGQ8i5Dlbg0OhwySIpVdCKh9fJWe9NcOkx8qn9i7UtCu+QTx/Oe 0SHUR7zT9zAJteefy/78hg77E3LNbt8koSaTc0YyH+nQLzUW9KGQhFI4VnY5 fKXDnkLDG50VJPSKqZlVrpkO3fTYT0vfSSjv7chEVjsddv2onJMaISFnf5H5 99106AjhIZmtkZD4lnnWM/108Fzf6uElQkYtrpKSg8N02Erpe5VpQUakwIcv Ls8Qx78ubvV2I6Nh58nyxAU6eEcI/VPwJyPvFlE20n902C1MufrnCBkJ8TtY hKzRIfANTfdRIpnI30PTg9kGgr28GsKyyGinhWxxH6sNhC9HhOs/JSMO+PdF mMOGWE9JfPPlZBScxBv2h9MGolHO0/eNZJQFTe+2c9tAzJ9i59N/yIipV78z iMcGTifVD9vOkxHS+i0uzWsDCeoDyVzcauhF263KYEIn162o1cuqoYvpzm6e hE45KPb5mo4aOnpY36yPGH9NRGu/J12N8I9dlpvQ14tt2WU91FDop+UH9Vw2 kL3DJ7dnvxrKvVGfpkPUk/PfEdvcE2pIqfBdpSa7DTzMufg7OEUNvSrdo1TN YgOP6A/ite+qoce3Pz9fXqfDs/5SpemXaki9SCSpboUOL883wduPaujGyIEW iyU6vNUY9ottI+bnL2m3n6PD+3qmNdqIGponBY+NT9EBDkndYVtVQ+b5UicM x+jwUVSPWiNIQWaH7Fcl/tLhy9uNXZdVKOgaaZjnZh8dmleipSUdKWjz8fMH Yr/T4cfd1JIubwrCCRrUXw106LLJ97oXTkFjtvezez8T6yf5e6Z6OgUJ3F9i fCuhw5DmuNFEHgVlGP++Ul5Eh/EGttZXJRSkJ32eeesjOsyLGYlQuynodxw5 Mfw6Hbjup6VuUldHVx1qqPcjiP1i90RblKqOXIJOfu/ZSwfhvxV1bZvUUe3+ wM6GHXSQ0f7HsydKHUWLF+35SOwf7dLN5yNBHa1kJldbCNHBYFcQ2axZHb3m /PtDnZUOJuunqlf61dHCO7GLP+YQIPvnrEk8Guj12uSvgwQ/uzfxncnaroG2 TfsrtxI8GT1cc7x8VAPtM/zsPr+B2O/yTl2STJqo4lEnxYDguc9bv1gdEdNE Fq71r+lMCKTef2JRs9JENjs+76t5R/TTF6tSrqZqosDrntNjKjRY0yy/t1df C4mtNFcqT1pBYkTRF+5j2ijiCuXm4DFLeP5AVzPwkjY6D29k0rZYwo8fzy8z 7mojkwZa3WZ1SyDTCt0jv2ij/v8afnF3WcAXwSc/f0rrIO6M1qhCmgXwvXw4 9aJMBwVaqDEpCJpD7QkXPk1mPTS4/eHVhgYTUJGNnHvCo4daWJJjy56bQExZ dreGmB7SkODoaE81AfX14SINNT10ls1/8c5mE0hOSN6u4aaHGkb563e3GMPG K9U56jf1UPeqqUzvHyP4mEvTp+jro8EtdL9eiiHIOQTJPLLQR7G3aCyVAoYQ 9TeVlWKnjwYkVeaaZg1gg0b3dzUvfdQ9e3wttsIAzr44GaMWp4+0qAufp3cZ AP19aRW5Rh8dC83TMLutD4xvhp6kPQZo0/VlN28LPYjae977aIgBYuKv+7RA 0gP1hU6/6kgDRFt9Nl8qrAcZCmeD9iUZoD0X2Ls8W3QhJLzxeN5TA8SctqMw 2kQXJHjDb5HmDVClR/3nR9w6EOGQ30u6ZIgCiqlXUK8mqHYu9R/NMETxuzlV H4MmdIS7DVffMUScSc8Wne9qgl3m7L99RYYIJP4mmO3WBJl+G9b874bISjTf 9XmfBnyK7yGRlYxQs4uz170pdVAolwolFxuhXlnPkAJDCuyXVtpKByP0Vfvr HEmSAoVH1Ux31Rghc8c4jfZlNaDqmLCm/TJCAZf73nyvVAPvu9turbIboyCr 4KuU7WqQGZ/6tdXTGIndcuX4epYMfA5sWucWjdGUQeVz8roqeDzgFclhMUEF EnzHHYdU4daayGIJnwny+ZkpdK1JFTTeKX+cUDJBrwfiPTJzVcGRQtvl7WSC nHB1l7+rKpzjiUnRzzZBK0W8jmUPNsByw+RYj6Upyia9YDkcrAKJBj0X3exN USZbiYOIlwoIXW+gfNhkimQXrpnW26sA2bcw8PoeU3TKOXvblQ0q4D4a8tP1 vCnyz36ybN2rDE84B7+WNpuiw2dTXyv7KYM3+vkk/YAZUuhbGS4JUYKBh18d mSPN0E9y9GbjXUpwiPPDYMRJM2R/nr+12k0JkhpuqjhfMUO/zg09UNFXgle7 vLKZis3QOVLwhdR/isBzovlCOJM5+hP/wtBCUhE+vPwSvPGGOQJugzqFOHlo /xU6dPq+Obovv9fhYoA8zHILBpc8NUcCUgsbZR3lQSdge5A6Nkdffc7AM1F5 eCDyex/vMHH+rsLSxGdycDHyv4BvFhaogsTd0NIvC97GOr5e3RYosevARqUI GTi2p+nnlSELJH72gmuZlwxkXI7a9WXaAk3VZSwcpctAw8B7H3NOS1R3jSuY Li4DNtc3esvqWSIV2bhhA4Y0sZ79vXriLZHBRcnCbeLSsFiSvjWIREUXFCvW qW2SsGNM4cK0DhXt3fHB9VC1JJQqPsFxZlT0uc5va8lrSYhJwroZLlR0MFJ1 NfGqJKxsG+evOExF32DQTcxFEpgmHWplGFRknuC9oa9KArhIyzYNnlboykf/ xyFV4hC8IzFmp78VaugQDlp6LQ41l4Re9R+wQgrlndo3c8Xh4jRZ+b+TVihB KPogb5I48OFt62oPrdD9e6vL75zEQcin8EP8pBUSrOpKk20VA+lr/kbGydao qzpH7sCsKLS/lTx/9Zo1Gg8v59D5KwrXfzZ0jGZbozwf3ktMnaIgQrE6/aDQ GuV2HhJvAFHgAelawRZrZGmcqsidIgorY827R+Rp6LBJxNAEWRR6He0v3X1N Q+yr7A1r+0QgJ2Ll13IZDbW8rDP18BaBXRmv9Tw/0VAEPU6keJMIdPQo/+Dr oKGXHJK/skxFoDl6TSlmjYbOqLkp/OUWgYBmH58nqgjpb5zwvVYkDNuYxP8l HCRwwDSC+p5dGE4ec+bNikJo8pDEVPyyEOROnCY9PYHQv7/hfNsnhWD258jO pnMIcbE9ocl3CEFGKa6Uz0LozM7lDsNCIWg9EpbxFiMU6juaEOYlBNsHqkyH hOmIvQWfcQ0SBK/aI6dc3tBRfMfmrFIhflCyvz3LWUpHubH4yiYmfhiB6pCP 5XT0qutI9b9JPjhVLOVl9ZmOhHl1HwV844P8ewxd3U46Kh9MOz6Wygez0Tx9 Ikw2iPZ1kCVNiA/SNjyw7XSxQcn54ZfeyfNCw8kmrgN/bNBdUs5W513c0NfV OnlxyAadeLDG6HLjhlmL9h/Pxm1Q0Whe+QkaN0gvdedOLdigzd+QYZcKNwQe HUPH+WyR2b7vew1GuOC/cM4T541t0avgYltSLBdQdlsN5523RZkl6elleZxw jv645remHfpW+480LsMBH2/aMMb07JDwgYCxQ4IcwDHd9Wre2A6xMNPrV1k5 4OIDgds8yA6dvKL6zmCcHa6yRkUYeNihQJdjclyYHXKqrUXPnrRDU33ve3YE sUOJU+su5Xo7pDhlc9C9jA0mtq5P7o6wR9I2ZSt1cazQXJiCRCPtUUKRWtVs FCsUc8tc+3TMHvUvKuephLHCyQojA+14e7Rp/2TuVW9W4NEPiVpOt0eGnDlz b0xZgST0fTGj1B6FrFxZk55hgV0NT5hr2RzQ0b/20noRLPDV2VPU6JYDkW9s cGQUMwxuJ4cH9m1EkiUVdRU664wop4WqUWEnNBnEvO+r2QqjJNnhTDTVGZks i17+9HaJYdEpEOl7xgVl39wK6j4LDB2x9oBbz11RMSlMxu3QHMP5/PJs72tX 9Hv6SLhT8Bxj/7LceXKpKxJOP+3g7D/HuNu75+nLKlcUxjF/cueWOYZQ4ejM 53ZXFBCqdLtQb47xz349YZbFDcWUU9+oT88y3hwjF7h5uaHH4jbR3sdnGY0j jubpu9zQGHeqSt+hWcaYb+jX9j1uaDHJeDz0wCyDZFc0uTfMDV1oPdB02XuW cV3Iwiwm3g39k6g5w2I1yzj+2K0m/6kbohim9TxjmWVkyB3yGStyQ5N3RHii /pthFF1JG9d/64aG/sZuoM3OMIaPtgmXYzd0//glyb6BGYa3zR7vlu9u6FdJ 5ZttNTOM6OJzY1Jdbsjm5i0Oi8oZRhol/5RfrxtSt83XU/0ww6gVGH0wPOKG 6vLILGyFM4zBeH5j3SlifBZ/7lLeDINlTvdz1JwbOvSRS3QmZ4ahEOy+8/2y G1KS8XKdujHD+L/vgdH/fw/8P5ata74= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, PlotRange->NCache[{{-60, 60}, { Rational[-3, 5000], 0}}, {{-60, 60}, {-0.0006, 0}}], PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"eqs", "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]1", "\[Rule]", RowBox[{"2", " ", "E1"}]}], ",", " ", RowBox[{"\[CapitalOmega]2", "\[Rule]", RowBox[{"2", "E2"}]}], ",", RowBox[{"\[CapitalOmega]c", "\[Rule]", RowBox[{"2", "Ec"}]}], ",", RowBox[{"\[Delta]1", "\[Rule]", "d1"}], ",", RowBox[{"\[Delta]2", "\[Rule]", "d2"}], ",", RowBox[{"\[Delta]c", "\[Rule]", "d3"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", "G3"}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", "G4"}], ",", RowBox[{ RowBox[{"Complex", "[", RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]", RowBox[{"a", " ", "i"}]}], ",", RowBox[{"\[Rho]", "\[Rule]", "r"}], ",", RowBox[{"Cos", "\[Rule]", "cos"}], ",", RowBox[{"Sin", "\[Rule]", "sin"}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["gt", "2"], "+", RowBox[{"2", " ", "E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "1"}]]}], "+", RowBox[{"2", " ", "E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{"G3", " ", SubscriptBox["R", RowBox[{"3", ",", "1"}]], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}], "+", RowBox[{"G4", " ", SubscriptBox["R", RowBox[{"4", ",", "1"}]], " ", SubscriptBox["r", RowBox[{"Re", ",", "4", ",", "4"}]]}]}], ",", RowBox[{ RowBox[{"d1", " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "-", RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "+", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}]}], ",", RowBox[{ RowBox[{ RowBox[{"-", "gt"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "-", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"d1", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "+", RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}]}], ",", RowBox[{ FractionBox["gt", "2"], "+", RowBox[{"2", " ", "E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "+", RowBox[{"2", " ", "Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "2"}]]}], "+", RowBox[{"2", " ", "E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}], "+", RowBox[{"2", " ", "Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}], "+", RowBox[{"G3", " ", SubscriptBox["R", RowBox[{"3", ",", "2"}]], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}], "+", RowBox[{"G4", " ", SubscriptBox["R", RowBox[{"4", ",", "2"}]], " ", SubscriptBox["r", RowBox[{"Re", ",", "4", ",", "4"}]]}]}], ",", RowBox[{ RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{"d1", " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "1"}]]}], "-", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "G3", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}]}], ",", RowBox[{ RowBox[{ RowBox[{"-", "E2"}], " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "G3", " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "1"}]]}], "-", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{"d1", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}]}], ",", RowBox[{ RowBox[{ RowBox[{"-", "E1"}], " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "G3", " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}], "+", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",", RowBox[{ RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "G3", " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "2"}]]}], "-", RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}], "+", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{"2", " ", "E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"2", " ", "E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "-", RowBox[{"2", " ", "E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}], "-", RowBox[{"G3", " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}]}], ",", RowBox[{ RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{"d1", " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "-", RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "+", RowBox[{"d3", " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "-", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "G4", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",", RowBox[{ RowBox[{ RowBox[{"-", "Ec"}], " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "G4", " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{"d1", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "-", RowBox[{"d3", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",", RowBox[{ RowBox[{"d3", " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "G4", " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}], "+", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "4", ",", "4"}]]}]}], ",", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "G4", " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "+", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "2"}]]}], "-", RowBox[{"d3", " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}], "+", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "4", ",", "4"}]]}]}], ",", RowBox[{ RowBox[{ RowBox[{"-", "E1"}], " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "+", RowBox[{"d3", " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}], "-", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "G3", " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "G4", " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",", RowBox[{ RowBox[{ RowBox[{"-", "E1"}], " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "G3", " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "G4", " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}], "+", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}], "+", RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}], "-", RowBox[{"d3", " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{"2", " ", "Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}], "-", RowBox[{"G4", " ", SubscriptBox["r", RowBox[{"Re", ",", "4", ",", "4"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"MapThread", "[", RowBox[{"Equal", ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"DMVariables", "[", "system", "]"}], "/.", RowBox[{"\[Rho]", "\[Rule]", "dr"}]}], ",", RowBox[{"Collect", "[", RowBox[{ RowBox[{ RowBox[{"eqs", "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]1", "\[Rule]", RowBox[{"2", " ", "E1"}]}], ",", " ", RowBox[{"\[CapitalOmega]2", "\[Rule]", RowBox[{"2", "E2"}]}], ",", RowBox[{"\[CapitalOmega]c", "\[Rule]", RowBox[{"2", "Ec"}]}], ",", RowBox[{"\[Delta]1", "\[Rule]", "d1"}], ",", RowBox[{"\[Delta]2", "\[Rule]", "d2"}], ",", RowBox[{"\[Delta]c", "\[Rule]", "d3"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", "G3"}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", "G4"}], ",", RowBox[{ RowBox[{"Complex", "[", RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]", RowBox[{"a", " ", "i"}]}], ",", RowBox[{"\[Rho]", "\[Rule]", "r"}], ",", RowBox[{"Cos", "\[Rule]", "cos"}], ",", RowBox[{"Sin", "\[Rule]", "sin"}]}], "}"}]}], ",", "i", ",", "FullSimplify"}], "]"}]}], "}"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"StringJoin", "[", RowBox[{ RowBox[{ RowBox[{"StringReplace", "[", RowBox[{ RowBox[{ RowBox[{"ToString", "@", RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], ",", RowBox[{"{", RowBox[{ RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",", RowBox[{ RowBox[{ "\"\\"", "~~", "f1_", "~~", "f2_", "~~", "\"\<,\>\"", "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], ":>", RowBox[{ "\"\\"", "<>", "f1", "<>", "f2", "<>", "\"\\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}], ",", RowBox[{ RowBox[{ "\"\\"", "~~", "f1_", "~~", "f2_", "~~", "\"\<,\>\"", "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], ":>", RowBox[{ "f1", "<>", "f2", "<>", "\"\\"", "<>", "a", "<>", "b"}]}]}], "}"}]}], "]"}], "&"}], "/@", "%"}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{ RowBox[{"ToFileName", "[", RowBox[{ RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\\""}], "]"}], ",", "%"}], "]"}]}], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["dr", RowBox[{"Re", ",", "1", ",", "1"}]], "\[Equal]", RowBox[{ FractionBox["gt", "2"], "+", RowBox[{"2", " ", "E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "1"}]]}], "+", RowBox[{"2", " ", "E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{"G3", " ", SubscriptBox["R", RowBox[{"3", ",", "1"}]], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}], "+", RowBox[{"G4", " ", SubscriptBox["R", RowBox[{"4", ",", "1"}]], " ", SubscriptBox["r", RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Re", ",", "1", ",", "2"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"d1", "-", "d2"}], ")"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "+", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Im", ",", "1", ",", "2"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "gt"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "-", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "d1"}], "+", "d2"}], ")"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Re", ",", "2", ",", "2"}]], "\[Equal]", RowBox[{ FractionBox["gt", "2"], "+", RowBox[{"2", " ", "E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "+", RowBox[{"2", " ", "Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{"gt", " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "2"}]]}], "+", RowBox[{"2", " ", "E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}], "+", RowBox[{"2", " ", "Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}], "+", RowBox[{"G3", " ", SubscriptBox["R", RowBox[{"3", ",", "2"}]], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}], "+", RowBox[{"G4", " ", SubscriptBox["R", RowBox[{"4", ",", "2"}]], " ", SubscriptBox["r", RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Re", ",", "1", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{"d1", " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"G3", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "1"}]]}], "+", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Im", ",", "1", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G3", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "-", RowBox[{"E2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}]}], ")"}]}], "-", RowBox[{"d1", " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "1"}]]}], "+", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Re", ",", "2", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"E1", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}]}], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"G3", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}], "+", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "2"}]]}], "+", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}], ")"}]}], "+", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Im", ",", "2", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"G3", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{"d2", " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}], "+", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "2"}]]}], "+", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}], ")"}]}], "+", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Re", ",", "3", ",", "3"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "3"}]]}], "+", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "+", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "3"}]]}], "+", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"G3", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "3"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Re", ",", "1", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "-", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Im", ",", "1", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "2"}]]}], "+", RowBox[{ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "2"}]]}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Re", ",", "2", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{"d3", " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}], "+", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "2"}]]}], "+", SubscriptBox["r", RowBox[{"Re", ",", "4", ",", "4"}]]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Im", ",", "2", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{"G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "+", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"d3", " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}], "+", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "2"}]]}], "+", SubscriptBox["r", RowBox[{"Re", ",", "4", ",", "4"}]]}], ")"}]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Re", ",", "3", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "d2"}], "+", "d3"}], ")"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "-", RowBox[{"E1", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "+", RowBox[{ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}]}], ")"}]}], "-", RowBox[{"Ec", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "+", RowBox[{ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}]}], ")"}]}], "-", RowBox[{"E2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "+", RowBox[{ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}]}], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"G3", "+", "G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Im", ",", "3", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "E1"}], " ", RowBox[{"sin", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "1", ",", "4"}]]}], "+", RowBox[{"Ec", " ", RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "3"}]]}], "-", RowBox[{"E2", " ", RowBox[{"sin", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"G3", "+", "G4", "+", RowBox[{"2", " ", "gt"}]}], ")"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "3", ",", "4"}]]}], "+", RowBox[{"E1", " ", RowBox[{"cos", "[", "\[Phi]1", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "1", ",", "4"}]]}], "-", RowBox[{"Ec", " ", RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "3"}]]}], "+", RowBox[{"E2", " ", RowBox[{"cos", "[", "\[Phi]2", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{"d2", "-", "d3"}], ")"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",", RowBox[{ SubscriptBox["dr", RowBox[{"Re", ",", "4", ",", "4"}]], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "Ec", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Im", ",", "2", ",", "4"}]]}], "+", RowBox[{ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "2", ",", "4"}]]}]}], ")"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"G4", "+", "gt"}], ")"}], " ", SubscriptBox["r", RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]}], "}"}]], "Output"], Cell[BoxData["\<\"dRer11_dt = gt/2. + 2*E1*cos(\[Phi]1)*Imr13 - gt*Rer11 + \ 2*E1*sin(\[Phi]1)*Rer13 + G3*Subscript(R,3,1)*Rer33 + \ G4*Subscript(R,4,1)*Rer44;\\ndRer12_dt = (d1 - d2)*Imr12 + \ E2*cos(\[Phi]2)*Imr13 + Ec*cos(\[Phi]c)*Imr14 + E1*cos(\[Phi]1)*Imr23 - \ gt*Rer12 + E2*sin(\[Phi]2)*Rer13 + Ec*sin(\[Phi]c)*Rer14 + \ E1*sin(\[Phi]1)*Rer23;\\ndImr12_dt = -(gt*Imr12) + E2*sin(\[Phi]2)*Imr13 + \ Ec*sin(\[Phi]c)*Imr14 - E1*sin(\[Phi]1)*Imr23 + (-d1 + d2)*Rer12 - E2*cos(\ \[Phi]2)*Rer13 - Ec*cos(\[Phi]c)*Rer14 + E1*cos(\[Phi]1)*Rer23;\\ndRer22_dt = \ gt/2. + 2*E2*cos(\[Phi]2)*Imr23 + 2*Ec*cos(\[Phi]c)*Imr24 - gt*Rer22 + \ 2*E2*sin(\[Phi]2)*Rer23 + 2*Ec*sin(\[Phi]c)*Rer24 + G3*Subscript(R,3,2)*Rer33 \ + G4*Subscript(R,4,2)*Rer44;\\ndRer13_dt = E2*cos(\[Phi]2)*Imr12 + d1*Imr13 - \ E2*sin(\[Phi]2)*Rer12 - ((G3 + 2*gt)*Rer13)/2. + E1*sin(\[Phi]1)*(-Rer11 + \ Rer33);\\ndImr13_dt = -((G3 + 2*gt)*Imr13)/2. - E2*(sin(\[Phi]2)*Imr12 + cos(\ \[Phi]2)*Rer12) - d1*Rer13 + E1*cos(\[Phi]1)*(-Rer11 + Rer33);\\ndRer23_dt = \ d2*Imr23 + Ec*cos(\[Phi]c)*Imr34 - E1*(cos(\[Phi]1)*Imr12 + \ sin(\[Phi]1)*Rer12) - ((G3 + 2*gt)*Rer23)/2. + E2*sin(\[Phi]2)*(-Rer22 + \ Rer33) + Ec*sin(\[Phi]c)*Rer34;\\ndImr23_dt = E1*sin(\[Phi]1)*Imr12 - ((G3 + \ 2*gt)*Imr23)/2. - Ec*sin(\[Phi]c)*Imr34 - E1*cos(\[Phi]1)*Rer12 - d2*Rer23 + \ E2*cos(\[Phi]2)*(-Rer22 + Rer33) + Ec*cos(\[Phi]c)*Rer34;\\ndRer33_dt = \ -2*(E1*cos(\[Phi]1)*Imr13 + E2*cos(\[Phi]2)*Imr23 + E1*sin(\[Phi]1)*Rer13 + \ E2*sin(\[Phi]2)*Rer23) - (G3 + gt)*Rer33;\\ndRer14_dt = Ec*cos(\[Phi]c)*Imr12 \ + (d1 - d2 + d3)*Imr14 - E1*cos(\[Phi]1)*Imr34 - Ec*sin(\[Phi]c)*Rer12 - ((G4 \ + 2*gt)*Rer14)/2. + E1*sin(\[Phi]1)*Rer34;\\ndImr14_dt = -((G4 + \ 2*gt)*Imr14)/2. + E1*sin(\[Phi]1)*Imr34 - Ec*(sin(\[Phi]c)*Imr12 + \ cos(\[Phi]c)*Rer12) - (d1 - d2 + d3)*Rer14 + \ E1*cos(\[Phi]1)*Rer34;\\ndRer24_dt = d3*Imr24 - E2*cos(\[Phi]2)*Imr34 - ((G4 \ + 2*gt)*Rer24)/2. + E2*sin(\[Phi]2)*Rer34 + Ec*sin(\[Phi]c)*(-Rer22 + Rer44);\ \\ndImr24_dt = -((G4 + 2*gt)*Imr24)/2. + E2*sin(\[Phi]2)*Imr34 - d3*Rer24 + \ E2*cos(\[Phi]2)*Rer34 + Ec*cos(\[Phi]c)*(-Rer22 + Rer44);\\ndRer34_dt = (-d2 \ + d3)*Imr34 - E1*(cos(\[Phi]1)*Imr14 + sin(\[Phi]1)*Rer14) - \ Ec*(cos(\[Phi]c)*Imr23 + sin(\[Phi]c)*Rer23) - E2*(cos(\[Phi]2)*Imr24 + sin(\ \[Phi]2)*Rer24) - ((G3 + G4 + 2*gt)*Rer34)/2.;\\ndImr34_dt = \ -(E1*sin(\[Phi]1)*Imr14) + Ec*sin(\[Phi]c)*Imr23 - E2*sin(\[Phi]2)*Imr24 - \ ((G3 + G4 + 2*gt)*Imr34)/2. + E1*cos(\[Phi]1)*Rer14 - Ec*cos(\[Phi]c)*Rer23 + \ E2*cos(\[Phi]2)*Rer24 + (d2 - d3)*Rer34;\\ndRer44_dt = \ -2*Ec*(cos(\[Phi]c)*Imr24 + sin(\[Phi]c)*Rer24) - (G4 + gt)*Rer44;\\n\"\>"], \ "Output"], Cell[BoxData["\<\"C:\\\\Users\\\\Simon\\\\WorkLaptop\\\\Home\\\\RocSci\\\\\ NavySTTR2011\\\\mathematica\\\\code.txt\"\>"], "Output"] }, Open ]] }, Open ]] }, WindowSize->{815, 873}, WindowMargins->{{10, Automatic}, {Automatic, 18}}, ShowSelection->True, FrontEndVersion->"7.0 for Microsoft Windows (64-bit) (February 18, 2009)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 32, 0, 71, "Section"], Cell[602, 24, 66, 1, 43, "MathCaption", CellID->836781195], Cell[671, 27, 85, 2, 31, "Input", CellID->2058623809], Cell[759, 31, 1290, 44, 65, "Text", CellID->525777075], Cell[2052, 77, 68, 1, 43, "MathCaption", CellID->429217524], Cell[2123, 80, 1090, 28, 132, "Input", CellID->433132487], Cell[3216, 110, 458, 18, 43, "MathCaption", CellID->133602844], Cell[CellGroupData[{ Cell[3699, 132, 1105, 33, 72, "Input", CellID->534530029], Cell[4807, 167, 1306, 40, 53, "Output"] }, Open ]], Cell[6128, 210, 217, 5, 59, "MathCaption", CellID->462076121], Cell[CellGroupData[{ Cell[6370, 219, 528, 16, 52, "Input", CellID->494599775], Cell[6901, 237, 1808, 52, 86, "Output"] }, Open ]], Cell[8724, 292, 76, 1, 43, "MathCaption", CellID->358620443], Cell[CellGroupData[{ Cell[8825, 297, 464, 15, 31, "Input", CellID->167259034], Cell[9292, 314, 673, 12, 118, "Output"] }, Open ]], Cell[9980, 329, 102, 2, 43, "MathCaption", CellID->577766068], Cell[CellGroupData[{ Cell[10107, 335, 1347, 35, 72, "Input"], Cell[11457, 372, 1983, 58, 126, "Output"] }, Open ]], Cell[13455, 433, 384, 12, 43, "MathCaption", CellID->610306692], Cell[CellGroupData[{ Cell[13864, 449, 272, 7, 31, "Input", CellID->645617687], Cell[14139, 458, 827, 23, 86, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[15015, 487, 53, 0, 71, "Section"], Cell[15071, 489, 98, 1, 43, "MathCaption", CellID->690131918], Cell[CellGroupData[{ Cell[15194, 494, 230, 5, 31, "Input", CellID->718931880], Cell[15427, 501, 471, 11, 50, "Output"] }, Open ]], Cell[15913, 515, 390, 12, 43, "MathCaption", CellID->854192725], Cell[CellGroupData[{ Cell[16328, 531, 459, 13, 72, "Input", CellID->465762594], Cell[16790, 546, 1605, 47, 104, "Output"] }, Open ]], Cell[18410, 596, 76, 1, 43, "MathCaption", CellID->314466782], Cell[CellGroupData[{ Cell[18511, 601, 424, 13, 52, "Input", CellID->298399236], Cell[18938, 616, 27043, 716, 426, "Output"] }, Open ]], Cell[45996, 1335, 38, 0, 29, "Text"], Cell[CellGroupData[{ Cell[46059, 1339, 2423, 63, 164, "Input"], Cell[48485, 1404, 11401, 193, 226, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[59923, 1602, 2423, 63, 164, "Input"], Cell[62349, 1667, 11716, 198, 232, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[74102, 1870, 2422, 63, 164, "Input"], Cell[76527, 1935, 13483, 226, 232, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[90047, 2166, 2422, 63, 164, "Input"], Cell[92472, 2231, 15122, 253, 232, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[107631, 2489, 3941, 105, 243, "Input"], Cell[111575, 2596, 13117, 440, 524, "Output"], Cell[124695, 3038, 8187, 275, 325, "Output"], Cell[132885, 3315, 851, 11, 221, "Output"], Cell[133739, 3328, 132, 1, 30, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[133920, 3335, 50, 0, 71, "Section"], Cell[133973, 3337, 98, 1, 43, "MathCaption", CellID->540592006], Cell[CellGroupData[{ Cell[134096, 3342, 237, 6, 31, "Input", CellID->227015699], Cell[134336, 3350, 475, 11, 50, "Output"] }, Open ]], Cell[134826, 3364, 390, 12, 43, "MathCaption", CellID->164472800], Cell[CellGroupData[{ Cell[135241, 3380, 459, 13, 72, "Input", CellID->358732873], Cell[135703, 3395, 1649, 47, 104, "Output"] }, Open ]], Cell[137367, 3445, 74, 1, 43, "MathCaption", CellID->2682843], Cell[CellGroupData[{ Cell[137466, 3450, 424, 13, 52, "Input", CellID->161699191], Cell[137893, 3465, 28257, 707, 406, "Output"] }, Open ]], Cell[166165, 4175, 38, 0, 29, "Text"], Cell[CellGroupData[{ Cell[166228, 4179, 2363, 62, 120, "Input"], Cell[168594, 4243, 11401, 193, 226, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[180032, 4441, 2423, 63, 164, "Input"], Cell[182458, 4506, 11716, 198, 232, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[194211, 4709, 2422, 63, 164, "Input"], Cell[196636, 4774, 13483, 226, 232, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[210156, 5005, 2422, 63, 164, "Input"], Cell[212581, 5070, 15122, 253, 232, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[227740, 5328, 1032, 27, 52, "Input"], Cell[228775, 5357, 17313, 499, 678, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[246125, 5861, 2747, 68, 192, "Input"], Cell[248875, 5931, 18931, 555, 695, "Output"], Cell[267809, 6488, 2641, 36, 620, "Output"], Cell[270453, 6526, 132, 1, 30, "Output"] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)