(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 92078, 2364] NotebookOptionsPosition[ 86891, 2219] NotebookOutlinePosition[ 87268, 2236] CellTagsIndexPosition[ 87225, 2233] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["General setup", "Section", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522586258751259*^9}], Cell["This loads the package.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522586258751485*^9}, CellID->836781195], Cell[BoxData[ RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9}, 3.522586258751662*^9}, CellID->2058623809], Cell[TextData[{ "We define an atomic system consisting of two even-parity lower states and \ two odd-parity upper states. We apply a light field with components at \ frequencies ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], " (near resonant with the ", Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]", RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], " transition), ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], " (near resonant with the ", Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], " transition), ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]], " (near resonant with the ", Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], " transition), and ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]], " (near resonant with the ", Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]", RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], " transition)" }], "Text", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{{3.522532429821333*^9, 3.522532492302448*^9}, { 3.522540911043191*^9, 3.522540911147507*^9}, 3.522586258751843*^9}, CellID->525777075], Cell["Define the atomic system.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522586258751924*^9}, CellID->429217524], Cell[BoxData[ RowBox[{ RowBox[{"system", "=", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"AtomicState", "[", RowBox[{"1", ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"2", ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"3", ",", RowBox[{"Energy", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", SubscriptBox["\[CapitalGamma]", "3"]}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"4", ",", RowBox[{"NaturalWidth", "\[Rule]", SubscriptBox["\[CapitalGamma]", "4"]}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]", "}"}]}], ";"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellChangeTimes->{{3.522536311483895*^9, 3.52253631268178*^9}, 3.522586258752063*^9}, CellID->433132487], Cell[TextData[{ "Define the optical field with three frequencies, ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], ", ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], ", ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]], ", and ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]], "." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{{3.522540939999547*^9, 3.522540967294499*^9}, { 3.522541679413973*^9, 3.522541681294852*^9}, 3.522586258752202*^9}, CellID->133602844], Cell[BoxData[ RowBox[{"field", "=", RowBox[{ RowBox[{"OpticalField", "[", RowBox[{"\[Omega]1", ",", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]1", "/", RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", "\[Phi]1"}], "}"}]}], "]"}], "+", RowBox[{"OpticalField", "[", RowBox[{"\[Omega]2", ",", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]2", "/", RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", "\[Phi]2"}], "}"}]}], "]"}], "+", RowBox[{"OpticalField", "[", RowBox[{"\[Omega]3", ",", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]3", "/", RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",", "\[Phi]3"}], "}"}]}], "]"}], "+", "\[IndentingNewLine]", RowBox[{"OpticalField", "[", RowBox[{"\[Omega]4", ",", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]4", "/", RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",", "\[Phi]4"}], "}"}]}], "]"}]}]}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellChangeTimes->{{3.522534194542496*^9, 3.522534219533982*^9}, { 3.522540920436486*^9, 3.522540924714358*^9}, 3.522586258752342*^9}, CellID->534530029], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"\[Phi]1", "-", RowBox[{"t", " ", "\[Omega]1"}]}], ")"}]}]], " ", "\[CapitalOmega]1"}], RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"\[Phi]4", "-", RowBox[{"t", " ", "\[Omega]4"}]}], ")"}]}]], " ", "\[CapitalOmega]4"}], RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"\[Phi]2", "-", RowBox[{"t", " ", "\[Omega]2"}]}], ")"}]}]], " ", "\[CapitalOmega]2"}], RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{"\[Phi]3", "-", RowBox[{"t", " ", "\[Omega]3"}]}], ")"}]}]], " ", "\[CapitalOmega]3"}], RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]]}], ",", "0", ",", "0"}], "}"}]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522533257349164*^9, 3.52253422045873*^9, 3.522536315439293*^9, 3.522540739248025*^9, 3.522540970145529*^9, 3.522541564921328*^9, 3.522542172549766*^9, 3.522542936599973*^9, 3.522544786198204*^9, 3.522544854264734*^9, 3.52254522556669*^9, 3.522545943915771*^9, 3.522584861123836*^9, 3.52258489956991*^9, 3.522585441088746*^9, 3.522585934446675*^9, 3.522586258752527*^9, 3.522586548931577*^9, 3.522586755563141*^9, 3.522586844896367*^9, 3.522587049215995*^9}], Cell["\<\ The Hamiltonian for the system subject to the optical field. Each field is \ assumed to interact with only one transition\[LongDash]the other terms are \ set to zero.\ \>", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522586258752645*^9}, CellID->462076121], Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"H", "=", RowBox[{ RowBox[{"Expand", "@", RowBox[{"Hamiltonian", "[", RowBox[{"system", ",", RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "_", "]"}], " ", RowBox[{"ReducedME", "[", RowBox[{"_", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]", "0"}]}]}], "]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellChangeTimes->{3.522586258752779*^9}, CellID->494599775], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"Energy", "[", "1", "]"}], "0", RowBox[{ RowBox[{"-", "\[CapitalOmega]1"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]1", "-", RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}], RowBox[{ RowBox[{"-", "\[CapitalOmega]4"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]4", "-", RowBox[{"t", " ", "\[Omega]4"}]}], "]"}]}]}, {"0", RowBox[{"Energy", "[", "2", "]"}], RowBox[{ RowBox[{"-", "\[CapitalOmega]2"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]2", "-", RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], RowBox[{ RowBox[{"-", "\[CapitalOmega]3"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]3", "-", RowBox[{"t", " ", "\[Omega]3"}]}], "]"}]}]}, { RowBox[{ RowBox[{"-", "\[CapitalOmega]1"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]1", "-", RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}], RowBox[{ RowBox[{"-", "\[CapitalOmega]2"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]2", "-", RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], "0", "0"}, { RowBox[{ RowBox[{"-", "\[CapitalOmega]4"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]4", "-", RowBox[{"t", " ", "\[Omega]4"}]}], "]"}]}], RowBox[{ RowBox[{"-", "\[CapitalOmega]3"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]3", "-", RowBox[{"t", " ", "\[Omega]3"}]}], "]"}]}], "0", RowBox[{"Energy", "[", "4", "]"}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522533260351258*^9, 3.522534225599567*^9, 3.522536320272253*^9, 3.522540741905562*^9, 3.522540981472922*^9, 3.522541568259588*^9, 3.522542173099244*^9, 3.522542936745729*^9, 3.522544786457194*^9, 3.522544854514756*^9, 3.522545225737479*^9, 3.522545944334553*^9, 3.522584861207573*^9, 3.522584899727804*^9, 3.522585441212954*^9, 3.522585934533973*^9, 3.522586258752965*^9, 3.522586549023181*^9, 3.522586755625842*^9, 3.522586845008577*^9, 3.522587049324617*^9}], Cell["The level diagram for the system.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522586258753087*^9}, CellID->358620443], Cell[BoxData[ RowBox[{"LevelDiagram", "[", RowBox[{"system", ",", RowBox[{"H", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", RowBox[{"-", "1.5"}]}], ",", RowBox[{ RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", RowBox[{"-", "1"}]}], ",", RowBox[{ RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}], "]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellChangeTimes->{3.52258625875322*^9}, CellID->167259034], Cell[BoxData[ GraphicsBox[{{{{}, LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{}, LineBox[{{-0.9, -1.}, {-0.09999999999999998, -1.}}]}, {{}, LineBox[{{0.09999999999999998, 0.}, {0.9, 0.}}]}, {{}, LineBox[{{0.09999999999999998, 0.5}, {0.9, 0.5}}]}}, {{}, {}, {}}, {Arrowheads[{-0.07659574468085106, 0.07659574468085106}], ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}], ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.5}}], ArrowBox[{{-0.45999999999999996`, -1.}, {0.45999999999999996`, 0.}}], ArrowBox[{{-0.45999999999999996`, -1.}, {0.45999999999999996`, 0.5}}]}, {PointSize[0.0225]}}, ImagePadding->{{2., 2}, {2., 2.}}, ImageSize->94.]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522533274929177*^9, 3.522534231598043*^9, 3.522536287987677*^9, 3.522536326037291*^9, 3.522540747140555*^9, 3.522540990177467*^9, 3.522541571244472*^9, 3.522542173445689*^9, 3.522542937562187*^9, 3.522544786610477*^9, 3.522544854751983*^9, 3.522545225868822*^9, 3.522545945164071*^9, 3.522584861296652*^9, 3.522584899840075*^9, 3.52258544137274*^9, 3.522585934681071*^9, 3.522586258753401*^9, 3.522586549112028*^9, 3.522586755707498*^9, 3.522586845139807*^9, 3.522587049475197*^9}], Cell["Apply the rotating-wave approximation to the Hamiltonian.", \ "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522586258753521*^9}, CellID->577766068], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"Hrwa", "=", "\[IndentingNewLine]", RowBox[{ RowBox[{"RotatingWaveApproximation", "[", RowBox[{"system", ",", RowBox[{"H", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]3", "\[Rule]", RowBox[{"\[Omega]2", "+", "\[Omega]43"}]}], ",", RowBox[{"\[Omega]4", "\[Rule]", RowBox[{"\[Omega]1", "+", "\[Omega]41"}]}]}], "}"}]}], ",", RowBox[{"{", RowBox[{"\[Omega]1", ",", "\[Omega]2", ",", "\[Omega]43"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"TransformMatrix", "\[Rule]", RowBox[{"MatrixExp", "[", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", RowBox[{"DiagonalMatrix", "[", RowBox[{"{", RowBox[{ RowBox[{"-", "\[Omega]1"}], ",", RowBox[{"-", "\[Omega]2"}], ",", "0", ",", "\[Omega]43"}], "}"}], "]"}]}], "]"}]}]}], "]"}], "/.", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]1", "\[Rule]", RowBox[{ RowBox[{"-", RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",", RowBox[{"\[Omega]2", "\[Rule]", RowBox[{ RowBox[{"-", RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]2"}]}], ",", RowBox[{"\[Omega]43", "\[Rule]", RowBox[{ RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]3", "-", "\[Delta]2"}]}], ",", RowBox[{"\[Omega]41", "\[Rule]", RowBox[{ RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]4", "-", "\[Delta]1"}]}]}], "}"}]}]}], ")"}], "//", "MatrixForm"}], " ", "//", "Simplify"}], " ", "\[IndentingNewLine]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellChangeTimes->{{3.522537910365833*^9, 3.522537961926054*^9}, 3.522538015680879*^9, {3.522538077788326*^9, 3.522538108632129*^9}, { 3.522538220981776*^9, 3.522538294286786*^9}, {3.522538364562097*^9, 3.522538365489798*^9}, 3.522538408544395*^9, {3.522538642590504*^9, 3.522538692268066*^9}, {3.522538753179414*^9, 3.522538789067889*^9}, 3.522538841634358*^9, {3.522539728181287*^9, 3.52253981610592*^9}, { 3.522539877916903*^9, 3.522539880715579*^9}, {3.522540013440722*^9, 3.52254005705363*^9}, {3.522540998041653*^9, 3.522541007397957*^9}, { 3.522541371243734*^9, 3.522541473321752*^9}, {3.522541586733216*^9, 3.52254160084184*^9}, {3.522542443165734*^9, 3.522542553763046*^9}, 3.522586258753677*^9}], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"\[Delta]1", "0", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}], RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"t", " ", RowBox[{"(", RowBox[{ "\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3", "-", "\[Delta]4"}], ")"}]}], "+", "\[Phi]4"}], ")"}]}]], " ", "\[CapitalOmega]4"}]}, {"0", "\[Delta]2", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}], RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3"}]}, { RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}], RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}], "0", "0"}, { RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ RowBox[{"t", " ", RowBox[{"(", RowBox[{ "\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3", "-", "\[Delta]4"}], ")"}]}], "+", "\[Phi]4"}], ")"}]}]], " ", "\[CapitalOmega]4"}], RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3"}], "0", RowBox[{"\[Delta]2", "-", "\[Delta]3"}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{{3.522541474095441*^9, 3.522541485568013*^9}, { 3.522541574936735*^9, 3.522541601520124*^9}, 3.522542174052798*^9, { 3.522542462309133*^9, 3.522542468302471*^9}, {3.522542523892669*^9, 3.522542555317527*^9}, 3.522542937866057*^9, 3.522544786796598*^9, 3.522544855009029*^9, 3.522545226303203*^9, 3.522545945473287*^9, 3.522584861453722*^9, 3.522584899962574*^9, 3.522585441500248*^9, 3.522585934766088*^9, 3.522586258753858*^9, 3.522586549221648*^9, 3.522586755768654*^9, 3.522586845270285*^9, 3.522587049556203*^9}], Cell[TextData[{ StyleBox["Assume that it is degenerate four-wave mixing ", FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], " ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], "-", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], " = ", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]], "-", Cell[BoxData[ FormBox[ StyleBox[ SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]], "." }], "Text", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{{3.522541626868227*^9, 3.522541723219086*^9}, { 3.522541835758232*^9, 3.52254185271491*^9}, 3.522586258754015*^9}], Cell[BoxData[ RowBox[{"Hrwa", "=", RowBox[{"Hrwa", "/.", " ", RowBox[{"\[Delta]4", "\[Rule]", RowBox[{"\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3"}]}]}]}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellChangeTimes->{{3.522541725461055*^9, 3.522541787947193*^9}, 3.522586258754178*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\[Delta]1", ",", "0", ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "\[Delta]2", ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4"}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3"}], ",", "0", ",", RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}], "}"}]}], "}"}]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522541788900106*^9, 3.522542174067565*^9, 3.52254256103613*^9, 3.522542937980884*^9, 3.522544786810239*^9, 3.522544855387083*^9, 3.522545226372991*^9, 3.522545945925881*^9, 3.522584861531525*^9, 3.522584900087137*^9, 3.522585441578541*^9, 3.522585934836975*^9, 3.522586258754354*^9, 3.522586549260442*^9, 3.522586755823712*^9, 3.522586845342286*^9, 3.522587049636806*^9}], Cell[TextData[{ Cell[BoxData[ ButtonBox["IntrinsicRelaxation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRelaxation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]], " supply the relaxation matrices." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.52258625875446*^9}, CellID->610306692], Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"relax", "=", RowBox[{ RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", RowBox[{"TransitRelaxation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellChangeTimes->{3.522586258754587*^9}, CellID->645617687], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"\[Gamma]t", "0", "0", "0"}, {"0", "\[Gamma]t", "0", "0"}, {"0", "0", RowBox[{"\[Gamma]t", "+", SubscriptBox["\[CapitalGamma]", "3"]}], "0"}, {"0", "0", "0", RowBox[{"\[Gamma]t", "+", SubscriptBox["\[CapitalGamma]", "4"]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.52253328148618*^9, 3.522541927263808*^9, 3.522542174082849*^9, 3.522542571871882*^9, 3.522542938071843*^9, 3.522544786827352*^9, 3.522544855406043*^9, 3.522545226441606*^9, 3.522545945953746*^9, 3.522584861609105*^9, 3.52258490014123*^9, 3.522585441657155*^9, 3.522585934921292*^9, 3.522586258754757*^9, 3.522586549325578*^9, 3.522586755871215*^9, 3.522586845394825*^9, 3.52258704970431*^9}] }, Open ]], Cell[CellGroupData[{ Cell["Version using complex DM variables", "Section", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{3.522586211803464*^9}], Cell["Remove explict time dependence from the density matrix.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{3.522586211803683*^9}, CellID->690131918], Cell[BoxData[ RowBox[{"SetOptions", "[", RowBox[{"DensityMatrix", ",", RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}]}], "]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, InitializationCell->True, CellChangeTimes->{3.522586211803855*^9}, CellID->718931880], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",", RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",", RowBox[{"Label", "\[Rule]", "None"}], ",", RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",", RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{3.522542122980978*^9, 3.522542174200228*^9, 3.52254257611812*^9, 3.522542938179186*^9, 3.522544788879686*^9, 3.522544855426596*^9, 3.522545229935206*^9, 3.522545945983281*^9, 3.522584861927801*^9, 3.522584900216284*^9, 3.522585441708725*^9, 3.522585934930209*^9, 3.52258621180404*^9, 3.52258654936647*^9, 3.522586755915425*^9, 3.522586845449116*^9, 3.522587049780522*^9}, ImageSize->{432, 33}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}], Cell[TextData[{ Cell[BoxData[ ButtonBox["OpticalRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], " supply the repopulation matrices." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{3.522586211804159*^9}, CellID->854192725], Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"repop", "=", RowBox[{ RowBox[{ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", RowBox[{"TransitRepopulation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.", RowBox[{ RowBox[{"BranchingRatio", "[", RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]", SubscriptBox["R", RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, InitializationCell->True, CellChangeTimes->{3.522586211804293*^9}, CellID->465762594], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["R", RowBox[{"3", ",", "1"}]], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["R", RowBox[{"4", ",", "1"}]], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}], "0", "0", "0"}, {"0", RowBox[{ FractionBox["\[Gamma]t", "2"], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["R", RowBox[{"3", ",", "2"}]], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["R", RowBox[{"4", ",", "2"}]], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}], "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{ 3.522542126889324*^9, 3.522542174305952*^9, 3.522542579319489*^9, 3.522542938528408*^9, 3.522544791355964*^9, 3.522544855628949*^9, { 3.522545232720883*^9, 3.522545241737016*^9}, 3.522545946211666*^9, 3.522584861995221*^9, 3.522584900279517*^9, 3.522585441778304*^9, 3.522585935007421*^9, 3.522586211804465*^9, 3.522586549399367*^9, 3.52258675594944*^9, 3.52258684551514*^9, 3.522587049848448*^9}], Cell["Here are the evolution equations.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{3.522586211804554*^9}, CellID->314466782], Cell[BoxData[ RowBox[{"TableForm", "[", RowBox[{ RowBox[{"eqs", "=", RowBox[{ RowBox[{"LiouvilleEquation", "[", RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//", "Expand"}]}], ",", RowBox[{"TableHeadings", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}], "]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, InitializationCell->True, CellChangeTimes->{3.522586211804681*^9}, CellID->298399236], Cell[BoxData[ TagBox[ TagBox[GridBox[{ { TagBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ FractionBox["\[Gamma]t", "2"], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["R", RowBox[{"3", ",", "1"}]], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["R", RowBox[{"4", ",", "1"}]], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[Gamma]t"}], " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "\[Gamma]t"}], " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ FractionBox["\[Gamma]t", "2"], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["R", RowBox[{"3", ",", "2"}]], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}], "+", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["R", RowBox[{"4", ",", "2"}]], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}], "-", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"3", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "1"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "1"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "2"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}], "-", RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}], "+", RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "3"], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "3"}]]}]}]}]}, { TagBox[ SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]], HoldForm], RowBox[{"0", "\[Equal]", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"2", ",", "4"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "1"}]]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "2"}]]}], "-", RowBox[{"\[Gamma]t", " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}], "-", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], " ", SubscriptBox["\[Rho]", RowBox[{"4", ",", "4"}]]}]}]}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxDividers->{ "Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {}, "Rows" -> {{False}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], OutputFormsDump`HeadedColumn], Function[BoxForm`e$, TableForm[BoxForm`e$, TableHeadings -> {{ Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 1], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 2], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 3], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 4], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 1], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 2], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 3], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 4], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 1], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 2], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 3], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 4], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 1], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 2], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 3], Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 4]}, None}]]]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{{3.522542134400776*^9, 3.522542138220477*^9}, 3.522542174324492*^9, 3.522542207187112*^9, 3.522542582215765*^9, 3.522542938655801*^9, 3.522544793068121*^9, 3.522544855825677*^9, 3.522545244285186*^9, 3.522545946433595*^9, 3.522584862180966*^9, 3.522584900371434*^9, 3.522585442007762*^9, 3.522585935183143*^9, 3.522586211804846*^9, 3.522586549471622*^9, 3.522586756036996*^9, 3.522586845716574*^9, 3.522587049943919*^9}], Cell[TextData[StyleBox["Atomic and thus fixed parameters", "Section"]], \ "Subsection", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{ 3.522586211805003*^9, 3.522586340969312*^9, {3.522587006893056*^9, 3.522587018993963*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"phparams", "=", RowBox[{"{", RowBox[{ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]3", "\[Rule]", "0"}], ",", RowBox[{"\[Phi]4", "\[Rule]", "0"}]}], "}"}]}], ";"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, InitializationCell->True, CellChangeTimes->{{3.522545604432086*^9, 3.52254560497677*^9}, 3.522545837580253*^9, {3.522585042796413*^9, 3.5225850703701*^9}, 3.522585288984553*^9, 3.522585882598202*^9, 3.522586211805165*^9}], Cell[BoxData[ RowBox[{ RowBox[{"decayparams", "=", RowBox[{"{", RowBox[{ RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",", RowBox[{ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", RowBox[{"2", " ", "2", "\[Pi]", " ", "3"}]}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "1"}]], "\[Rule]", "0.5"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"4", ",", "2"}]], "\[Rule]", "0.5"}], ",", RowBox[{ SubscriptBox["R", RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}]}], "}"}]}], ";"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, InitializationCell->True, CellChangeTimes->{{3.522542639308531*^9, 3.522542653876242*^9}, 3.522542961645403*^9, 3.522543008355341*^9, {3.522543075408626*^9, 3.522543098002856*^9}, 3.522543145146279*^9, {3.522543184507017*^9, 3.522543189475381*^9}, {3.522543261197481*^9, 3.52254328797459*^9}, 3.522543355566535*^9, {3.522543426678711*^9, 3.522543426918095*^9}, { 3.522543480813404*^9, 3.522543483724296*^9}, {3.522543596096022*^9, 3.522543597336738*^9}, 3.522543637720401*^9, 3.522543700412568*^9, { 3.522543819190993*^9, 3.522543969803677*^9}, 3.522544019666515*^9, { 3.52254405332497*^9, 3.522544053804354*^9}, 3.522544121248746*^9, { 3.522544624131693*^9, 3.522544625322849*^9}, {3.522544811206698*^9, 3.5225448127211*^9}, 3.522545891693146*^9, {3.522585007514906*^9, 3.522585041319354*^9}, {3.522585077348483*^9, 3.522585101794151*^9}, { 3.522585204533757*^9, 3.522585256366139*^9}, 3.522585471469401*^9, { 3.522585904925934*^9, 3.522586003626522*^9}, 3.522586211805393*^9}] }, Open ]], Cell[CellGroupData[{ Cell[TextData[StyleBox["From here tunable parameters", "Section"]], \ "Subsection", CellChangeTimes->{{3.522586286812037*^9, 3.522586297578427*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"detunparams", "=", RowBox[{"{", RowBox[{ RowBox[{"\[Delta]1", "\[Rule]", RowBox[{"2", " ", "d"}]}], ",", RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",", RowBox[{"\[Delta]3", "\[Rule]", "0"}]}], "}"}]}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.522542639308531*^9, 3.522542653876242*^9}, 3.522542961645403*^9, 3.522543008355341*^9, {3.522543075408626*^9, 3.522543098002856*^9}, 3.522543145146279*^9, {3.522543184507017*^9, 3.522543189475381*^9}, {3.522543261197481*^9, 3.52254328797459*^9}, 3.522543355566535*^9, {3.522543426678711*^9, 3.522543426918095*^9}, { 3.522543480813404*^9, 3.522543483724296*^9}, {3.522543596096022*^9, 3.522543597336738*^9}, 3.522543637720401*^9, 3.522543700412568*^9, { 3.522543819190993*^9, 3.522543969803677*^9}, 3.522544019666515*^9, { 3.52254405332497*^9, 3.522544053804354*^9}, 3.522544121248746*^9, { 3.522544624131693*^9, 3.522544625322849*^9}, {3.522544811206698*^9, 3.5225448127211*^9}, 3.522545891693146*^9, {3.522585007514906*^9, 3.522585041319354*^9}, {3.522585077348483*^9, 3.522585101794151*^9}, { 3.522585204533757*^9, 3.522585256366139*^9}, 3.522585471469401*^9, { 3.522585904925934*^9, 3.522586064963177*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"omegaparams", "=", RowBox[{"{", RowBox[{ RowBox[{"\[CapitalOmega]1", "\[Rule]", RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",", RowBox[{"\[CapitalOmega]2", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "15."}]}], ",", RowBox[{"\[CapitalOmega]3", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "10."}]}], ",", RowBox[{"\[CapitalOmega]4", "\[Rule]", RowBox[{"2", "\[Pi]", " ", "0.001"}]}]}], "}"}]}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.522542639308531*^9, 3.522542653876242*^9}, 3.522542961645403*^9, 3.522543008355341*^9, {3.522543075408626*^9, 3.522543098002856*^9}, 3.522543145146279*^9, {3.522543184507017*^9, 3.522543189475381*^9}, {3.522543261197481*^9, 3.52254328797459*^9}, 3.522543355566535*^9, {3.522543426678711*^9, 3.522543426918095*^9}, { 3.522543480813404*^9, 3.522543483724296*^9}, {3.522543596096022*^9, 3.522543597336738*^9}, 3.522543637720401*^9, 3.522543700412568*^9, { 3.522543819190993*^9, 3.522543969803677*^9}, 3.522544019666515*^9, { 3.52254405332497*^9, 3.522544053804354*^9}, 3.522544121248746*^9, { 3.522544624131693*^9, 3.522544625322849*^9}, {3.522544811206698*^9, 3.5225448127211*^9}, 3.522545891693146*^9, {3.522585007514906*^9, 3.522585041319354*^9}, {3.522585077348483*^9, 3.522585101794151*^9}, { 3.522585204533757*^9, 3.522585256366139*^9}, 3.522585471469401*^9, { 3.522585904925934*^9, 3.52258614545863*^9}}] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Make plots from ", "Section"], StyleBox["paper", "Section"], StyleBox[".", "Section"] }], "Section", CellChangeTimes->{{3.522586356714251*^9, 3.522586356717393*^9}, 3.522586398882609*^9}], Cell[BoxData[ RowBox[{ RowBox[{"params", "=", RowBox[{"Join", "[", RowBox[{ "phparams", ",", " ", "decayparams", ",", " ", "detunparams", ",", " ", "omegaparams"}], "]"}]}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.522542639308531*^9, 3.522542653876242*^9}, 3.522542961645403*^9, 3.522543008355341*^9, {3.522543075408626*^9, 3.522543098002856*^9}, 3.522543145146279*^9, {3.522543184507017*^9, 3.522543189475381*^9}, {3.522543261197481*^9, 3.52254328797459*^9}, 3.522543355566535*^9, {3.522543426678711*^9, 3.522543426918095*^9}, { 3.522543480813404*^9, 3.522543483724296*^9}, {3.522543596096022*^9, 3.522543597336738*^9}, 3.522543637720401*^9, 3.522543700412568*^9, { 3.522543819190993*^9, 3.522543969803677*^9}, 3.522544019666515*^9, { 3.52254405332497*^9, 3.522544053804354*^9}, 3.522544121248746*^9, { 3.522544624131693*^9, 3.522544625322849*^9}, {3.522544811206698*^9, 3.5225448127211*^9}, 3.522545891693146*^9, {3.522585007514906*^9, 3.522585041319354*^9}, {3.522585077348483*^9, 3.522585101794151*^9}, { 3.522585204533757*^9, 3.522585256366139*^9}, 3.522585471469401*^9, { 3.522585904925934*^9, 3.522586138720526*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Re", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", "params"}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", RowBox[{"Im", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "3"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", "params"}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"d", ",", RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"PlotPoints", "\[Rule]", " ", "50"}], ",", RowBox[{"MaxRecursion", "\[Rule]", "1"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", "Full"}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.522542076105163*^9, 3.522542106948172*^9}, { 3.522542247272649*^9, 3.52254227331632*^9}, {3.522542379859035*^9, 3.522542404138859*^9}, {3.52254260442503*^9, 3.522542738601174*^9}, { 3.522544168650641*^9, 3.522544235160111*^9}, {3.522544324681123*^9, 3.522544357750749*^9}, {3.522544495634713*^9, 3.522544514917687*^9}, { 3.522544546544331*^9, 3.522544579418693*^9}, {3.52254589412908*^9, 3.522545902384872*^9}, {3.522545984364466*^9, 3.52254603852176*^9}, { 3.522546191788578*^9, 3.522546295569195*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwtlPs7E2oAgDGFjuRSWZc5dsYsc9nF5jL2fcPmMk6TkEWJmuSkTrpQdEIk SkkiTiUKlSOVU55k36c5apVVCockSkrkUrlU5HSepx/e5/0L3pccvmXFBg01 NbXQ7/xv3rPtAzMzvjjgEWnYUGgGuir1f4dRvjikvaFA1WIGkpIrxvc1++Bv b5jkG1vMwUHj6PvnM8V492ZSW14PFZg00Epipd44qDi0MGErDUybbVzAt/XC e2WEJZFcS/Crj5g9dsgT+7FOkjg+dHA61sav4p0HDu9SGDknWIHr1OwRe38P XEq4Zjhy1Ro0tX88oqgV4TLzEKlYyxY0EhbPP2sswitG28j05Qwgt4b5e2OF 2BNsiljHZIJOZlmUtNkdj2TzqEdpLPCZo8fjMt1x4KXYwSQeGzz/59PhvgI3 nOVb1dkeaAfqA551n9B0w0FLpIenMjkgLSSVeHKdK/50y+BO6wcuEEfYSgrl ApzPkFEd1zqAtrFVOtuoAmxd4HF58JAjiEhPvu2ZBfFx34YPZxycAO1dezbv A8B9p8cNzlc5goOKytOv7/Dxm+d+B9IfcEFFxpwd7P0umFo9Jzaz3gY88pOJ k6AzNr2taWMUqguSGPVmcYY8/FQh4Ao3/oxY85Z+i+l1xF15XlVHVTbo/LPp Ip1TDnhkt25udRgLEctfuJ0LsMf5stmbaP1M1EJzS+LN52LT/cETSIOBjl0o lTc322Fbv+WtGTI66hTozBiWsfGFVMh+RrJAFh3RwH8PC2dotFyUm1CQXViA lz2XiU9YVRzSX2uC9j1ILOW+tMXg1DyVp8QYVWstx5IUa3wz6ciTqXAD1O9q 2rHJjI6biBy1eD1tVBw8k/bgGA0HJn6bS3H6Kl+9tYtto07Fx9qMXUyDe+Tl w3jBwT0U3Dduce4i7uR/iimZeDVmit3mFF6ZiP7Er3HSRmR7Eo57KnoQNjzN P5CnzNqTTMTe74d6a+ZqgDWXSvev32iEE2SJ46UmBBC9V2us4E9dTI2Puu0e pw4OhN+crF5AwGcG3txKbf3CFx3umDxF+og6sw0ex4je83Fa38J3fYUo3lJn dGgql68fTCmX8T+Aqs+a4681BuV6NYsYCwUEeNYiqzxl1ld5joKs+zl8LlQW rYltvKKOAg4S3yqjjWAT8q97ZEJAPQxTb2MqEVKN3J9YcTWQjKyb1iIkwfDj s9J3tU7Lx7SnupUsMvyNbyXd4PNRXpI/pLx8nQJ19Z/UeEjb5H60nqu5TlR4 PCxCK0TWy+9Nb8ldlkODQae3Brx3/srf2a+MqxuwhNqkO2TSUi2QGlN1V2eX NWxdU7SkXWgA7sWLdenqDFhET9aePGcMGs4BJo3JhKva6EmRAhMgf8gONF/H giuUi6NLlL+AGFFpt3kmG05Zkr1Gb37vtY4YTf3bDq4e2j4wMmEJdEWaVimT HLjGqu89pcQWfFEND77g2UPGjVTC43tMIIWdF3OiHOD8hOiBhjgWqL1yd6NH niNMqRMolBkMIOXYhAZ1OcGiRiH7mxoFTNbk+EWaO0Psqbl0RyUBaZt/cVUF ukDTPW+Nl72go0XZYXacdD7UhEt6O2o5qNtTmHnmGoArJFbFT/0dkb/agtH9 WyCkDOYu8nRxQgGvFfZvDQQwo1HidKLSEQXd27ZXXC2ACpP1eUd2OKBjlGK3 DrErlBjG1Kso9kiV8Fg76pUr7OyUWK97wkG0tS795w+4wYjV6yU/JdqhFMEF 5Uu6O7xikdlKFLJRjdfTEHKTOzSp3e0/m8lCQ34zw2tjhHBp7+ijFgcmClFd VL+nKYIVTJudg5EMdN870MiuUATlpcGWNStt0SoJH/rwPWAjS79+Ubc16gug bl7f4wF1dt51S8yyQn89zCKWx3vC6rLEq4MxdLTda0IxYOAFu6837VDJLFFN umjfTmdvGNx/d9dIAQ05dejFhu4TQ2leWuWqYSqymf9veGGlDxT9MbPyca45 qt5FLfMN8oXZoUWmxW/M0I9/wx//Rv8B4k6yBw== "]]}, {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" 1:eJw1lX04E3gcwDdTkZfkZRuhxjYrZ142htX8jG1mXCH0KqbkvS5KLyolWhQP e6507rru5PUqruT0wvdXJC9FiV6koRd56VKW0Cl39zx3f3yez/+ffz40+bbA LRoEAiHyH/41/1ny6OysP5Y/uaLUV87Uqy4afIdi/HGWDt+rS/y1/tDh85/S Ov2w+E3yWq4RAebc04kwsvfDXcMFMSUcIhyjxLUVZ8vwha07Z47v0oCuP6V/ 6Kp9se2WfEVKMwksG1lFSet88ShxS3SV1xzISfbpfdIoxeEihqpqcC58oUeb COyl2KXp+gKzm1rwrZ+MM3HcB7etfnh6SF8HziSxA86PSLDAPmiKcEMPaph5 73lBEqy3POlUYaAB3Huqzm24LsaTwTvaFXMNoYlkZvwLRYx3E6wU912Nod4O FRxIEuHZ+NVhf70gQ69jacy6Tm9cdLluf7ipGUw76/NdHL1xP4n+9DnVEp7f /nhi8Acv3HipSRwYSYObwc/6T2p6Yc3bho+11tIhc0MG9XSEEHP148YnM1gg i7RfVVjviUc0q6XfmrPh8cQa7R1MT9yb5XNCkuMEkYrDt3xyEE7vacx05fGA NfI0jz/ugUM2RBSXWK2AYw0Xz7y+I8Dbtd+Th0yFcD5r/k7OkRX4yt31Aw+b RHA/IEp2CC3HWYvdN6piJXDI4SZ9tyEfM7WXTRp2iMBpgfnXxFduWN22t/2L hhCKn305q/2TK363oPZTjxEfqGV9XueCeTh5piMs5iUHulleh/jGLjjs6tj1 B9gO8stL6js7uVhTriiYGGVCr6f2rGEpB3+aW2cXedIKbHriPIL2OWHqkCLE 1mMxcMODpTwXR/yBRl7zjrAI0u7uL3F5YY/71AW5wVupUD1vJV6Vboc7t0Xu 30qlwLBwSU8s3RZXnlYGckrJ8Ova2cy7+SxcuV6lc4BIgfXbVRw2kYlZ/HMz KVZUKBvDJsf2WWPs/FJ3eNwUPiYWTb6cWII7E3qIkgRzqHXXAhrPAlPGkqPM fBfD0VMtOfsOU7FU6TrSKKNB2G8lRzZHG+E3jw+mTPOtIe7AvIkfftTF2p35 HbcYDDgqvzZVbULCDs/T51MqmSA+0TP1k4Ua8vSn69pu2ADOHCSPDBaCidaC iIMWLDBYa10WJRj3IDeabPa5bQP6taYOZE8S6npSdWW2jAnKBprutFwPPbv0 5aC9BgOCj1GHWuKM0Kmz0vEKd2sYcFjiS2FS0er7lY3TCTSIoulmdossED3V LS8WLYYJrZn+Ficaenjm0XDqMnMoKnjXUlljjTI/pN6h3zSFANbApe/dmYjY dIdRTaTCK0X390uVLESQmXTK/+m3a7hld93oMpTsKmVWlJAhI7GqWTvFDvUj 5UJ9Ywq07pHp2hIdED16PsMqjQqN5zwcWY6OqCr0s6pKbQb1HZwQRoQTwuLC 4vIuS0gUl/QzsjmoptVqZ53QCizrqHHMK1yEajN2VccyQVes+U36lDO6ejKm IU/PDj63j73t4/OQf4FwWXwsB9ah3gpljCuyeHTZrfWeG1z/vTlacsoNGUyn 7BG9RbDOmb0xVOWOZrLkYpJQBFO1yoCtjOUowlPSnRslAS3GZ2F7yAp0y5gX ymGLwTQvnOusECDugxcfLgwIod9HlP3zZQ/EltDyMrIFEEQw+XBkG0LxTkvl 3YGuEPy6gTe00BM9Xf3cR2TOgdDWHQdk1Z6oYt7QNzaZbMi3/tWrRyZEx6VO zRZ2S6E99YFWzEshao71fqyziAGsTSuGi496ofwi/5x912iQ7lne8sLWG2mu od5XCSyhVtq1gXbPG1nX0fONeWbwLmB2bFOiCNmzywtzP5NhQ3sFsVVTjHKq TvyYkGYMbb4hRtxCMcq+pC5TJxjCmlUC5CeQoJ9rzkrrswxgMJiZsHlAgrTa 48vTBvXgQkcOtWyPD3Jr4gdprNeBZOlkw+hCKaK6bwxLZmgDedjSyrFUiogP 9vrOQfOgViFO27XcF9WYhL29oJwDe36vmI5R+aJbfaRc+2kSuPfoJ21Mk6H4 SVKRMEcDuCnq2FSKH9q8suAgIZwIbOMn8sKLfihacbyubyUBqlOYpf6h/mih 4SubI/u/1v/3B/T/H/4GZmzqsA== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, PlotRange->{{-60, 60}, {-0.0007146440279521698, 0.00040010361659988916`}}, PlotRangeClipping->True, PlotRangePadding->{Automatic, Scaled[0.02]}]], "Output", CellChangeTimes->{{3.522542156195219*^9, 3.522542182530973*^9}, 3.522542280444924*^9, 3.522542411408412*^9, {3.522542593479043*^9, 3.522542626285554*^9}, 3.522542681997767*^9, {3.522542723280386*^9, 3.522542748242407*^9}, {3.522542949188668*^9, 3.522542977352989*^9}, 3.522543024498731*^9, {3.522543088219265*^9, 3.52254311067984*^9}, 3.522543163269546*^9, 3.522543203476909*^9, {3.522543258287421*^9, 3.522543307465341*^9}, 3.522543371309052*^9, 3.522543444314203*^9, 3.522543500408285*^9, 3.522543615581949*^9, 3.522543654012719*^9, 3.522543714809282*^9, {3.52254383655232*^9, 3.522543954209074*^9}, 3.522543987854934*^9, 3.522544040177055*^9, 3.522544138645664*^9, 3.52254423961056*^9, {3.522544332311615*^9, 3.522544359410752*^9}, { 3.522544499019484*^9, 3.522544519115584*^9}, 3.522544551529608*^9, 3.522544583202106*^9, 3.522544798152048*^9, 3.522544856018762*^9, 3.522545918022345*^9, 3.522545953245106*^9, {3.522545984075476*^9, 3.522546042552423*^9}, {3.522546198674039*^9, 3.522546306798113*^9}, { 3.522584868771111*^9, 3.522584920864765*^9}, 3.52258517176374*^9, 3.522585219976531*^9, 3.522585467542461*^9, 3.522585647642462*^9, 3.522585983049748*^9, 3.522586856686763*^9, {3.522586888101558*^9, 3.522586913683322*^9}, 3.522587052105068*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Re", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", "params"}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", RowBox[{"Im", "[", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"1", ",", "4"}]], "/.", RowBox[{ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqs", "/.", "params"}], ",", RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"d", ",", RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"PlotPoints", "\[Rule]", " ", "50"}], ",", RowBox[{"MaxRecursion", "\[Rule]", "1"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", "All"}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.522542762323259*^9, 3.522542764447953*^9}, 3.522546267445561*^9, 3.522546298673073*^9}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwtlXtU02UDgEFHAg7lNvhxGTE253AyNrYxA937wmSwDQo+QpSUAJG4JF5A kWOhXCYjChMEDC8YwhwLEQ35KJP3VawcyhKUo+JYoOAngspFFPi4VOf0x3Oe /59/HlrCrv/sWGJiYpLwN//Y/3HmyOJiGK7/Zd5dW/seMDZa74EpYZjEz8+7 VrQM5OY1vD3cHYp/bOEWmuaaA7PO5fF23qE4m9UabV1rAYoc027XFSvwSzEr eeUTS3D/pey/5Ek5bnLVjxxgkoHbTda5jBg5zq9gjjxXWYGSzBDDw5syfK/5 +m9bzFaCeUYyRewtw37vT25PiLQGH4Yq+FNfh2BiIHHuVJgNOJPBiWh4EYwX kjbclifaghbmsTFRZDDWP2i88VRpBzofTR5tvyrFWQNXPuHesge/LXW2/95R ilm/j4/1fOQA2rzgiZyMIGzsrJSYWhLAwDufEtO9EdckUZbMTTqBGeEKf1/e RpxztWsizsUV9P365ptnVRKcO0bG7pvdwPWox/0VJAkmdhk+k+xwB0e2Konv 4gNxl0A7R+hpQLHdO/xkWwDeX/u0jeDRwYOpzRZ7mQF4bneFWZofA2xX5d0I KYGYNbotn6VkANaLR8f8JwB+tlBIZDLpoKi98czQ72I8ba84XsqigoavLPfx Czbg6betjrGpi+K7EUmKXLgeSwX3vC72EiiXe51xwNYf+5BGUckLNvJZ6bqQ PvgB/slzIGHBlo/qHs+ftTi9DmcqeKHr2UJEaP6U1EaJcBXFUKCyFKIeliTX 394XV44fstvxngCV1qvbursFOG7w/6OaDh9kCLBYtD3Px6JiecXRJh5a3ZsG Ig/6YKVxvLa+hYsEcVEykS8Pv2pwydOe9UaH73yp9n3ijUt273m73IODmpd9 hMPzvXB8/EW3xndr0XCge28qg421nCOXfppmo5oti0fulLIwublaG0xio092 G/kcUyaOFYbpU13WIM1rTCk6SMctTtOj91Z7ojfp5949nXLHgxSX9DoSC7X6 mSOaiIrrd0YMOaqZqLBSV3Iwj8Cp1KbVs90MFPuDuiAx2Q6XpZeXmjE8UFrO sqmqU2S84viaGpULFRUm/DzdTFmKqbqXl/b+YI+k3/ROn6ZOIv1YtkPiUTNk vYWuSRJPAPNVGcuFVSSwotWJ6xCwFMrVSlp6jz0oa6eRZxKs4Lnwn6V7Wqkg qoh4rkuzg17Hd7U5Mj3AANdd7sgk4O2lDVbu9QyQRCMf6QmiwqxYJXdeywRT 5nP9Oh8a3KxS6Lh0Fjh34pXuYgsdPgwKN5QCTxDBGrhc7seE9Zf7yl96rwGD qp5yzzIW3EfEG5NJbLB/WHfg2sgamDobx61+wgbK9KZbFlleMKsi9zv6xFrQ ka0gs025sJjPf/9DPgfcrAU8Fo8H1RaSXxhV3qDtD/6mVfE+0KRPiEpquCBd qu5fVcyHZ8TjlrpKHnC7RqQxrwjgg2TvEM0FH0CWktbmTwuhqyzKxDjCB7P6 16N/+otgtfO86P6sAMRAg7YsZR3UKKoWtgQIwdVLt5KDKz+AOo3RrrOXD2KE nG3RRj/YUGAbZs3kgOnWsojPVq2H/XstVXe7XP7uPBuo37QB7u4c9bFSvWpz OhYnEKrEMC5DPLN2iTPqDwkqrv4RwMLjDX1WSg8UaUIZL9gF4cK3RaeHUhgo aqhd9NwmAF65MWxdEslA0R17cxTNAfCEaH6CIqWjUnqNpFcRCDXLkytvLNCQ /osu85SngTDWNNew54I7Yn26YbiuUAJlXQ99lXVuKD+gXveEvRF2fT5Db+a4 olbZ/a20zo2Q6oQ+7iM5o1cRi68/TQ+CldX9qosEgbbqtaYdJCm8rLb9avCQ A7ot32QnOCmF0TmMGq4tBW0OF8NQcTB8FBY7trXJDj2LYu5MHAiGpzzFEq99 tujCHyWEJjsEGofMrbg7bVCm7F37iI0M9smKYrQ51shh2M2Dd14G37DOHjKN WolaVdLD+9fLYcHQtZrPu61Q9iXtTIpRDg3/u37n24/JyK93Rca2wwpYZTlT TsxYIkHWZOoXjqGwyTThwbq7Fohj/zDhZGMovKW2+bWjzRw1ZzHPh0WHwZb7 Ts5c9TL07w/gvz9AfwG21tEN "]]}, {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" 1:eJw1lGk41HkAgAk5k4wZ4zY004gwY5wzzf83jmHMaB07EkWOtUlRsaUlOVqy SqVLh47JzVakIvX//VrUDqGsDkeiQkOhpKiw7fPsfnif9/v74aVExPv/tEhO Tm7jd/41uzdxbGHBB3Xk7hu5Xz2E91/W2g5ifFBF6Ejm8cARPD2j6lNapwi1 BZm7NljJcKU29XCCjQj567trh8aO4Tm6sa3FuUJUe+JsfsbsO7zrneCmxpQ3 suttra4ImsSNm+iXEoK9kT2z1ilk6D2el+jV96xJgFYH1ydekEzhc8s3Ebk2 AmQyr5dYL5nG14iEdtMHvJDbp1DNJxYz+LkEa7+qUU8UGfbex4n2Fb9BOzLp GOCJAqvweGLCPN7WPXWosYGPVhw7vynARh7eU9DXuajLRztuj0dLkALEV4GC 1AQPtFCkfiBrdDHsY5TGBHe6I991t65xpWpw1l6T7cBwR3k1kni1yqXwefPH g8On3VABRxxdWa8N74p7B04ouqEI/4en38aSYNb638inwl1R3jXRmrgrBlAY aeN7BuchCelJrHcUBT6dDlLdQeOhN8wI24t9VBi5P+NPrzyATpB78zl/W0L6 aPcR9gcMFR+JDD9QzYA5jZfPDd3nolt7gfw5SwdY9bvaL3b7ViOu1m1Dk+su 8KFftDAdcFD2nqMT0XEcmG57d3mSNhtFeLYviux2hsylhvNxr53RB6PCJUu3 smBx79wF1UIn9MCSRQG+VpBc9sKtSOyI/Cer0jeuMoOP6W7pbB0HFO+pl0Ls IsL88hK8s5OF/MupXNWG7314qgvapXbotW52mn7IJL6iJxYLSGaitPhvdwbJ PVzWRrHA0YGBQKVZ85bJL9y0B3tKHF7aoCSR2DEoZDEmczXt2bzcErXISPWa 3dqYZN1C1oN8OlJV0au9qK+LhWzrt7OWpyHxr6JgYqUBVjaBiDnJ5qh5m0Wz jtAU+xh36fOraVO0t/eY5aCCOVbnogIpjkZIN9PwJamNimWflOYlZ5DRYUua +l4pHQutLNkXtYmACr/sHEUmVlhsqvL06bMaqO/x8VZTXxssO+LWTC1RAekZ OZQXyGwx/sGemUKjKciz1le/0cjAUNYwaXT4DBwUUxSylzExrXXmZdHcD9jL S+NBB1oYmGadni2JpwAmTbfvLnltix1tpGjMRiwBOxmSuWSiDSbOIb+RxhLA TL3BjVwjK2zQ1tRbl0YGxTqzWwuULLBoikbWYw8jUP5MclCtiYpNq3wbkDIp gDQfY2wCzbBLBePSKzfMgZ/A436DpinmRx+sOe5CA1uuOy2ZBgbYTpk06c7Y SkA837FnnEXAWnYLNSzlbYE1dUmxbEIJayrCGHQGA6TkX5/1ZX/l4h12gdRw JqDLEVomCge4cfySAWquHZg8xMmJlH+LG98hx9Kus0Dqqcz9KoZKUIOvaJU5 Yw98nheLt0h14Jf2ibcv2I5Ak/BjUlMaBQaDvoqjMU7g5vPuu5TslbCh+q9N niedgbLyhpi4ISYMtrfesLbfBUT1Tj2tVXeGM3VH/X6mckBLalsIJ5QDVahf XNsDV4PhJDK2x4YN9Y5sZNnv5wL2ibBDZjRHOODlkXv+GgbkQm7P8U4yYYAc 8f2+eACKCqOBDncVFA81Or5ZxgOdxm01vHwaXNuyI1VYywMmRvfab5dSYL65 xK1H6AqinM6aGWQawvaURyoxr1xBJxi+dzhMF9LDVsuKs93AIEmnZDGNADN5 5dKXlu5A2T/uHN69FNYJutZT2txB6ByvjP9ODY77LUyExXkAbZ/wq7cWK8P1 7RXyLYp8oNT5yl+LqAhbvQMJrDN8sGzlD05bS+VhkC8XiLieYFaxxihxah4f FtO2Rg16AlG+fJV64Ff8j448ctluL5DiU26nnzqDJwo+N44tEwB0UKlLXesT TpIZmzFKBUA6Yuodv+gjXrefn7aT4w3keIS0R84f8N3VFbMx/d5gpl2/yiN3 Enfp0UzYkCYE5JTmls8W4zhr19TmFF0RIF/d0p/XNIZb6zyLOHNZBDqY3MLW Ihleu4tW6rPWB2wzUJvqyh3B//s9+P/3/wBZ5dLn "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, PlotRange->{{-60, 60}, All}, PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.522542775492355*^9, 3.522542960547408*^9, 3.522542995770412*^9, 3.522543035134631*^9, {3.522543296264867*^9, 3.522543319510829*^9}, 3.522543384500983*^9, 3.522543455525264*^9, 3.522543514229852*^9, 3.522543626701997*^9, 3.522543667475726*^9, 3.522543726018032*^9, 3.522544871173848*^9, 3.522545966092067*^9, 3.522546271481462*^9, 3.522546301931841*^9, {3.522584878870503*^9, 3.522584903692422*^9}, 3.522585659249561*^9, 3.522586902215405*^9, 3.522587056439242*^9}] }, Open ]] }, Open ]] }, WindowSize->{984, 1031}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, ShowSelection->True, Magnification->1.5, FrontEndVersion->"8.0 for Linux x86 (32-bit) (February 23, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 127, 2, 110, "Section", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[697, 26, 161, 3, 63, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->836781195], Cell[861, 31, 257, 6, 43, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellID->2058623809], Cell[1121, 39, 1838, 60, 125, "Text", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->525777075], Cell[2962, 101, 163, 3, 63, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->429217524], Cell[3128, 106, 1261, 32, 179, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellID->433132487], Cell[4392, 140, 765, 26, 63, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->133602844], Cell[5160, 168, 1689, 47, 125, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellID->534530029], Cell[6852, 217, 2264, 61, 126, "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[9119, 280, 312, 7, 86, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->462076121], Cell[9434, 289, 650, 19, 98, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellID->494599775], Cell[10087, 310, 2710, 71, 128, "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[12800, 383, 171, 3, 63, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->358620443], Cell[12974, 388, 585, 18, 43, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellID->167259034], Cell[13562, 408, 1336, 22, 177, "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[14901, 432, 197, 4, 63, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->577766068], Cell[15101, 438, 2735, 60, 233, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True], Cell[17839, 500, 3505, 94, 172, "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[21347, 596, 800, 28, 43, "Text", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[22150, 626, 353, 8, 43, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True], Cell[22506, 636, 2532, 70, 106, "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[25041, 708, 478, 14, 64, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->610306692], Cell[25522, 724, 394, 10, 71, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, InitializationCell->True, CellID->645617687], Cell[25919, 736, 1311, 31, 120, "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}] }, Open ]], Cell[CellGroupData[{ Cell[27267, 772, 148, 2, 110, "Section", CellGroupingRules->{GroupTogetherGrouping, 10000.}], Cell[27418, 776, 193, 3, 63, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->690131918], Cell[27614, 781, 352, 8, 71, "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, InitializationCell->True, CellID->718931880], Cell[27969, 791, 930, 18, 71, "Output", CellGroupingRules->{GroupTogetherGrouping, 10000.}], Cell[28902, 811, 485, 14, 64, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->854192725], Cell[29390, 827, 581, 16, 98, "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, InitializationCell->True, CellID->465762594], Cell[29974, 845, 2097, 55, 146, "Output", CellGroupingRules->{GroupTogetherGrouping, 10000.}], Cell[32074, 902, 171, 3, 63, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->314466782], Cell[32248, 907, 546, 16, 71, "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, InitializationCell->True, CellID->298399236], Cell[32797, 925, 32560, 844, 580, "Output", CellGroupingRules->{GroupTogetherGrouping, 10000.}], Cell[65360, 1771, 257, 5, 70, "Subsection", CellGroupingRules->{GroupTogetherGrouping, 10000.}], Cell[65620, 1778, 580, 13, 43, "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, InitializationCell->True], Cell[66203, 1793, 1825, 37, 71, "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, InitializationCell->True] }, Open ]], Cell[CellGroupData[{ Cell[68065, 1835, 149, 2, 70, "Subsection"], Cell[68217, 1839, 1288, 23, 43, "Input", InitializationCell->True], Cell[69508, 1864, 1493, 27, 43, "Input", InitializationCell->True] }, Open ]], Cell[CellGroupData[{ Cell[71038, 1896, 221, 6, 110, "Section"], Cell[71262, 1904, 1217, 21, 43, "Input", InitializationCell->True], Cell[CellGroupData[{ Cell[72504, 1929, 1777, 45, 125, "Input"], Cell[74284, 1976, 6000, 102, 339, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[80321, 2083, 1347, 39, 125, "Input"], Cell[81671, 2124, 5192, 91, 336, "Output"] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)