(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 159220, 4746] NotebookOptionsPosition[ 152176, 4535] NotebookOutlinePosition[ 152568, 4552] CellTagsIndexPosition[ 152525, 4549] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["General setup", "Section"], Cell[TextData[{ StyleBox["Mathematica", FontSlant->"Italic"], " 8 defines WignerD, so we need to unprotect it." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->94096541], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"If", "[", RowBox[{ RowBox[{"$VersionNumber", "\[GreaterEqual]", "8."}], ",", RowBox[{"Unprotect", "[", "WignerD", "]"}], ",", RowBox[{"Remove", "[", "WignerD", "]"}]}], "]"}]], "Input"], Cell[BoxData[ RowBox[{"{", "\<\"WignerD\"\>", "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Load the package.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->123059143], Cell[BoxData[ RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9}, 3.522586258751662*^9}, CellID->2058623809], Cell["Set options.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->184495045] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"DensityMatrix", ",", RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}], ",", RowBox[{"TimeDependence", "\[Rule]", "True"}]}], "]"}], ";"}]], "Input", CellChangeTimes->{{3.534553583703125*^9, 3.534553592359375*^9}, { 3.534554968828125*^9, 3.534554970171875*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"Plot", ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"ListLinePlot", ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"ListDensityPlot", ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ";"}]}], "Input"], Cell[BoxData[ RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"NDSolve", ",", RowBox[{"PrecisionGoal", "\[Rule]", "1"}], ",", RowBox[{"AccuracyGoal", "\[Rule]", "2"}], ",", RowBox[{"MaxSteps", "\[Rule]", SuperscriptBox["10", "6"]}]}], "]"}], ";"}]], "Input"], Cell[BoxData[ RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"LevelDiagram", ",", RowBox[{"JLabel", "\[Rule]", "True"}], ",", RowBox[{"MLabel", "\[Rule]", "True"}], ",", RowBox[{"Arrowheads", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", ".07"}], ",", ".07"}], "}"}]}], ",", RowBox[{"MLabelPosition", "\[Rule]", RowBox[{"{", "Top", "}"}]}]}], "]"}], ";"}]], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Atomic system setup", "Section"], Cell["Define the atomic system.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522586258751924*^9}, CellID->188360977], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"system", "=", RowBox[{"Sublevels", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"AtomicState", "[", RowBox[{"1", ",", RowBox[{"J", "\[Rule]", "0"}], ",", RowBox[{"L", "\[Rule]", "0"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", RowBox[{"Energy", "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"2", ",", RowBox[{"J", "\[Rule]", "1"}], ",", RowBox[{"L", "\[Rule]", "1"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",", RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"3", ",", RowBox[{"J", "\[Rule]", "0"}], ",", RowBox[{"L", "\[Rule]", "0"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",", RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"TableForm", "[", RowBox[{"system", "=", RowBox[{"DeleteStates", "[", RowBox[{"system", ",", RowBox[{"Label", "\[Rule]", "2"}], ",", RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}], "]"}]}], "Input", CellChangeTimes->{{3.53455248065625*^9, 3.534552600640625*^9}, { 3.534552682078125*^9, 3.534552741734375*^9}, {3.53455363609375*^9, 3.534553678203125*^9}, {3.5345537420625*^9, 3.5345537629375*^9}, { 3.534555252625*^9, 3.534555255046875*^9}}], Cell[BoxData[ TagBox[ TagBox[GridBox[{ { RowBox[{"AtomicState", "[", RowBox[{"1", ",", RowBox[{"J", "\[Rule]", "0"}], ",", RowBox[{"L", "\[Rule]", "0"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", RowBox[{"Energy", "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}], ",", RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}, { RowBox[{"AtomicState", "[", RowBox[{"2", ",", RowBox[{"J", "\[Rule]", "1"}], ",", RowBox[{"L", "\[Rule]", "1"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",", RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}], ",", RowBox[{"M", "\[Rule]", "1"}]}], "]"}]}, { RowBox[{"AtomicState", "[", RowBox[{"2", ",", RowBox[{"J", "\[Rule]", "1"}], ",", RowBox[{"L", "\[Rule]", "1"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",", RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}], ",", RowBox[{"M", "\[Rule]", RowBox[{"-", "1"}]}]}], "]"}]}, { RowBox[{"AtomicState", "[", RowBox[{"3", ",", RowBox[{"J", "\[Rule]", "0"}], ",", RowBox[{"L", "\[Rule]", "0"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",", RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}], ",", RowBox[{"M", "\[Rule]", "0"}]}], "]"}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], Column], Function[BoxForm`e$, TableForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["Define the optical field.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->13161682], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"field", "=", RowBox[{ RowBox[{"ToCartesian", "[", RowBox[{"Transpose", "@", RowBox[{"{", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", RowBox[{"(", RowBox[{ RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}]}], ")"}]}], RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]], ",", "0", ",", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}]}], ")"}]}], RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]]}], "}"}], "}"}]}], "]"}], "//", "FullSimplify"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]], "-", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], ")"}]}], RowBox[{ SqrtBox["2"], " ", RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], ")"}]}]}], ")"}]}], RowBox[{ SqrtBox["2"], " ", RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",", "0"}], "}"}]], "Output"] }, Open ]], Cell["The Hamiltonian for the system subject to the optical field.", \ "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->337337829], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"Ho", "=", RowBox[{ RowBox[{"Expand", "@", RowBox[{"Hamiltonian", "[", RowBox[{"system", ",", RowBox[{"ElectricField", "\[Rule]", "field"}], ",", RowBox[{"MagneticField", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"\[CapitalOmega]L", "/", "BohrMagneton"}]}], "}"}]}]}], "]"}]}], "/.", " ", RowBox[{ RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}], "\[Rule]", "0"}]}]}], "]"}]], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "-", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "+", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "0"}, { RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "0"}, { RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "0", RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}], "0"}, {"0", "0", "0", "\[Omega]3"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["The Hamiltonian for the system subject to the coupling field", \ "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->327463138], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"HE", "=", RowBox[{ RowBox[{"Expand", "@", RowBox[{"Hamiltonian", "[", RowBox[{"system", ",", RowBox[{"ElectricField", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Ec", RowBox[{ SqrtBox["6"], "/", RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}]}], ",", "0", ",", "0"}], "}"}]}], ",", RowBox[{"Interaction", "\[Rule]", RowBox[{"{", "E1", "}"}]}]}], "]"}]}], "/.", " ", RowBox[{ RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], "\[Rule]", "0"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.53455311584375*^9, 3.534553169015625*^9}, { 3.534553199875*^9, 3.534553204765625*^9}, {3.5345532359375*^9, 3.534553278921875*^9}, 3.534553331125*^9}], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", "0", "Ec"}, {"0", "0", "0", RowBox[{"-", "Ec"}]}, {"0", "Ec", RowBox[{"-", "Ec"}], "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["The total Hamiltonian", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->737742553], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"H", "=", RowBox[{ RowBox[{"Ho", "+", "HE"}], "//", "TrigToExp"}]}], "]"}]], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "0"}, { RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "Ec"}, { RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "0", RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}], RowBox[{"-", "Ec"}]}, {"0", "Ec", RowBox[{"-", "Ec"}], "\[Omega]3"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["\<\ The level diagram showing field detunings. Dashed arrows indicate dc fields. \ The level diagram is set to not evaluate, because it needs an updated version \ of the package that I haven\[CloseCurlyQuote]t released yet.\ \>", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->944896957], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"LevelDiagram", "[", RowBox[{ RowBox[{"system", "/.", RowBox[{ RowBox[{"(", RowBox[{"Parity", "\[Rule]", "_"}], ")"}], "\[Rule]", RowBox[{"Sequence", "[", "]"}]}]}], ",", RowBox[{"H", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]2", "\[Rule]", "3."}], ",", RowBox[{"\[Omega]3", "\[Rule]", "3.5"}], ",", RowBox[{"\[CapitalOmega]L", "\[Rule]", "1."}], ",", RowBox[{"\[Omega]", "\[Rule]", "3."}]}], "}"}]}]}], "]"}]], "Input", Evaluatable->False], Cell[BoxData[ GraphicsBox[{{{{}, LineBox[{{-0.4, 0.}, {0.4, 0.}}]}, {{}, LineBox[{{0.6, 4.}, {1.4, 4.}}]}, {{}, LineBox[{{-1.4, 2.}, {-0.6, 2.}}]}, {{}, LineBox[{{-0.4, 3.5}, {0.4, 3.5}}]}}, {{InsetBox[ RowBox[{"M", "\[LongEqual]", RowBox[{"-", "1"}]}], {-1., 4.}, {0, -1.2}], InsetBox[ RowBox[{"M", "\[LongEqual]", "0"}], {0., 4.}, {0, -1.2}], InsetBox[ RowBox[{"M", "\[LongEqual]", "1"}], {1., 4.}, {0, -1.2}]}, {}, {InsetBox[ RowBox[{ SubscriptBox["J", "1"], "\[LongEqual]", "0"}], Offset[{-6.6000000000000005`, 0}, {-1.4, 0}], {1, 0}], InsetBox[ RowBox[{ SubscriptBox["J", "2"], "\[LongEqual]", "1"}], Offset[{-6.6000000000000005`, 0}, {-1.4, 3.}], {1, 0}], InsetBox[ RowBox[{ SubscriptBox["J", "3"], "\[LongEqual]", "0"}], Offset[{-6.6000000000000005`, 0}, {-1.4, 3.5}], {1, 0}]}}, {Arrowheads[{-0.07, 0.07}], ArrowBox[{{0.04000000000000001, 0.}, {0.96, 3.}}], ArrowBox[{{0.04000000000000001, 0.}, {0.96, 3.}}], ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 3.}}], ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 3.}}], {Dashing[{Small, Small}], ArrowBox[{{-0.96, 2.}, {-0.04000000000000001, 3.5}}]}, {Dashing[{Small, Small}], ArrowBox[{{0.04000000000000001, 3.5}, {0.96, 4.}}]}}, {PointSize[0.0225]}}, ImagePadding->{{38.300000000000004`, 2}, {2., 13.700000000000001`}}, ImageSize->180.3]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Apply the rotating-wave approximation to the Hamiltonian.", \ "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522586258753521*^9}, CellID->471402495], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"Hrwa", "=", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"RotatingWaveApproximation", "[", RowBox[{"system", ",", "H", ",", RowBox[{"{", "\[Omega]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"TransformMatrix", "\[Rule]", RowBox[{"MatrixExp", "[", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", RowBox[{"DiagonalMatrix", "[", RowBox[{"{", RowBox[{ "0", ",", "\[Omega]", ",", "\[Omega]", ",", "\[Omega]"}], "}"}], "]"}]}], "]"}]}]}], "]"}], "/.", RowBox[{"\[Omega]", "\[Rule]", RowBox[{"\[Omega]2", "+", "\[CapitalDelta]"}]}]}], "/.", RowBox[{"\[Omega]3", "\[Rule]", RowBox[{"\[Omega]2", "+", "\[CapitalDelta]23"}]}]}]}], ")"}], "//", "MatrixForm"}], " ", "//", "Simplify"}], " ", "\[IndentingNewLine]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{{3.534553435828125*^9, 3.534553480625*^9}, { 3.534553524203125*^9, 3.53455353465625*^9}, {3.534553920421875*^9, 3.534554035921875*^9}, {3.534555327859375*^9, 3.534555328671875*^9}}], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "0"}, { FractionBox[ RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], RowBox[{ RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalOmega]L"}], "0", "Ec"}, { FractionBox[ RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "0", RowBox[{ RowBox[{"-", "\[CapitalDelta]"}], "-", "\[CapitalOmega]L"}], RowBox[{"-", "Ec"}]}, {"0", "Ec", RowBox[{"-", "Ec"}], RowBox[{ RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalDelta]23"}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[TextData[{ Cell[BoxData[ ButtonBox["IntrinsicRelaxation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRelaxation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]], " supply the relaxation matrices." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.52258625875446*^9}, CellID->448215320], Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"relax", "=", RowBox[{ RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", RowBox[{"TransitRelaxation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522586258754587*^9}, CellID->150217419], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"\[Gamma]t", "0", "0", "0"}, {"0", RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0", "0"}, {"0", "0", RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0"}, {"0", "0", "0", RowBox[{"\[CapitalGamma]3", "+", "\[Gamma]t"}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ Cell[BoxData[ ButtonBox["OpticalRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], " supply the repopulation matrices." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{3.522586211804159*^9}, CellID->78071612], Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"repop", "=", RowBox[{ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", RowBox[{"TransitRepopulation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{3.522586211804293*^9, 3.53455357284375*^9}, CellID->109972911], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"\[Gamma]t", "+", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}], "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10000.}], Cell[TextData[{ "Density-matrix and field variables at one point ", Cell[BoxData[ FormBox["i", TraditionalForm]]] }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->24518771] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vars", "=", RowBox[{ RowBox[{"Join", "[", RowBox[{ RowBox[{ RowBox[{"DMVariables", "[", "system", "]"}], "/.", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "q", ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "q", ",", "i"}]], "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"q", ",", "1", ",", RowBox[{"-", "1"}], ",", RowBox[{"-", "2"}]}], "}"}]}], "]"}]}], "]"}], "//", "Flatten"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Density matrix evolution equations at one point ", Cell[BoxData[ FormBox["i", TraditionalForm]]] }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->112084045], Cell[BoxData[ RowBox[{"TableForm", "[", RowBox[{"eqs", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Expand", "@", RowBox[{"LiouvilleEquation", "[", RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"r_", ",", "a_", ",", "b_"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}]}], "}"}]}], "/.", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"a_", ",", "b_"}]], "\[Rule]", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.", RowBox[{"\[CapitalDelta]23", "\[Rule]", SubscriptBox["\[CapitalDelta]23", "i"]}]}]}], "]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{{3.53460253115625*^9, 3.53460255159375*^9}, { 3.534607779234375*^9, 3.53460778478125*^9}, {3.53463614115625*^9, 3.5346361436875*^9}, {3.53463617796875*^9, 3.53463618378125*^9}}, CellID->26920765] }, Open ]], Cell[BoxData[ TagBox[ TagBox[GridBox[{ { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{"\[Gamma]t", "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "+", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"\[CapitalDelta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"\[CapitalDelta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "-", RowBox[{"2", " ", "Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "-", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"\[CapitalDelta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"\[CapitalDelta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"2", " ", "\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"2", " ", "\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "+", RowBox[{"2", " ", "Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "-", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalDelta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i"], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[CapitalDelta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i"], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i"], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i"], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i"], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i"], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"2", " ", "Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], Column], Function[BoxForm`e$, TableForm[BoxForm`e$]]]], "Output"], Cell["Initial conditions for density matrix:", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->16777324], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"inits", "=", RowBox[{ RowBox[{"InitialConditions", "[", RowBox[{"system", ",", RowBox[{"TransitRepopulation", "[", RowBox[{"system", ",", "1"}], "]"}], ",", "t0"}], "]"}], "/.", " ", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t_", "]"}], "->", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "1"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}]}], "}"}]], "Output"] }, Open ]], Cell[TextData[{ "Here we find the field evolution equations with finite difference \ approximation (second-order upwind scheme) for co-propagating beams. ", StyleBox["h", FontSlant->"Italic"], " is the the grid spacing in the spatial dimension." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->100512453], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"polarizationcomponents", "=", RowBox[{"ExprToReIm", "[", RowBox[{ RowBox[{ RowBox[{"ExpandDipoleRME", "[", RowBox[{"system", ",", RowBox[{ RowBox[{ RowBox[{ "4", "\[Pi]", " ", "\[ImaginaryI]", " ", "\[Omega]2", " ", "n0", " ", RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], RowBox[{"Components", "@", " ", RowBox[{"ECT", "@", RowBox[{"Sum", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"DensityMatrix", "[", "system", "]"}], "[", RowBox[{"[", RowBox[{"j", ",", "i"}], "]"}], "]"}], RowBox[{"WignerEckart", "[", RowBox[{ RowBox[{"system", "[", RowBox[{"[", "i", "]"}], "]"}], ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", RowBox[{"system", "[", RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "system", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", "i"}], "}"}]}], "]"}]}]}]}], "/.", RowBox[{ RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}], "\[Rule]", "0"}]}], "/.", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}], "]"}], "/.", RowBox[{"\[Omega]2", "\[Rule]", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Lambda]"}]}]}]}], "/.", RowBox[{ RowBox[{"n0", " ", SuperscriptBox["\[Lambda]", "2"], "\[CapitalGamma]2"}], "\[Rule]", RowBox[{"4", "\[VeryThinSpace]", "\[Pi]", " ", RowBox[{"\[Eta]", "/", "3"}]}]}]}], "]"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",", RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",", RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",", RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"fieldcomponents", "=", RowBox[{ RowBox[{"ExprToReIm", "[", RowBox[{ RowBox[{"Expand", "[", RowBox[{ RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], RowBox[{"Components", "@", RowBox[{"ToContravariant", "[", "field", "]"}]}]}], "]"}], "/.", RowBox[{"t", "\[Rule]", "0"}]}], "]"}], "/.", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"a_", ",", "b_"}]], "\[Rule]", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"UFDWeights", "[", RowBox[{"m_", ",", " ", "n_", ",", " ", "s_"}], "]"}], " ", ":=", " ", RowBox[{"CoefficientList", "[", RowBox[{ RowBox[{"Normal", "[", RowBox[{ RowBox[{"Series", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "s"], SuperscriptBox[ RowBox[{"Log", "[", "x", "]"}], "m"]}], ",", RowBox[{"{", RowBox[{"x", ",", "1", ",", "n"}], "}"}]}], "]"}], "/", SuperscriptBox["h", "m"]}], "]"}], ",", "x"}], "]"}]}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"fieldeqs", "=", RowBox[{"Thread", "[", RowBox[{ RowBox[{"D", "[", RowBox[{"fieldcomponents", ",", "t"}], "]"}], "\[Equal]", RowBox[{ RowBox[{"c", " ", "polarizationcomponents"}], "-", RowBox[{"c", " ", RowBox[{ RowBox[{"UFDWeights", "[", RowBox[{"1", ",", "2", ",", "2"}], "]"}], ".", RowBox[{"Table", "[", RowBox[{ RowBox[{"(", RowBox[{"fieldcomponents", "/.", RowBox[{"i", "\[Rule]", RowBox[{"i", "+", "j"}]}]}], ")"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"-", "2"}], ",", "0"}], "}"}]}], "]"}]}]}]}]}], "]"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "c"}], " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", RowBox[{ RowBox[{"-", "2"}], "+", "i"}]}]], "[", "t", "]"}], RowBox[{"2", " ", "h"}]], "-", FractionBox[ RowBox[{"2", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", RowBox[{ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "h"], "+", FractionBox[ RowBox[{"3", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", "h"}]]}], ")"}]}], "-", RowBox[{ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "c"}], " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", RowBox[{ RowBox[{"-", "2"}], "+", "i"}]}]], "[", "t", "]"}], RowBox[{"2", " ", "h"}]], "-", FractionBox[ RowBox[{"2", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", RowBox[{ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "h"], "+", FractionBox[ RowBox[{"3", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", "h"}]]}], ")"}]}], "-", RowBox[{ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "c"}], " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", RowBox[{ RowBox[{"-", "2"}], "+", "i"}]}]], "[", "t", "]"}], RowBox[{"2", " ", "h"}]], "-", FractionBox[ RowBox[{"2", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", RowBox[{ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "h"], "+", FractionBox[ RowBox[{"3", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", "h"}]]}], ")"}]}], "-", RowBox[{ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "c"}], " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", RowBox[{ RowBox[{"-", "2"}], "+", "i"}]}]], "[", "t", "]"}], RowBox[{"2", " ", "h"}]], "-", FractionBox[ RowBox[{"2", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", RowBox[{ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "h"], "+", FractionBox[ RowBox[{"3", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", "h"}]]}], ")"}]}], "-", RowBox[{ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}], "}"}]], "Output"] }, Open ]], Cell["Initial conditions for fields (assume uniform in space).", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->135712718], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"initfields", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", "1"]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}]}], "}"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", "1"]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}]}], "}"}]], "Output"] }, Open ]], Cell["\<\ Boundary conditions for co-propagating fields. Fields 1 and 3 are constant, \ fields 2 and 4 are pulsed. The first point is 0, and the last point is n0.\ \>", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->71091213], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"boundaryconds", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", "1"]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.534636354140625*^9, 3.534636376*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", "1"]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}], "}"}]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Results", "Section"], Cell[CellGroupData[{ Cell["setup", "Subsection"], Cell["Choose number of spatial points.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->14274527], Cell[BoxData[ RowBox[{ RowBox[{"n", "=", "40"}], ";"}]], "Input", CellChangeTimes->{3.538429326772045*^9, 3.5384293666463256`*^9}], Cell["All system variables for all spatial points.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->809681492], Cell[BoxData[ RowBox[{ RowBox[{"allvars", "=", RowBox[{"Flatten", "@", RowBox[{"Table", "[", RowBox[{"vars", ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"], Cell["Equations for all points for the co-propagating case.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->383167958], Cell[BoxData[ RowBox[{ RowBox[{"alleqs", "=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"#", "[", RowBox[{"[", "1", "]"}], "]"}], "-", RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}]}], "\[Equal]", "0"}], "&"}], ")"}], "/@", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Flatten", "@", RowBox[{"Table", "[", RowBox[{ RowBox[{"Join", "[", RowBox[{"eqs", ",", "fieldeqs"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"r_", ",", "s_", ",", "i_"}]], "[", "t_", "]"}], "/;", RowBox[{"i", "<", "0"}]}], "->", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"r", ",", "s", ",", "0"}]], "[", "t", "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"r_", ",", "s_", ",", "i_"}]], "[", "t_", "]"}], "/;", RowBox[{"i", ">", "n"}]}], "->", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"r", ",", "s", ",", "n"}]], "[", "t", "]"}]}]}], "}"}]}], "/.", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{"#", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]", "_"}], ")"}], "\[Rule]", "#"}], "&"}], ")"}], "/@", RowBox[{"(", RowBox[{"boundaryconds", "/.", RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}], ")"}]}]}], ";"}]], "Input"], Cell[BoxData[ RowBox[{ RowBox[{"allinits", "=", RowBox[{"Flatten", "@", RowBox[{"Table", "[", RowBox[{ RowBox[{"Join", "[", RowBox[{"inits", ",", "initfields"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"], Cell["\<\ Relabel variables to enforce efficient ordering in NDSolve.\ \>", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->202174683], Cell[BoxData[ RowBox[{ RowBox[{"allvars1", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{ SubscriptBox["y", "i"], "[", "t", "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "allvars", "]"}]}], "}"}]}], "]"}]}], ";"}]], "Input"], Cell[BoxData[ RowBox[{ RowBox[{"varreps", "=", RowBox[{"MapThread", "[", RowBox[{"Rule", ",", RowBox[{"{", RowBox[{"allvars", ",", "allvars1"}], "}"}]}], "]"}]}], ";"}]], "Input"], Cell[BoxData[ RowBox[{ RowBox[{"alleqs1", "=", RowBox[{ RowBox[{"alleqs", "/.", RowBox[{"Dispatch", "[", "varreps", "]"}]}], "/.", RowBox[{"Dispatch", "[", RowBox[{"D", "[", RowBox[{"varreps", ",", "t"}], "]"}], "]"}]}]}], ";"}]], "Input"], Cell[BoxData[ RowBox[{ RowBox[{"allinits1", "=", RowBox[{"allinits", "/.", RowBox[{"(", RowBox[{"varreps", "/.", RowBox[{"t", "\[Rule]", "t0"}]}], ")"}]}]}], ";"}]], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["plots", "Subsection"], Cell[TextData[{ "Here we choose parameters and integrate the equations. Blue is ", Cell[BoxData[ FormBox[ SuperscriptBox["\[Sigma]", "-"], TraditionalForm]]], " field intensity, magenta is ", Cell[BoxData[ FormBox[ SuperscriptBox["\[Sigma]", "+"], TraditionalForm]]], "field intensity." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->33380891], Cell[TextData[{ "Parameters:\n", Cell[BoxData[ SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]]]], ": input Rabi frequency for ", Cell[BoxData[ FormBox[ RowBox[{ SuperscriptBox["\[Sigma]", "-"], " "}], TraditionalForm]]], "(rad/s) \n", Cell[BoxData[ SubscriptBox["\[CapitalOmega]0", "1"]]], ": input Rabi frequency for ", Cell[BoxData[ FormBox[ SuperscriptBox["\[Sigma]", "+"], TraditionalForm]]], "(rad/s) \n\[CapitalGamma]2: natural width of J=1 level (rad/s) \n\ \[CapitalGamma]3: natural width of upper J=0 level (rad/s)\n\[Gamma]t: \ transit relaxation rate (rad/s)\nEc: static electric field coupling strength \ (rad/s)\n\[CapitalDelta]: Light detuning from J=1 level (rad/s)\n\ \[CapitalOmega]L: Zeeman shift (rad/s)\n", Cell[BoxData[ SubscriptBox["\[CapitalDelta]23", "i_"]]], ": frequency splitting between upper J=1 and J=0 level as a function of the \ position ", Cell[BoxData[ FormBox["i", TraditionalForm]]], ", as ", Cell[BoxData[ FormBox["i", TraditionalForm]]], " varies from zero to ", Cell[BoxData[ FormBox["n", TraditionalForm]]], " (rad/s)\nh: distance between grid points (m)\nc: light speed (m/s)\n\ \[Eta]: light coupling constant (rad/s/m)" }], "Text"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"params", "=", RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]", RowBox[{"1.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalGamma]2", "\[Rule]", RowBox[{"1.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{".001", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"Ec", "\[Rule]", RowBox[{"6.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalDelta]", "\[Rule]", RowBox[{"0.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalOmega]L", "\[Rule]", RowBox[{"50.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"c", "\[Rule]", RowBox[{"3.", " ", SuperscriptBox["10", "8"]}]}], ",", RowBox[{"\[Eta]", "\[Rule]", RowBox[{"3.", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"794.7", " ", SuperscriptBox["10", RowBox[{"-", "9"}]]}], ")"}], "2"], RowBox[{"(", RowBox[{".5", " ", SuperscriptBox["10", "15"]}], ")"}], RowBox[{ RowBox[{"(", RowBox[{"2", " ", "\[Pi]", " ", SuperscriptBox["10", "6"]}], ")"}], "/", RowBox[{"(", RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",", RowBox[{"h", "\[Rule]", RowBox[{"5.", "/", "n"}]}], ",", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2."}], "+", RowBox[{"4", RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n", RowBox[{"AbsoluteTiming", "[", RowBox[{ RowBox[{"sol", "=", RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"N", "[", RowBox[{ RowBox[{"{", RowBox[{"alleqs1", ",", "allinits1"}], "}"}], "/.", "params"}], "]"}], "]"}], ",", "allvars1", ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", RowBox[{"8.", " ", SuperscriptBox["10", RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}], "]"}], "\[IndentingNewLine]", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Transpose", "@", RowBox[{"Table", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"i", " ", "h"}], ",", SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}], ")"}], "]"}], "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"i", " ", "h"}], ",", SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}], ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.", "varreps"}], "/.", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}], "/.", RowBox[{"t", "\[Rule]", RowBox[{"8.", " ", SuperscriptBox["10", RowBox[{"-", "6"}]]}]}]}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\""}], "}"}]}]}], "]"}]}], "Input", CellChangeTimes->{{3.5384287522751856`*^9, 3.5384287728023596`*^9}, 3.538428821914169*^9, {3.538428862516491*^9, 3.5384288627725058`*^9}, { 3.538428902935803*^9, 3.5384291940654545`*^9}, {3.538429259116175*^9, 3.5384292721439204`*^9}, {3.538429535554987*^9, 3.5384296043139195`*^9}, { 3.5384301232836027`*^9, 3.5384301351312804`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{"1.4660839`7.617703818005998", ",", "Null"}], "}"}]], "Output"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJxTTMoPSmViYGDQBGIQDQPREdMuOuQcsILwDti3ndSQaugXcYLwL9g/fv9v yeSvNlD+DfvbbFdqV84LhvIf2DNlcgufmZMM5T+xv2cYZn90QQGU/8L++x6l Rv+CSij/jf2qot707YpNUP4H+/B5by897OyA8j/Zz9a3VOF91g/lf7F/tu7B mwmCU6D8b/Zizh43lCbNgPJ/2L+e9P9pU8JcKP+X/dtTtd6rDBZC+X/sPQr4 bzjvWAzl/7P/eHzpxzT9ZVA+g0PLZpaW5PIVUD6jw/rlh93u566C8pkcHkzb dSSNew2Uz+yw0Kf19heRdVA+i8N6ppNCn802QvmsDspH5XYEPdsE5bM5vL7/ LeV/xRYon93hd7WdYdS/rVA+h8PqayVcqWXboXxOh/fVSmuV7u+A8rkcPFtP TWk03QXlczs8yllhs71sN5TP42B8LmpV6II9UD6vg1vrjidRG/ZC+XwOrp+5 nzgt3Qfl8zssDdv9nbtuP5Qv4FByb84jKdkDEH6DgEPi+pX593OgfAZBh+8d 6zwmrIPJCzo4+E4TXfIIJi/kIN4n+vAY50GovJADn/2HqCsqUD6DsENTyCTd iyYweWGHf66WMx9bweRFHBbX3273tjjoBABZ2MLB "]]}, {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" 1:eJxTTMoPSmViYGDQBGIQDQM7muLbn3w+6AThHbD/JxR2bvMTGP+C/bMbf4Or z8D4N+wFvcqWvVsF4z+wrzJk3llcC+M/se/o2nv2jSOM/8Je96nseYnvB6D8 N/aTb7Ify50D43+wf+LN7PXTEMb/ZN/HdtdoXcF+KP+LvcSSGY45ifug/G/2 CeUf7c9a7oXyf9jzGdoLvfu3G8r/Ze9ilvri7PZdUP4f+9pOs67tuTuh/H/2 uxnX9N7X2QHlMzhc33GAq4J1O5TP6PD+QiLfcc5tUD6Tg8+h9eK77bZC+cwO 6RnhpvE2W6B8Fod8ESUNtTcboXxWh64LSkoSRhugfDaHiLDdTixGa6F8doeV pmuOPJdeBeVzOPCy6la8lF8O5XM6hKREMb93XALlcznkHEydJNGxEMrndkjO PJAv8mEulM/jUO0xOy5RdyaUz+twMf7RGrULU6B8Pofm15NSS+5NgPL5HSIl DVNX7OiC8gUcuAsyHk2b3gLhNwg4cGkxyHVvroPKCzrktR9/c+dbKVRe0EHy pEra+iu5UHkhhxWs/07zfEyCygs5WMQryHFJhEHlhR2aF7kIeU5yh8oLO1gc 7Q4p6LKEyos4RK9abp4gbOoEAJZ7tCU= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, FrameLabel->{ FormBox["\"Position (m)\"", TraditionalForm], FormBox[ "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \ \\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"", TraditionalForm]}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output"] }, Open ]], Cell["Same plot with flipped magnetic field", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->15127317], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"params", "=", RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]", RowBox[{"1.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalGamma]2", "\[Rule]", RowBox[{"1.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{".001", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"Ec", "\[Rule]", RowBox[{"6.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalDelta]", "\[Rule]", RowBox[{"0.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalOmega]L", "\[Rule]", RowBox[{ RowBox[{"-", "50."}], " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"c", "\[Rule]", RowBox[{"3.", " ", SuperscriptBox["10", "8"]}]}], ",", RowBox[{"\[Eta]", "\[Rule]", RowBox[{"3.", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"794.7", " ", SuperscriptBox["10", RowBox[{"-", "9"}]]}], ")"}], "2"], RowBox[{"(", RowBox[{".5", " ", SuperscriptBox["10", "15"]}], ")"}], RowBox[{ RowBox[{"(", RowBox[{"2", " ", "\[Pi]", " ", SuperscriptBox["10", "6"]}], ")"}], "/", RowBox[{"(", RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",", RowBox[{"h", "\[Rule]", RowBox[{"5.", "/", "n"}]}], ",", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2."}], "+", RowBox[{"4", RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n", RowBox[{"AbsoluteTiming", "[", RowBox[{ RowBox[{"sol", "=", RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"N", "[", RowBox[{ RowBox[{"{", RowBox[{"alleqs1", ",", "allinits1"}], "}"}], "/.", "params"}], "]"}], "]"}], ",", "allvars1", ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", RowBox[{"8.", " ", SuperscriptBox["10", RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}], "]"}], "\[IndentingNewLine]", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Transpose", "@", RowBox[{"Table", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"i", " ", "h"}], ",", SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}], ")"}], "]"}], "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"i", " ", "h"}], ",", SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}], ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.", "varreps"}], "/.", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}], "/.", RowBox[{"t", "\[Rule]", RowBox[{"8.", " ", SuperscriptBox["10", RowBox[{"-", "6"}]]}]}]}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\""}], "}"}]}]}], "]"}]}], "Input", CellChangeTimes->{ 3.5384292031419735`*^9, {3.538429295341247*^9, 3.5384292970053425`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{"1.8981086`7.729866050392017", ",", "Null"}], "}"}]], "Output"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJxTTMoPSmViYGDQBGIQDQPTej+/XVlnagnhHbBXETnr+KdWxAnCv2D/feKf mW03bKD8G/ZGOv52T9uCofwH9kWNR5jfNSVD+U/stdhchK51FED5L+y3hfc6 rXWshPLf2Fvs3zbz8PdGKP+D/bPdvT+ueHZA+Z/szx0+udS+oR/K/2K/6dtl NbYdk6H8b/blc+vbvrLNgPJ/2H99I/A7aP4cKP+X/f14XzvnyQug/D/25m93 LFwwfxGU/8/+wrbPPvvbl0D5DA5NyddD/rEtg/IZHaKTf7I/3rwUymdy+NV0 YsGPfph+Zgc7ry/T08Rg9rM4tJ8LqGzd6wnlszrcu678WePbTkcIn82h4vrz 7N9F0lB5dofdqWsfrn1qBOVzOBj+2n5wl5Y1lM/pwLz6YWZ8IozP5bDpM/sJ ty3mUD63w/enthu41plA+TwOD9+c+2N9HmYerwNr34/ZzKcNoHw+h4ZffXMW HtKB8vkdJLYvv3swQwPKF3BYErhM2k9IFcJvEHCYay/L/DlRCSov6BB/JepR u44CVF7QobrPYc4US1movJBDvOMyqzsw/zUIOfw8q8sltE8KKi/s0LG8Qfz+ Tyi/QdjhfeaGh4ukZaDyIg5Fp1t7or7IOgEA5cu/PQ== "]]}, {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" 1:eJxTTMoPSmViYGDQBGIQDQPbm+Lbn3w+6AThHbBfVyW6lv0gjH/Bft5b73X3 m2H8G/bfp5l5MbrC+A/sV0yXqw3+fwDKf2Kf8vrcNY51MP4L+0+TNDSSfWH8 N/YlWk58nVv3Q/kf7KdeCZeNWrcPyv9k35Jp8Ti3bS+U/8W+e8+U7hyzPVD+ N3vN6Q4f2g/tgvJ/2NuveN+1yWYnlP/L/rTfrc0eM7ZD+X/sn737xfR191Yo /589z7xfiuFXN0P5DA5Oi3sig/5thPIZHSb+DXy3W3k9lM/ksM+e6eHK6BVQ PrPDV50HAWr350H5LA4T1hpyHjNPg/JZHab8kLZke+AK5bM5fFsV9nvjdjMo n90hs8SwNahSDcrncAhyzV/71loMyud0ODuthY8zSALK53LwLCvUunNHEcrn djjyZutZxTeqUD6PQ7rQ8x3XkzShfF4H3uhPGrpWelA+n8PWldbrwiYaQvn8 DiLhIhbbM4yhfAEHM6VXh+9+MoHwGwQcPnzslHSJg7lX0OFDsMO/Q5nmUHlB B62exzLpwhZQeSGHJyurLy9qgPIbhBzk2C6f+7EMJi/sMDdLMfxvG0xe2GGC rNWiADOYvIiD+WZpxQnbzZ0A9Gi36g== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, FrameLabel->{ FormBox["\"Position (m)\"", TraditionalForm], FormBox[ "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \ \\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"", TraditionalForm]}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output"] }, Open ]] }, Open ]] }, Open ]] }, AutoGeneratedPackage->None, WindowSize->{1032, 967}, WindowMargins->{{0, Automatic}, {Automatic, 10}}, ShowSelection->True, FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 32, 0, 71, "Section"], Cell[602, 24, 206, 6, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->94096541], Cell[CellGroupData[{ Cell[833, 34, 223, 5, 31, "Input"], Cell[1059, 41, 64, 1, 30, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[1160, 47, 113, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->123059143], Cell[1276, 51, 230, 5, 31, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->2058623809], Cell[1509, 58, 108, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->184495045] }, Open ]], Cell[1632, 63, 349, 7, 31, "Input"], Cell[1984, 72, 572, 16, 72, "Input"], Cell[2559, 90, 282, 7, 33, "Input"], Cell[2844, 99, 416, 11, 31, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[3297, 115, 38, 0, 71, "Section"], Cell[3338, 117, 163, 3, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->188360977], Cell[CellGroupData[{ Cell[3526, 124, 2251, 50, 132, "Input"], Cell[5780, 176, 2828, 69, 86, "Output"] }, Open ]], Cell[8623, 248, 120, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->13161682], Cell[CellGroupData[{ Cell[8768, 254, 1677, 47, 53, "Input"], Cell[10448, 303, 1779, 54, 55, "Output"] }, Open ]], Cell[12242, 360, 158, 3, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->337337829], Cell[CellGroupData[{ Cell[12425, 367, 634, 18, 52, "Input"], Cell[13062, 387, 10059, 299, 146, "Output"] }, Open ]], Cell[23136, 689, 158, 3, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->327463138], Cell[CellGroupData[{ Cell[23319, 696, 1031, 28, 67, "Input"], Cell[24353, 726, 707, 21, 86, "Output"] }, Open ]], Cell[25075, 750, 117, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->737742553], Cell[CellGroupData[{ Cell[25217, 756, 146, 4, 31, "Input"], Cell[25366, 762, 6274, 180, 158, "Output"] }, Open ]], Cell[31655, 945, 323, 6, 59, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->944896957], Cell[CellGroupData[{ Cell[32003, 955, 538, 15, 31, "Input", Evaluatable->False], Cell[32544, 972, 1463, 29, 228, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[34044, 1006, 197, 4, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->471402495], Cell[34244, 1012, 1277, 29, 92, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[35524, 1043, 2306, 70, 146, "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[37833, 1115, 478, 14, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->448215320], Cell[38314, 1131, 367, 9, 31, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->150217419], Cell[38684, 1142, 870, 23, 86, "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}] }, Open ]], Cell[CellGroupData[{ Cell[39591, 1170, 484, 14, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->78071612], Cell[40078, 1186, 390, 9, 31, "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->109972911], Cell[40471, 1197, 1388, 40, 88, "Output", CellGroupingRules->{GroupTogetherGrouping, 10000.}], Cell[41862, 1239, 208, 6, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->24518771] }, Open ]], Cell[CellGroupData[{ Cell[42107, 1250, 971, 29, 33, "Input"], Cell[43081, 1281, 4345, 136, 72, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[47463, 1422, 209, 6, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->112084045], Cell[47675, 1430, 1706, 44, 77, "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->26920765] }, Open ]], Cell[49396, 1477, 60787, 1769, 568, "Output"], Cell[110186, 3248, 133, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->16777324], Cell[CellGroupData[{ Cell[110344, 3254, 493, 14, 33, "Input"], Cell[110840, 3270, 4557, 154, 92, "Output"] }, Open ]], Cell[115412, 3427, 342, 8, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->100512453], Cell[CellGroupData[{ Cell[115779, 3439, 2275, 59, 161, "Input"], Cell[118057, 3500, 1330, 45, 37, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[119424, 3550, 678, 19, 33, "Input"], Cell[120105, 3571, 553, 16, 30, "Output"] }, Open ]], Cell[120673, 3590, 557, 16, 33, "Input"], Cell[CellGroupData[{ Cell[121255, 3610, 711, 21, 52, "Input"], Cell[121969, 3633, 5762, 176, 159, "Output"] }, Open ]], Cell[127746, 3812, 152, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->135712718], Cell[CellGroupData[{ Cell[127923, 3818, 859, 26, 31, "Input"], Cell[128785, 3846, 802, 25, 30, "Output"] }, Open ]], Cell[129602, 3874, 255, 5, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->71091213], Cell[CellGroupData[{ Cell[129882, 3883, 916, 27, 31, "Input"], Cell[130801, 3912, 797, 25, 30, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[131647, 3943, 26, 0, 71, "Section"], Cell[CellGroupData[{ Cell[131698, 3947, 27, 0, 36, "Subsection"], Cell[131728, 3949, 127, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->14274527], Cell[131858, 3953, 134, 3, 31, "Input"], Cell[131995, 3958, 140, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->809681492], Cell[132138, 3962, 231, 7, 31, "Input"], Cell[132372, 3971, 149, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->383167958], Cell[132524, 3975, 1930, 58, 96, "Input"], Cell[134457, 4035, 305, 9, 31, "Input"], Cell[134765, 4046, 163, 4, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->202174683], Cell[134931, 4052, 289, 10, 31, "Input"], Cell[135223, 4064, 204, 6, 31, "Input"], Cell[135430, 4072, 274, 8, 31, "Input"], Cell[135707, 4082, 199, 6, 31, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[135943, 4093, 27, 0, 36, "Subsection"], Cell[135973, 4095, 392, 12, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->33380891], Cell[136368, 4109, 1229, 36, 247, "Text"], Cell[CellGroupData[{ Cell[137622, 4149, 5235, 141, 143, "Input"], Cell[142860, 4292, 102, 2, 30, "Output"], Cell[142965, 4296, 1942, 40, 235, "Output"] }, Open ]], Cell[144922, 4339, 132, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->15127317], Cell[CellGroupData[{ Cell[145079, 4345, 5003, 139, 143, "Input"], Cell[150085, 4486, 102, 2, 30, "Output"], Cell[150190, 4490, 1946, 40, 235, "Output"] }, Open ]] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)