(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 154877, 4556] NotebookOptionsPosition[ 148441, 4362] NotebookOutlinePosition[ 148836, 4379] CellTagsIndexPosition[ 148793, 4376] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["General setup", "Section"], Cell[TextData[{ StyleBox["Mathematica", FontSlant->"Italic"], " 8 defines WignerD, so we need to unprotect it." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->94096541], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Unprotect", "[", "WignerD", "]"}]], "Input"], Cell[BoxData[ RowBox[{"{", "\<\"WignerD\"\>", "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Load the package.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->123059143], Cell[BoxData[ RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9}, 3.522586258751662*^9}, CellID->2058623809], Cell["Set options.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->184495045] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"DensityMatrix", ",", RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}], ",", RowBox[{"TimeDependence", "\[Rule]", "True"}]}], "]"}], ";"}]], "Input", CellChangeTimes->{{3.534553583703125*^9, 3.534553592359375*^9}, { 3.534554968828125*^9, 3.534554970171875*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"Plot", ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"ListLinePlot", ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"ListDensityPlot", ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ";"}]}], "Input"], Cell[BoxData[ RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"NDSolve", ",", RowBox[{"PrecisionGoal", "\[Rule]", "3"}], ",", RowBox[{"AccuracyGoal", "\[Rule]", "3"}], ",", RowBox[{"MaxSteps", "\[Rule]", SuperscriptBox["10", "6"]}]}], "]"}], ";"}]], "Input"], Cell[BoxData[ RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"LevelDiagram", ",", RowBox[{"JLabel", "\[Rule]", "True"}], ",", RowBox[{"MLabel", "\[Rule]", "True"}], ",", RowBox[{"Arrowheads", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", ".07"}], ",", ".07"}], "}"}]}], ",", RowBox[{"MLabelPosition", "\[Rule]", RowBox[{"{", "Top", "}"}]}]}], "]"}], ";"}]], "Input"] }, Open ]], Cell[CellGroupData[{ Cell["Atomic system setup", "Section"], Cell["Define the atomic system.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522586258751924*^9}, CellID->188360977], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"system", "=", RowBox[{"Sublevels", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"AtomicState", "[", RowBox[{"1", ",", RowBox[{"J", "\[Rule]", "0"}], ",", RowBox[{"L", "\[Rule]", "0"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", RowBox[{"Energy", "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"2", ",", RowBox[{"J", "\[Rule]", "1"}], ",", RowBox[{"L", "\[Rule]", "1"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",", RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"AtomicState", "[", RowBox[{"3", ",", RowBox[{"J", "\[Rule]", "0"}], ",", RowBox[{"L", "\[Rule]", "0"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",", RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"TableForm", "[", RowBox[{"system", "=", RowBox[{"DeleteStates", "[", RowBox[{"system", ",", RowBox[{"Label", "\[Rule]", "2"}], ",", RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}], "]"}]}], "Input", CellChangeTimes->{{3.53455248065625*^9, 3.534552600640625*^9}, { 3.534552682078125*^9, 3.534552741734375*^9}, {3.53455363609375*^9, 3.534553678203125*^9}, {3.5345537420625*^9, 3.5345537629375*^9}, { 3.534555252625*^9, 3.534555255046875*^9}}], Cell[BoxData[ TagBox[ TagBox[GridBox[{ { RowBox[{"AtomicState", "[", RowBox[{"1", ",", RowBox[{"J", "\[Rule]", "0"}], ",", RowBox[{"L", "\[Rule]", "0"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", RowBox[{"Energy", "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}], ",", RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}, { RowBox[{"AtomicState", "[", RowBox[{"2", ",", RowBox[{"J", "\[Rule]", "1"}], ",", RowBox[{"L", "\[Rule]", "1"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",", RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}], ",", RowBox[{"M", "\[Rule]", "1"}]}], "]"}]}, { RowBox[{"AtomicState", "[", RowBox[{"2", ",", RowBox[{"J", "\[Rule]", "1"}], ",", RowBox[{"L", "\[Rule]", "1"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",", RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Even"}], ",", RowBox[{"M", "\[Rule]", RowBox[{"-", "1"}]}]}], "]"}]}, { RowBox[{"AtomicState", "[", RowBox[{"3", ",", RowBox[{"J", "\[Rule]", "0"}], ",", RowBox[{"L", "\[Rule]", "0"}], ",", RowBox[{"S", "\[Rule]", "0"}], ",", RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",", RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",", RowBox[{"Parity", "\[Rule]", "Odd"}], ",", RowBox[{"M", "\[Rule]", "0"}]}], "]"}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], Column], Function[BoxForm`e$, TableForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["Define the optical field.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->13161682], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"field", "=", RowBox[{ RowBox[{"ToCartesian", "[", RowBox[{"Transpose", "@", RowBox[{"{", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", RowBox[{"(", RowBox[{ RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}]}], ")"}]}], RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]], ",", "0", ",", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]], "+", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}]}], ")"}]}], RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]]}], "}"}], "}"}]}], "]"}], "//", "FullSimplify"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], "-", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]], "-", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], ")"}]}], RowBox[{ SqrtBox["2"], " ", RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", RowBox[{"(", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]], "-", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], ")"}]}]}], ")"}]}], RowBox[{ SqrtBox["2"], " ", RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",", "0"}], "}"}]], "Output"] }, Open ]], Cell["\<\ The Hamiltonian for the system subject to the optical field.\ \>", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->337337829], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"Ho", "=", RowBox[{ RowBox[{"Expand", "@", RowBox[{"Hamiltonian", "[", RowBox[{"system", ",", RowBox[{"ElectricField", "\[Rule]", "field"}], ",", RowBox[{"MagneticField", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"\[CapitalOmega]L", "/", "BohrMagneton"}]}], "}"}]}]}], "]"}]}], "/.", " ", RowBox[{ RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}], "\[Rule]", "0"}]}]}], "]"}]], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "-", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "+", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "0"}, { RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "0"}, { RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{"Cos", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "0", RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}], "0"}, {"0", "0", "0", "\[Omega]3"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["\<\ The Hamiltonian for the system subject to the coupling field\ \>", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->327463138], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"HE", "=", RowBox[{ RowBox[{"Expand", "@", RowBox[{"Hamiltonian", "[", RowBox[{"system", ",", RowBox[{"ElectricField", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Ec", RowBox[{ SqrtBox["6"], "/", RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}]}], ",", "0", ",", "0"}], "}"}]}], ",", RowBox[{"Interaction", "\[Rule]", RowBox[{"{", "E1", "}"}]}]}], "]"}]}], "/.", " ", RowBox[{ RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], "\[Rule]", "0"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.53455311584375*^9, 3.534553169015625*^9}, { 3.534553199875*^9, 3.534553204765625*^9}, {3.5345532359375*^9, 3.534553278921875*^9}, 3.534553331125*^9}], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "0", "0", "0"}, {"0", "0", "0", "Ec"}, {"0", "0", "0", RowBox[{"-", "Ec"}]}, {"0", "Ec", RowBox[{"-", "Ec"}], "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["The total Hamiltonian", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->737742553], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"H", "=", RowBox[{ RowBox[{"Ho", "+", "HE"}], "//", "TrigToExp"}]}], "]"}]], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "0"}, { RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "Ec"}, { RowBox[{ FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]]}], "0", RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}], RowBox[{"-", "Ec"}]}, {"0", "Ec", RowBox[{"-", "Ec"}], "\[Omega]3"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output"] }, Open ]], Cell["\<\ The level diagram showing field detunings.\ \>", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->944896957], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"LevelDiagram", "[", RowBox[{ RowBox[{"system", "/.", RowBox[{ RowBox[{"(", RowBox[{"Parity", "\[Rule]", "_"}], ")"}], "\[Rule]", RowBox[{"Sequence", "[", "]"}]}]}], ",", RowBox[{"H", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]2", "\[Rule]", "3"}], ",", RowBox[{"\[Omega]3", "\[Rule]", "2."}], ",", RowBox[{"\[CapitalOmega]L", "\[Rule]", ".2"}], ",", RowBox[{"\[Omega]", "\[Rule]", "2.3"}]}], "}"}]}]}], "]"}]], "Input", Evaluatable->False], Cell[BoxData[ GraphicsBox[{{{{}, LineBox[{{-0.4, 0.}, {0.4, 0.}}]}, {{}, LineBox[{{0.6, 3.2}, {1.4, 3.2}}]}, {{}, LineBox[{{-1.4, 2.8}, {-0.6, 2.8}}]}, {{}, LineBox[{{-0.4, 2.}, {0.4, 2.}}]}}, {{InsetBox[ RowBox[{"M", "\[LongEqual]", RowBox[{"-", "1"}]}], {-1., 3.2}, {0, -1.2}], InsetBox[ RowBox[{"M", "\[LongEqual]", "0"}], {0., 3.2}, {0, -1.2}], InsetBox[ RowBox[{"M", "\[LongEqual]", "1"}], {1., 3.2}, {0, -1.2}]}, {}, { InsetBox[ RowBox[{ SubscriptBox["J", "1"], "\[LongEqual]", "0"}], Offset[{-6.6000000000000005`, 0}, {-1.4, 0}], {1, 0}], InsetBox[ RowBox[{ SubscriptBox["J", "3"], "\[LongEqual]", "0"}], Offset[{-6.6000000000000005`, 0}, {-1.4, 2.}], {1, 0}], InsetBox[ RowBox[{ SubscriptBox["J", "2"], "\[LongEqual]", "1"}], Offset[{-6.6000000000000005`, 0}, {-1.4, 3.}], {1, 0}]}}, {Arrowheads[{-0.07, 0.07}], ArrowBox[{{0.04000000000000001, 0.}, {0.96, 2.3}}], ArrowBox[{{0.04000000000000001, 0.}, {0.96, 2.3}}], ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 2.3}}], ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 2.3}}], ArrowBox[{{-0.04000000000000001, 2.}, {-0.96, 2.8}}], ArrowBox[{{0.04000000000000001, 2.}, {0.96, 3.2}}]}, {PointSize[0.0225]}}, ImagePadding->{{38.300000000000004`, 2}, {2., 13.700000000000001`}}, ImageSize->180.3]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["Apply the rotating-wave approximation to the Hamiltonian.", \ "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522586258753521*^9}, CellID->471402495], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"Hrwa", "=", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"RotatingWaveApproximation", "[", RowBox[{"system", ",", "H", ",", RowBox[{"{", "\[Omega]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"TransformMatrix", "\[Rule]", RowBox[{"MatrixExp", "[", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", RowBox[{"DiagonalMatrix", "[", RowBox[{"{", RowBox[{ "0", ",", "\[Omega]", ",", "\[Omega]", ",", "\[Omega]"}], "}"}], "]"}]}], "]"}]}]}], "]"}], "/.", RowBox[{"\[Omega]", "\[Rule]", RowBox[{"\[Omega]2", "+", "\[CapitalDelta]"}]}]}], "/.", RowBox[{"\[Omega]3", "\[Rule]", RowBox[{"\[Omega]2", "+", "\[CapitalDelta]23"}]}]}]}], ")"}], "//", "MatrixForm"}], " ", "//", "Simplify"}], " ", "\[IndentingNewLine]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{{3.534553435828125*^9, 3.534553480625*^9}, { 3.534553524203125*^9, 3.53455353465625*^9}, {3.534553920421875*^9, 3.534554035921875*^9}, {3.534555327859375*^9, 3.534555328671875*^9}}], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "0"}, { FractionBox[ RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1"}]]}], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1"}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], RowBox[{ RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalOmega]L"}], "0", "Ec"}, { FractionBox[ RowBox[{ RowBox[{"\[ImaginaryI]", " ", SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}]}]]}], "+", SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}]}]]}], RowBox[{"2", " ", SqrtBox["3"]}]], "0", RowBox[{ RowBox[{"-", "\[CapitalDelta]"}], "-", "\[CapitalOmega]L"}], RowBox[{"-", "Ec"}]}, {"0", "Ec", RowBox[{"-", "Ec"}], RowBox[{ RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalDelta]23"}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[TextData[{ Cell[BoxData[ ButtonBox["IntrinsicRelaxation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRelaxation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]], " supply the relaxation matrices." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.52258625875446*^9}, CellID->448215320], Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"relax", "=", RowBox[{ RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", RowBox[{"TransitRelaxation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellChangeTimes->{3.522586258754587*^9}, CellID->150217419], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"\[Gamma]t", "0", "0", "0"}, {"0", RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0", "0"}, {"0", "0", RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0"}, {"0", "0", "0", RowBox[{"\[CapitalGamma]3", "+", "\[Gamma]t"}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ Cell[BoxData[ ButtonBox["OpticalRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], " and ", Cell[BoxData[ ButtonBox["TransitRepopulation", BaseStyle->"Link", ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], " supply the repopulation matrices." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{3.522586211804159*^9}, CellID->78071612], Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"repop", "=", RowBox[{ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", RowBox[{"TransitRepopulation", "[", RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{3.522586211804293*^9, 3.53455357284375*^9}, CellID->109972911], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"\[Gamma]t", "+", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}], "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"}, {"0", "0", "0", "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellGroupingRules->{GroupTogetherGrouping, 10000.}], Cell[TextData[{ "Density-matrix and field variables at one point ", Cell[BoxData[ FormBox["i", TraditionalForm]], FormatType->"TraditionalForm"] }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->24518771] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vars", "=", RowBox[{ RowBox[{"Join", "[", RowBox[{ RowBox[{ RowBox[{"DMVariables", "[", "system", "]"}], "/.", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "q", ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "q", ",", "i"}]], "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"q", ",", RowBox[{"-", "1"}], ",", "1", ",", "2"}], "}"}]}], "]"}]}], "]"}], "//", "Flatten"}]}]], "Input", CellChangeTimes->{{3.5346077411875*^9, 3.534607771078125*^9}, { 3.534636125296875*^9, 3.534636133625*^9}, {3.534637152109375*^9, 3.53463715240625*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Density matrix evolution equations at one point ", Cell[BoxData[ FormBox["i", TraditionalForm]], FormatType->"TraditionalForm"] }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->112084045], Cell[BoxData[ RowBox[{"TableForm", "[", RowBox[{"eqs", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Expand", "@", RowBox[{"LiouvilleEquation", "[", RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"r_", ",", "a_", ",", "b_"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox["\[Rho]", RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], ")"}], "\[Prime]", MultilineFunction->None], "[", "t", "]"}]}], "}"}]}], "/.", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"a_", ",", "b_"}]], "\[Rule]", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.", RowBox[{"\[CapitalDelta]23", "\[Rule]", SubscriptBox["\[CapitalDelta]23", "i"]}]}]}], "]"}]], "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellChangeTimes->{{3.53460253115625*^9, 3.53460255159375*^9}, { 3.534607779234375*^9, 3.53460778478125*^9}, {3.53463614115625*^9, 3.5346361436875*^9}, {3.53463617796875*^9, 3.53463618378125*^9}}, CellID->26920765] }, Open ]], Cell[BoxData[ TagBox[ TagBox[GridBox[{ { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{"\[Gamma]t", "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "+", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"\[CapitalDelta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"\[CapitalDelta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "-", RowBox[{"2", " ", "Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "-", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"\[CapitalDelta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"\[CapitalDelta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"2", " ", "\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"2", " ", "\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "+", RowBox[{"2", " ", "Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], SqrtBox["3"]], "-", RowBox[{"\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalDelta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i"], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[CapitalDelta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i"], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i"], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i"], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i"], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], RowBox[{"2", " ", SqrtBox["3"]}]], "-", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"\[CapitalOmega]L", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i"], " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, { RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "+", RowBox[{"2", " ", "Ec", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[CapitalGamma]3", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], "-", RowBox[{"\[Gamma]t", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], Column], Function[BoxForm`e$, TableForm[BoxForm`e$]]]], "Output"], Cell["Initial conditions for density matrix:", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->16777324], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"inits", "=", RowBox[{ RowBox[{"InitialConditions", "[", RowBox[{"system", ",", RowBox[{"TransitRepopulation", "[", RowBox[{"system", ",", "1"}], "]"}], ",", "t0"}], "]"}], "/.", " ", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t_", "]"}], "->", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "1"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}]}], "}"}]], "Output"] }, Open ]], Cell[TextData[{ "Here we find the field evolution equations with finite difference \ approximation (first-order upwind scheme) for co-propagating beams. ", StyleBox["h", FontSlant->"Italic"], " is the the grid spacing in the spatial dimension." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->100512453], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"polarizationcomponents", "=", RowBox[{"ExprToReIm", "[", RowBox[{ RowBox[{ RowBox[{"ExpandDipoleRME", "[", RowBox[{"system", ",", RowBox[{ RowBox[{ RowBox[{ "4", "\[Pi]", " ", "\[ImaginaryI]", " ", "\[Omega]2", " ", "n0", " ", RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], RowBox[{"Components", "@", " ", RowBox[{"ECT", "@", RowBox[{"Sum", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"DensityMatrix", "[", "system", "]"}], "[", RowBox[{"[", RowBox[{"j", ",", "i"}], "]"}], "]"}], RowBox[{"WignerEckart", "[", RowBox[{ RowBox[{"system", "[", RowBox[{"[", "i", "]"}], "]"}], ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", RowBox[{"system", "[", RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "system", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", "i"}], "}"}]}], "]"}]}]}]}], "/.", RowBox[{ RowBox[{"ReducedME", "[", RowBox[{"2", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}], "\[Rule]", "0"}]}], "/.", RowBox[{ RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}], "]"}], "/.", RowBox[{"\[Omega]2", "\[Rule]", RowBox[{"2", RowBox[{"\[Pi]", "/", "\[Lambda]"}]}]}]}], "/.", RowBox[{ RowBox[{"n0", " ", SuperscriptBox["\[Lambda]", "2"], "\[CapitalGamma]2"}], "\[Rule]", RowBox[{"4", "\[VeryThinSpace]", "\[Pi]", " ", RowBox[{"\[Eta]", "/", "3"}]}]}]}], "]"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",", RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",", RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",", RowBox[{ RowBox[{"-", SqrtBox["3"]}], " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"fieldcomponents", "=", RowBox[{ RowBox[{"ExprToReIm", "[", RowBox[{ RowBox[{"Expand", "[", RowBox[{ RowBox[{"ReducedME", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], RowBox[{"Components", "@", RowBox[{"ToContravariant", "[", "field", "]"}]}]}], "]"}], "/.", RowBox[{"t", "\[Rule]", "0"}]}], "]"}], "/.", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"a_", ",", "b_"}]], "\[Rule]", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"fieldeqs", "=", RowBox[{"Thread", "[", RowBox[{ RowBox[{"D", "[", RowBox[{"fieldcomponents", ",", "t"}], "]"}], "\[Equal]", RowBox[{ RowBox[{"c", " ", "polarizationcomponents"}], "-", RowBox[{"c", " ", RowBox[{ RowBox[{"(", RowBox[{"fieldcomponents", "-", RowBox[{"(", RowBox[{"fieldcomponents", "/.", RowBox[{"i", "\[Rule]", RowBox[{"i", "-", "1"}]}]}], ")"}]}], ")"}], "/", "h"}]}]}]}], "]"}]}]], "Input"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"c", " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", RowBox[{ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], "h"]}], "-", RowBox[{ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"c", " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", RowBox[{ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], "h"]}], "-", RowBox[{ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"c", " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", RowBox[{ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], ")"}]}], "h"]}], "-", RowBox[{ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Im", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox[ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"c", " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", RowBox[{ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], ")"}]}], "h"]}], "-", RowBox[{ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", RowBox[{ SubscriptBox["\[Rho]", RowBox[{"Re", ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}], "}"}]], "Output"] }, Open ]], Cell["Initial conditions for fields (assume uniform in space).", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->135712718], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"initfields", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", "1"]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.534636308703125*^9, 3.53463633696875*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", "1"]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}]}], "}"}]], "Output"] }, Open ]], Cell["\<\ Boundary conditions for co-propagating fields. Fields 1 and 3 are constant, \ fields 2 and 4 are pulsed. The first point is 0, and the last point is n0.\ \>", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->71091213], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"boundaryconds", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", "1"]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.534636354140625*^9, 3.534636376*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", "1"]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]]}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}], "}"}]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Results", "Section"], Cell["Choose number of spatial points.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->35853137], Cell[BoxData[ RowBox[{ RowBox[{"n", "=", "80"}], ";"}]], "Input"], Cell["All system variables for all spatial points.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->380000867], Cell[BoxData[ RowBox[{ RowBox[{"allvars", "=", RowBox[{"Flatten", "@", RowBox[{"Table", "[", RowBox[{"vars", ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"], Cell["Equations for all points for the co-propagating case.", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->129539961], Cell[BoxData[ RowBox[{ RowBox[{"TableForm", "[", RowBox[{"alleqs", "=", RowBox[{"Join", "[", RowBox[{ RowBox[{"DeleteCases", "[", RowBox[{ RowBox[{"Flatten", "@", RowBox[{"Table", "[", RowBox[{ RowBox[{"Join", "[", RowBox[{"eqs", ",", "inits", ",", "fieldeqs", ",", "initfields"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], ",", RowBox[{"Alternatives", "@@", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{"#", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]", "_"}], "&"}], "/@", RowBox[{"(", RowBox[{"boundaryconds", "/.", RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}]}], "]"}], ",", RowBox[{"(", RowBox[{"boundaryconds", "/.", RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], "]"}]}], "]"}], ";"}]], "Input", CellChangeTimes->{3.53463640765625*^9, 3.534636603890625*^9}], Cell[TextData[{ "Here we choose parameters and integrate the equations. Blue is ", Cell[BoxData[ FormBox[ SuperscriptBox["\[Sigma]", "-"], TraditionalForm]], FormatType->"TraditionalForm"], " field intensity, magenta is ", Cell[BoxData[ FormBox[ SuperscriptBox["\[Sigma]", "+"], TraditionalForm]], FormatType->"TraditionalForm"], "field intensity." }], "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->40567123], Cell[TextData[{ "Parameters:\n", Cell[BoxData[ SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]]]], ": input Rabi frequency for ", Cell[BoxData[ FormBox[ RowBox[{ SuperscriptBox["\[Sigma]", "-"], " "}], TraditionalForm]], FormatType->"TraditionalForm"], "(rad/s) \n", Cell[BoxData[ SubscriptBox["\[CapitalOmega]0", "1"]]], ": input Rabi frequency for ", Cell[BoxData[ FormBox[ SuperscriptBox["\[Sigma]", "+"], TraditionalForm]], FormatType->"TraditionalForm"], "(rad/s) \n\[CapitalGamma]2: natural width of J=1 level (rad/s) \n\ \[CapitalGamma]3: natural width of upper J=0 level (rad/s)\n\[Gamma]t: \ transit relaxation rate (rad/s)\nEc: static electric field coupling strength \ (rad/s)\n\[CapitalDelta]: Light detuning from J=1 level (rad/s)\n\ \[CapitalOmega]L: Zeeman shift (rad/s)\n", Cell[BoxData[ SubscriptBox["\[CapitalDelta]23", "i_"]]], ": frequency splitting between upper J=1 and J=0 level as a function of the \ position ", Cell[BoxData[ FormBox["i", TraditionalForm]], FormatType->"TraditionalForm"], ", as ", Cell[BoxData[ FormBox["i", TraditionalForm]], FormatType->"TraditionalForm"], " varies from zero to ", Cell[BoxData[ FormBox["n", TraditionalForm]], FormatType->"TraditionalForm"], " (rad/s)\nh: distance between grid points (m)\nc: light speed (m/s)\n\ \[Eta]: light coupling constant (rad/s/m)" }], "Text"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"params", "=", RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]", RowBox[{"1.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalGamma]2", "\[Rule]", RowBox[{"1.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{".001", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"Ec", "\[Rule]", RowBox[{"10.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalDelta]", "\[Rule]", RowBox[{ RowBox[{"-", "100."}], " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalOmega]L", "\[Rule]", RowBox[{"50.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"c", "\[Rule]", RowBox[{"3.", " ", SuperscriptBox["10", "8"]}]}], ",", RowBox[{"\[Eta]", "\[Rule]", RowBox[{"3.", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"794.7", " ", SuperscriptBox["10", RowBox[{"-", "9"}]]}], ")"}], "2"], RowBox[{"(", SuperscriptBox["10", "15"], ")"}], RowBox[{ RowBox[{"(", RowBox[{"2", " ", "\[Pi]", " ", SuperscriptBox["10", "6"]}], ")"}], "/", RowBox[{"(", RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",", RowBox[{"h", "\[Rule]", RowBox[{"5.", "/", "n"}]}], ",", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "105."}], "+", RowBox[{"10", RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n", RowBox[{ RowBox[{"sol", "=", RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"alleqs", "/.", "params"}], "]"}], ",", "allvars", ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", RowBox[{"4.", " ", SuperscriptBox["10", RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Transpose", "@", RowBox[{"Table", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"i", " ", "h"}], ",", SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}], ")"}], "]"}], "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"i", " ", "h"}], ",", SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}], ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}], "/.", RowBox[{"t", "\[Rule]", RowBox[{"4.", " ", SuperscriptBox["10", RowBox[{"-", "6"}]]}]}]}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\""}], "}"}]}]}], "]"}]}], "Input"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJxt039M1HUcx/H7jfLzfhBUrlxQJpOAzMIm6/OGiMMOQkg2IX4deAwERTyE CEygOBCoKDOooaZpDMjzCDiF0zrZLVCWc4qI/PI8TqrjNNQy0IN+jBf/9d2+ ++6x5/f93Wf7fj7PpOfFqXgcDif23/u/5/9fOua/1Zrw0fxk6KKNbOJ1691m jSBs0f2sw3Rm92cOb/gSExWk9ttSn4MHWZ1I8WjE50V4mF1t666z1K2Hx1ju iU7/+HWhsJk1aHipG8MjYAv7Wa4SaMxRsJWNGrS3hFOx8BQ7YX16QLkQD//K NrR39zklJMI2Nt43Gv1EQSpsZxtXn4zYFJ8O32HWw0ECabEKnmGmX95Wu+7P gu+y38YP5ZyMzIXvsVXXnt/2HWcnfJ9d/N7TfPGFXfAfrP+Sb+7xLQXwnyyp un4g0V4IP2CXO08JTDnF8F9srv2lH4q3l8Kz7HawUl2yeS88x+JLInvfUZXD D9mVzyMDVnp+AD9izhphxEppJexg1T57OEm8Knie+SoeRuVH74MX2Io990IC amrhv1nsBm0A3+9jmEMjfoLqTcr6RZdx6FmTIuNd86foXDpvmcg5mrEfnUuF 12+4ZT15AJ1HC3Gj+dk3vkDn0eo0haFlqBGdT9PJk8br9q/Q+fTqwM2YosCD 6AL61vFl+FOth9EFJD/7yi2h7xF0Ic1UWSouHDqKLqT1P35Y6utzDF1ER242 +L0/fRxdRDXeO5Mbtc3oTnRuvEn11rUWdCeKkXt0BU21oS+jAVu5cnavFn0Z qWWPu+/epUNfTkHyrLBZRzv6cvrJm1s/ktCB7kzn8qRSh1cXujO1JNROhFfp 0V0oNPOTyomXT6O7kMiFm9kb143uSpLhYV42pwfdlRobxrZqYpa6Gxla174X Ob30fTcK5lx5My4R6+W4U6BmjbZtEP+rzJ0qJY81maIy0T1I37zWs0KG/Vjm QQcnx3aUDy3tXzEVrvjG4G9XL5rE1GcvKjGsysf7YiqqDfx6iwQ2iqlzfiil 1bYd8xI6c/aBIplgkpB8c7CYL9iGeQmdz9N3NIVkY15CDQF3ii/3LK1PSjon H93p33EeSUqW+y2ZrzkyMC+lGY831uxYBxulVHPKluGlU2JeRqX6Xr7+dhrm ZdSjrp9LqcD5L5NRdFftVaNzCuZlxE03e42EJGHek45FX0g7MJgY9g98xGyh "]]}, {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" 1:eJw1zgtMU3cUx/FrgVaE0tJqWCYpuo3geOiqTgSEc4LEDXVxVYgKRgUlisYJ qIzGV0UUCRAEESxhLqDAECYVsICVCaLRoKJiFTYfPAQllQw3EC2+jefc5Obm k+//98+dGr11aYxIEATNx/fTl5+65DWpfcPNwZ9lgOLN+miry0VyE6SuPrDY 8Jj7VSjvT6vR9rJvQa+bedHJdrYZ/p6bebCrgd0JN2K3ty8/z34Ad+s9UVHN 7objmfKnC4vZveCEIcqOCnYfuF4yr/vyBPsJ5LYq1Huy2QNQIt3l653HtkDn ynj/U0nsQdgbsOLKnTj2v+CeukydtYr9HDb1tc1zDGH/BymDD69UeLH/hzeu SWEiFXsYakeTZWXWJvIIZAdrbSMG2S/Ad5kkoes2exTWTAs3JhnZLyH03rN8 fTH7FZTGaqb4p7CtkB9wplG6kT0G9UXuBSOh7NdQqFFv8vNgv4FIL9Vv6wT2 W3hZtbZoqukC+R08jNB/c2cV+z38nvYocKKYLaC++9X1hWV/fbZOwIYQF7Up iCyMw623ftyR0N5IfRyK/Gc050aRBRHW/fRVZGTveeoiDBsS9q1dTxZssMOo Tw+6baJugx6+F9+OAlmwRaXTZY1f7jnqtlj0dFifaGmgboctbQvQw42ss8Pv q2ts+8LrqYuxQ9YzeeWGOupiTJj1z+UbCUbqEnSMaL1+NPIsdQnmnT60aNvs WurjcbUpHGWWaurjUTKywui6/wx1ezQF747601pF3R6/NujGDAWV1CfgkbiN ge9tyqlPQB9tfKJZVULdAUOXlIslnkXUHdBXPXTYJ6aAuiP+GnVT/0PjEeqO OFM7lpMzPYu6FB+Y7ecmRmdTl2Lb/u/uBy0opO6Equ6MxGuGUupOKD5bJU/N KqMuw5175tW2NNP/6GTY83O394wv6LwgRwg0y94NUEc5qt0mnf5jDt8nx+c+ Xq79nuQmOVZs36L9JYb3zuh3YVdAWBQZnVEl3Tc0ksF7Z0zPDAs4mM57Z/Se 5WJnreC9Apt005XqSt4rMC//UVxlC+8VWDK/s3XoEu8VaMk5OeeumfdK3FZl +DbtHu+VOBYvybV08V6JsapjDvd7eK/EuuQUzbN+3k/EGofkaSEDpcEfAHau f0Y= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, FrameLabel->{ FormBox["\"Position (m)\"", TraditionalForm], FormBox[ "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \ \\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"", TraditionalForm]}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output"] }, Open ]], Cell["\<\ Same plot with flipped magnetic field\ \>", "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->264338212], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"params", "=", RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]0", RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",", RowBox[{ SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]", RowBox[{"1.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalGamma]2", "\[Rule]", RowBox[{"1.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",", RowBox[{"\[Gamma]t", "\[Rule]", RowBox[{".001", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"Ec", "\[Rule]", RowBox[{"10.", " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalDelta]", "\[Rule]", RowBox[{ RowBox[{"-", "100."}], " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"\[CapitalOmega]L", "\[Rule]", RowBox[{ RowBox[{"-", "50."}], " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"c", "\[Rule]", RowBox[{"3.", " ", SuperscriptBox["10", "8"]}]}], ",", RowBox[{"\[Eta]", "\[Rule]", RowBox[{"3.", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"794.7", " ", SuperscriptBox["10", RowBox[{"-", "9"}]]}], ")"}], "2"], RowBox[{"(", SuperscriptBox["10", "15"], ")"}], RowBox[{ RowBox[{"(", RowBox[{"2", " ", "\[Pi]", " ", SuperscriptBox["10", "6"]}], ")"}], "/", RowBox[{"(", RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",", RowBox[{"h", "\[Rule]", RowBox[{"5.", "/", "n"}]}], ",", RowBox[{ SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "105."}], "+", RowBox[{"10", RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ", SuperscriptBox["10", "6"]}]}], ",", RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n", RowBox[{ RowBox[{"sol", "=", RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"alleqs", "/.", "params"}], "]"}], ",", "allvars", ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", RowBox[{"4.", " ", SuperscriptBox["10", RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Transpose", "@", RowBox[{"Table", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"i", " ", "h"}], ",", SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}], ")"}], "]"}], "2"]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"i", " ", "h"}], ",", SuperscriptBox[ RowBox[{"Abs", "[", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{ SubscriptBox["\[CapitalOmega]", RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}], ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}], "/.", RowBox[{"t", "\[Rule]", RowBox[{"4.", " ", SuperscriptBox["10", RowBox[{"-", "6"}]]}]}]}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\""}], "}"}]}]}], "]"}]}], "Input"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJxtzn9MzHEcx/Fvv0R31V0hP1rkx8atNrXlV3i/T0k4UVSE8qOk/GiF4nak kBYn3xaG/EjtnJbunFDKOuoIiwoX7SQ5lVh+xMnl93p///Pdvvvusefn9dnX fW1CSIwlwzDBf99/3/8/ang9RfP96iijuN9a2CtXL453sZnd71rYXBn+Gxtd yPWQDqNLDIpx5CdQVdrS3nlkEvkZ4PQIPWueQjaA7qRpSa4Gya0QWWVs8Pkx h9wGt9rBQ5IlIRth9Q538YcbweR2MAebErTvQ8mdsD5/swcTGEHugkMHAtJT 1kWR38Pbui/e/svWkrtBfPmoS0xsDPkjbOSXZCfJN5A/wc8zhrxur03kz1Cf NnRWyJsEcg90xQdJmWFJ5C9gkr1ShfptI38Fj64F843aZLIJZsWsOS8P3En+ BiNK5QVJ42TkXpiH++9vEaSSv4PUMUfkKkojm0H0rry6Wp9O7oPewvBco2Yf +QcYFGNWRZzOIP8Edv3quT4VmeRfYBquzlrSnUX+DbrwZFtZmJzM4K5qfa+4 NbvfexhMjXOfpwtiqVugcmr0sbN3cqhbYDdv8u2J4bnULVEkLfc9aXeMuiVO jbS3EuqPU7dCVhprnlt/groVHuyYHqZ6dYq6Nfadel7l5nWGujWysqjUsAXn qNugf1wB+1iRT90Gh9vX6er4BdQHYPClSVVLLxRSH4DNfPkGgURB3RZbjvD8 lN5K6raYKPGc1jO2iPpAdOuJq10ZXUx9IOrUNw73qkqoD0KReGHUyiI19UFo +La9M4zRULdDw72bsCbtCnU7/Nx+1vWAuZQ6D683P/WoybhGnYdsdXGo6cV1 6nzcZXUtJK+jjDofMy9FODS4lVO3x9CnNXdHvKTze+yxrjXZUpLC3e+AOb7Z mdadKuoO6Fp/Md7Ti8w4Ik/d8MhvN/f/jih9Pb6yIpHMCFC5z7c58jQZBfjA Z4YykOXOC3CRlsmfqCRrBcj67k5py+f2QhyV8lCRdJnbC7HkydIyvYrbCzFa dmjOsApuL8SA0ibvl5Xc3gm3Nl5IbKvh9k44fgV/Wl8tt3fCRdEWRcsecnsn DCgcktjymNs7Y/HItx2Dm7i9M97+1eQGL7i9M04IzNA8aOH2zrjc38vQZeT2 g9Fh28xNAW/Us/8Agkd76w== "]]}, {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" 1:eJw1ywtQzGsYx/F/m63VtteU0sokSRdDQsJ4H5t1GQ1tjJG0kVvbJvYccU4c rRAToyZFmmKnIZdBamOLytaKzLhXWorOpOl0myK0VlqO6XnfmWfe+cx3fp6x uyK2sRiGkf9/v3/69Kkxxzo+10hHdYt0uM7zaDJRG4h299rATXrqehIeXV9d VUj9gkgfjLQtPEzdSFRd/vddVdQmkubsPmsojLqVDEz65hI4i/pfMuwYvPfE OOp2stHFfWOX2YDuIFs/Rtq6vaXuJM4FCXJxJXUXaZ8yWZZbQN1Drm9Wpxw4 SN1HlL2PV3YrqPuJxD+ytmcR9UeSnPbK+81E6k/k0rnpPj7f76MHiSzzmQTK qD+TAN+nbSFq6i8kyMPYaZxK/ZVE89X9Ie3V6CHSGv+iPjaL2kz63mdc9g2j /kYGxmdbeUNVaAuRcatmvLxB/Z3smtmQkBJOPUycb65rLGZT/yAeA817Jmsr 0SPkZFxd/39yaiuxhpULbD7cQ/8kthOMfpJMagYUTcsuFLigNQz4tsxZL6+6 i90G5CrR0YZgtMYG/t6QuK6yqQI7C9KVdYp8KVrDAp/iFk5qYzl2WyhyuNv0 MBCtsYUZZ2IgRqfHPgb4/ziHZlvvYB8D5udRS6TxaIYNh4KWpM/X3sbOhtxY r8Ly/jLsdqB6XWFewEVr7CDFsyUvIkiH3R6sH/xzqmeWYreHwanN6VN8SrBz 4DTPs2TRj2LsHCjSunYKE25gHwuKpW4BDfeuYR8LE1qODJeevYzdAQor3MPe 7b+I3QG8htzWFBi12LlwONDwODw/DzsX+tKj4tT6LOyOkB39l9L75HHsjuAm 6bbMNu/HzoO8yA3xyhV7sfOg6OWyucneR7HzId+QydUZM7DzQXe+TWHJoF0A OfzMNL/VydgFYH91vmCVAs0IwbtnpNZGtm/UIITGkcRUyxa0RginuNNa7XKT Rm0Qgqy5j12zDc2IoPCqvGQeZw/uRcCae0bXlfMn7kXQfTDfdC7pD9yLIO6m XZ3ApMa9GEKz1aGcjt24FwPDLYoKDkBrxPBkTl5bkj4R92KIWPq+dHD6Ttw7 QdTWhis7Hqlw7wTgx4tmh8Tj3gnaHSUmhqXEvRMs98paEZCyA/fjoLdssaV3 53bpL+2TdNk= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, FrameLabel->{ FormBox["\"Position (m)\"", TraditionalForm], FormBox[ "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \ \\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"", TraditionalForm]}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output"] }, Open ]] }, Open ]] }, AutoGeneratedPackage->None, WindowSize->{1084, 904}, WindowMargins->{{Automatic, 248}, {Automatic, -30}}, ShowSelection->True, FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 32, 0, 71, "Section"], Cell[602, 24, 206, 6, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->94096541], Cell[CellGroupData[{ Cell[833, 34, 68, 1, 31, "Input"], Cell[904, 37, 64, 1, 30, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[1005, 43, 113, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->123059143], Cell[1121, 47, 230, 5, 31, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->2058623809], Cell[1354, 54, 108, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->184495045] }, Open ]], Cell[1477, 59, 349, 7, 31, "Input"], Cell[1829, 68, 572, 16, 72, "Input"], Cell[2404, 86, 282, 7, 33, "Input"], Cell[2689, 95, 416, 11, 31, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[3142, 111, 38, 0, 71, "Section"], Cell[3183, 113, 163, 3, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->188360977], Cell[CellGroupData[{ Cell[3371, 120, 2251, 50, 132, "Input"], Cell[5625, 172, 2828, 69, 72, "Output"] }, Open ]], Cell[8468, 244, 120, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->13161682], Cell[CellGroupData[{ Cell[8613, 250, 1677, 47, 53, "Input"], Cell[10293, 299, 1779, 54, 55, "Output"] }, Open ]], Cell[12087, 356, 164, 4, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->337337829], Cell[CellGroupData[{ Cell[12276, 364, 634, 18, 52, "Input"], Cell[12913, 384, 10059, 299, 132, "Output"] }, Open ]], Cell[22987, 686, 164, 4, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->327463138], Cell[CellGroupData[{ Cell[23176, 694, 1031, 28, 67, "Input"], Cell[24210, 724, 707, 21, 72, "Output"] }, Open ]], Cell[24932, 748, 117, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->737742553], Cell[CellGroupData[{ Cell[25074, 754, 146, 4, 31, "Input"], Cell[25223, 760, 6204, 173, 144, "Output"] }, Open ]], Cell[31442, 936, 146, 4, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->944896957], Cell[CellGroupData[{ Cell[31613, 944, 537, 15, 31, "Input", Evaluatable->False], Cell[32153, 961, 1411, 28, 190, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[33601, 994, 197, 4, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->471402495], Cell[33801, 1000, 1277, 29, 92, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[35081, 1031, 2306, 70, 132, "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}], Cell[37390, 1103, 478, 14, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->448215320], Cell[37871, 1119, 367, 9, 31, "Input", CellGroupingRules->{GroupTogetherGrouping, 10001.}, CellID->150217419], Cell[38241, 1130, 870, 23, 72, "Output", CellGroupingRules->{GroupTogetherGrouping, 10001.}] }, Open ]], Cell[CellGroupData[{ Cell[39148, 1158, 484, 14, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->78071612], Cell[39635, 1174, 390, 9, 31, "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->109972911], Cell[40028, 1185, 1388, 40, 74, "Output", CellGroupingRules->{GroupTogetherGrouping, 10000.}], Cell[41419, 1227, 241, 7, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->24518771] }, Open ]], Cell[CellGroupData[{ Cell[41697, 1239, 1104, 31, 33, "Input"], Cell[42804, 1272, 4345, 136, 72, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[47186, 1413, 242, 7, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->112084045], Cell[47431, 1422, 1706, 44, 77, "Input", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->26920765] }, Open ]], Cell[49152, 1469, 60487, 1739, 554, "Output"], Cell[109642, 3210, 133, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->16777324], Cell[CellGroupData[{ Cell[109800, 3216, 493, 14, 33, "Input"], Cell[110296, 3232, 4557, 154, 72, "Output"] }, Open ]], Cell[114868, 3389, 341, 8, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->100512453], Cell[CellGroupData[{ Cell[115234, 3401, 2265, 58, 139, "Input"], Cell[117502, 3461, 1330, 45, 37, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[118869, 3511, 678, 19, 33, "Input"], Cell[119550, 3532, 553, 16, 30, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[120140, 3553, 537, 16, 31, "Input"], Cell[120680, 3571, 4404, 138, 83, "Output"] }, Open ]], Cell[125099, 3712, 152, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->135712718], Cell[CellGroupData[{ Cell[125276, 3718, 924, 27, 31, "Input"], Cell[126203, 3747, 802, 25, 30, "Output"] }, Open ]], Cell[127020, 3775, 255, 5, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->71091213], Cell[CellGroupData[{ Cell[127300, 3784, 916, 27, 31, "Input"], Cell[128219, 3813, 797, 25, 30, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[129065, 3844, 26, 0, 71, "Section"], Cell[129094, 3846, 127, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->35853137], Cell[129224, 3850, 68, 2, 31, "Input"], Cell[129295, 3854, 140, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->380000867], Cell[129438, 3858, 231, 7, 31, "Input"], Cell[129672, 3867, 149, 2, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->129539961], Cell[129824, 3871, 1171, 33, 72, "Input"], Cell[130998, 3906, 458, 14, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->40567123], Cell[131459, 3922, 1394, 41, 247, "Text"], Cell[CellGroupData[{ Cell[132878, 3967, 4644, 129, 143, "Input"], Cell[137525, 4098, 3033, 59, 234, "Output"] }, Open ]], Cell[140573, 4160, 141, 4, 43, "MathCaption", CellGroupingRules->{GroupTogetherGrouping, 10000.}, CellID->264338212], Cell[CellGroupData[{ Cell[140739, 4168, 4667, 130, 143, "Input"], Cell[145409, 4300, 3004, 58, 235, "Output"] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)