From dab8a2b524556c6e622c948e9675062a06405be0 Mon Sep 17 00:00:00 2001 From: Eugeniy Mikhailov Date: Sat, 20 Aug 2011 02:21:35 -0400 Subject: Eta parameter fixes, Rabi measured in [1/s] and z in [m] Very tedious check of units, now everything in SI units which is a bit painful for Rabi frequencies. --- .../Nlevels_no_dopler_with_z.xmds | 69 ++++++++++------------ 1 file changed, 30 insertions(+), 39 deletions(-) (limited to 'xmds2') diff --git a/xmds2/Nlevels_no_dopler_with_z/Nlevels_no_dopler_with_z.xmds b/xmds2/Nlevels_no_dopler_with_z/Nlevels_no_dopler_with_z.xmds index 718cf76..a210522 100644 --- a/xmds2/Nlevels_no_dopler_with_z/Nlevels_no_dopler_with_z.xmds +++ b/xmds2/Nlevels_no_dopler_with_z/Nlevels_no_dopler_with_z.xmds @@ -29,62 +29,52 @@ * ------- |1> * - We moved to dimensionless units - t -> t*DecayRateNormalization ,time - z -> z*DecayRateNormalization/c , distance - rabi_frequency -> rabi_frequency/DecayRateNormalization - eta -> eta*c/DecayRateNormalization^2 , coupling constant - gij -> gij/DecayRateNormalization - Wij -> Wij/DecayRateNormalization - - where g is 1MHz rate We are solving - dE/dz+(1/c)*dE/dt=i*eta*rho_ij, where j llevel is higher then i + dE/dz+(1/c)*dE/dt=i*eta*rho_ij, where j level is higher then i. + Note that E is actually a Rabi frequency of electromagnetic field not the EM field in xmds terms it looks like - dE_dz = i*eta*rhoij - L[E], here we moved t dependence to Fourier space + dE_dz = i*eta*rhoij - 1/c*L[E], here we moved t dependence to Fourier space + + VERY IMPORTANT: all Rabi frequency should be given in [1/s], if you want to + normalize it to something else look drho/dt equation. + No need to renormalizes eta as long as its express through i + the upper level decay rate in the same units as Rabi frequency. - - - - - + + + + + @@ -95,21 +85,22 @@ - + z - + + E1 E2 E3 @@ -146,7 +137,7 @@ - + @@ -193,7 +184,7 @@ Lt E_field -- cgit v1.2.3