From c91df41f3627af50730b76d218bec1dd5561e861 Mon Sep 17 00:00:00 2001 From: Eugeniy Mikhailov Date: Tue, 6 Sep 2011 13:36:27 -0400 Subject: Dispersion and gain curve plots added --- .../GenerateShahriarSystem_via_drive_modulation.nb | 1314 +++++++++++++++++++- 1 file changed, 1261 insertions(+), 53 deletions(-) (limited to 'xmds2') diff --git a/xmds2/Shahriar_system/GenerateShahriarSystem_via_drive_modulation.nb b/xmds2/Shahriar_system/GenerateShahriarSystem_via_drive_modulation.nb index bd35917..ddedfd9 100644 --- a/xmds2/Shahriar_system/GenerateShahriarSystem_via_drive_modulation.nb +++ b/xmds2/Shahriar_system/GenerateShahriarSystem_via_drive_modulation.nb @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] -NotebookDataLength[ 50325, 1498] -NotebookOptionsPosition[ 48074, 1417] -NotebookOutlinePosition[ 48431, 1433] -CellTagsIndexPosition[ 48388, 1430] +NotebookDataLength[ 103814, 2706] +NotebookOptionsPosition[ 100607, 2595] +NotebookOutlinePosition[ 100984, 2612] +CellTagsIndexPosition[ 100941, 2609] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -164,7 +164,8 @@ Cell[BoxData[ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]]}], ",", "0", ",", "0"}], "}"}]], "Output", CellChangeTimes->{3.524014012716285*^9, 3.524259591553705*^9, - 3.524259626080548*^9}] + 3.524259626080548*^9, 3.524306875181789*^9, 3.524307290537285*^9, + 3.524307437720878*^9, 3.524307566559088*^9, 3.524308707967733*^9}] }, Open ]], Cell["\<\ @@ -234,7 +235,8 @@ Cell[BoxData[ Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{3.524014012961052*^9, 3.524259598039252*^9, - 3.524259629043541*^9}] + 3.524259629043541*^9, 3.524306875364363*^9, 3.524307290619138*^9, + 3.524307437836161*^9, 3.524307566674161*^9, 3.52430870804791*^9}] }, Open ]], Cell["The level diagram for the system.", "MathCaption", @@ -272,7 +274,9 @@ Cell[BoxData[ ImagePadding->{{2., 2}, {2., 2.}}, ImageSize->94.]], "Output", CellChangeTimes->{ - 3.524014013119625*^9, {3.524259615431492*^9, 3.524259632461302*^9}}] + 3.524014013119625*^9, {3.524259615431492*^9, 3.524259632461302*^9}, + 3.52430687544827*^9, 3.524307290760151*^9, 3.524307437955327*^9, + 3.524307566755542*^9, 3.524308708148272*^9}] }, Open ]], Cell["\<\ @@ -361,7 +365,8 @@ Cell[BoxData[ Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{3.52401401316455*^9, 3.524259664732384*^9, - 3.524259718048386*^9}] + 3.524259718048386*^9, 3.524306875516249*^9, 3.524307290848865*^9, + 3.52430743816091*^9, 3.524307566843626*^9, 3.524308708218072*^9}] }, Open ]], Cell[TextData[{ @@ -429,7 +434,9 @@ Cell[BoxData[ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", - CellChangeTimes->{3.524014013274888*^9, 3.524259721983669*^9}] + CellChangeTimes->{3.524014013274888*^9, 3.524259721983669*^9, + 3.52430687561284*^9, 3.52430729094324*^9, 3.524307438234119*^9, + 3.524307566916775*^9, 3.524308708286795*^9}] }, Open ]], Cell[TextData[{ @@ -516,7 +523,9 @@ Cell[BoxData[ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", - CellChangeTimes->{3.524014013584079*^9, 3.524259725691324*^9}] + CellChangeTimes->{3.524014013584079*^9, 3.524259725691324*^9, + 3.52430687566883*^9, 3.524307291009512*^9, 3.524307438293535*^9, + 3.524307567000164*^9, 3.524308708373547*^9}] }, Open ]], Cell["Here are the evolution equations.", "MathCaption", @@ -962,7 +971,9 @@ Cell[BoxData[ Column], Function[BoxForm`e$, TableForm[BoxForm`e$]]]], "Output", - CellChangeTimes->{3.524014013741555*^9, 3.524259731199048*^9}] + CellChangeTimes->{3.524014013741555*^9, 3.524259731199048*^9, + 3.524306875710959*^9, 3.524307291095*^9, 3.524307438359244*^9, + 3.524307567071678*^9, 3.524308708479944*^9}] }, Open ]], Cell["Convert to c form.", "Text"], @@ -1260,7 +1271,9 @@ Cell[BoxData[ CellChangeTimes->{3.524014014687035*^9, 3.524014182827821*^9, 3.524014214903372*^9, 3.524259784109108*^9, 3.52425981618349*^9, 3.524259922834424*^9, 3.524260078672261*^9, 3.524260324306823*^9, - 3.52426584452029*^9, 3.52426593042942*^9, 3.524265967369995*^9}], + 3.52426584452029*^9, 3.52426593042942*^9, 3.524265967369995*^9, + 3.524306876032781*^9, 3.524307291231653*^9, 3.524307438516994*^9, + 3.524307567220775*^9, 3.524308708599409*^9}], Cell[BoxData[ RowBox[{"{", @@ -1389,7 +1402,9 @@ Cell[BoxData[ CellChangeTimes->{3.524014014687035*^9, 3.524014182827821*^9, 3.524014214903372*^9, 3.524259784109108*^9, 3.52425981618349*^9, 3.524259922834424*^9, 3.524260078672261*^9, 3.524260324306823*^9, - 3.52426584452029*^9, 3.52426593042942*^9, 3.524265967377494*^9}], + 3.52426584452029*^9, 3.52426593042942*^9, 3.524265967369995*^9, + 3.524306876032781*^9, 3.524307291231653*^9, 3.524307438516994*^9, + 3.524307567220775*^9, 3.524308708610404*^9}], Cell[BoxData["\<\"dr11_dt = gt - 2*(gp + gt)*r11 - E1*i*r13 + E1c*i*r31 + \ G*r33;\\ndr12_dt = (-gp - 2*gt - d1*i + da*i)*r12 - Ef*i*r13 + \ @@ -1401,23 +1416,1187 @@ Efc*i*r33;\\ndr33_dt = 2*gp*r11 + E1*i*r13 + Ef*i*r23 - E1c*i*r31 - Efc*i*r32 \ CellChangeTimes->{3.524014014687035*^9, 3.524014182827821*^9, 3.524014214903372*^9, 3.524259784109108*^9, 3.52425981618349*^9, 3.524259922834424*^9, 3.524260078672261*^9, 3.524260324306823*^9, - 3.52426584452029*^9, 3.52426593042942*^9, 3.524265967380181*^9}], + 3.52426584452029*^9, 3.52426593042942*^9, 3.524265967369995*^9, + 3.524306876032781*^9, 3.524307291231653*^9, 3.524307438516994*^9, + 3.524307567220775*^9, 3.52430870861651*^9}], -Cell[BoxData["\<\"/mnt/light_huge_archive/home/evmik/src/my_src/Nresonances/\ -xmds2/Shahriar_system/code.txt\"\>"], "Output", +Cell[BoxData["\<\"/home/evmik/src/my_src/Nresonances/xmds2/Shahriar_system/\ +code.txt\"\>"], "Output", CellChangeTimes->{3.524014014687035*^9, 3.524014182827821*^9, 3.524014214903372*^9, 3.524259784109108*^9, 3.52425981618349*^9, 3.524259922834424*^9, 3.524260078672261*^9, 3.524260324306823*^9, - 3.52426584452029*^9, 3.52426593042942*^9, 3.524265967566105*^9}] + 3.52426584452029*^9, 3.52426593042942*^9, 3.524265967369995*^9, + 3.524306876032781*^9, 3.524307291231653*^9, 3.524307438516994*^9, + 3.524307567220775*^9, 3.524308708714171*^9}] }, Open ]], Cell[BoxData[""], "Input", - CellChangeTimes->{{3.524260308571472*^9, 3.524260312167967*^9}}] + CellChangeTimes->{{3.524260308571472*^9, 3.524260312167967*^9}, + 3.524306978555205*^9, 3.524307013512631*^9}], + +Cell[" ", "Text", + Editable->False, + Selectable->False, + CellFrame->{{0, 0}, {0, 3}}, + ShowCellBracket->False, + CellMargins->{{0, 0}, {1, 1}}, + CellElementSpacings->{"CellMinHeight"->1}, + CellFrameMargins->0, + CellFrameColor->RGBColor[0, 0, 1], + CellSize->{Inherited, 5}], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"SetOptions", "[", + RowBox[{"DensityMatrix", ",", + RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", + RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}]}], "]"}]], "Input", + CellChangeTimes->{{3.524307000452544*^9, 3.524307000463202*^9}, { + 3.524307418860458*^9, 3.524307419472997*^9}, {3.524307520189753*^9, + 3.524307546020878*^9}, 3.524307592322806*^9, 3.524307883148581*^9}], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", + RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",", + RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",", + RowBox[{"Label", "\[Rule]", "None"}], ",", + RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",", + RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.524307002471601*^9, 3.524307291448724*^9, {3.524307420165008*^9, + 3.524307438796962*^9}, {3.524307527474511*^9, 3.524307593190057*^9}, + 3.52430788535289*^9, 3.524308708803262*^9}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"repop", "=", + RowBox[{ + RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", + RowBox[{"TransitRepopulation", "[", + RowBox[{"system", ",", "\[Gamma]t"}], "]"}], "+", + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"0", "0", "0"}, + {"0", "0", "0"}, + {"0", "0", + RowBox[{"\[Gamma]p", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, + "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]}]}], "]"}]], "Input", + CellChangeTimes->{{3.524307970556094*^9, 3.524308012791452*^9}}], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + { + RowBox[{ + FractionBox["\[Gamma]t", "2"], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}], "0", "0"}, + {"0", + RowBox[{ + FractionBox["\[Gamma]t", "2"], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}], "0"}, + {"0", "0", + RowBox[{"\[Gamma]p", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{{3.524307976838331*^9, 3.524308013600831*^9}, + 3.524308708877245*^9}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"TableForm", "[", + RowBox[{ + RowBox[{"eqs", "=", + RowBox[{ + RowBox[{ + RowBox[{"LiouvilleEquation", "[", + RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], "\[Rule]", + RowBox[{"2", + RowBox[{"Ep", "/", "\[CapitalOmega]1"}]}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], "\[Rule]", + RowBox[{"2", + RowBox[{"Epc", "/", "\[CapitalOmega]1"}]}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[Rule]", + RowBox[{"2", + RowBox[{"Ef", "/", "\[CapitalOmega]2"}]}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", "\[Rule]", + RowBox[{"2", " ", + RowBox[{"Efc", "/", "\[CapitalOmega]2"}]}]}], ",", + RowBox[{"\[CapitalGamma]", "\[Rule]", + RowBox[{"2", "G"}]}], ",", + RowBox[{"\[Gamma]p", "\[Rule]", + RowBox[{"2", "gp"}]}], ",", + RowBox[{"\[Gamma]t", "\[Rule]", + RowBox[{"2", "gt"}]}], ",", + RowBox[{"\[Delta]1", "\[Rule]", "d1"}], ",", + RowBox[{"\[Delta]2", "\[Rule]", "da"}]}], "}"}]}], "//", "Expand"}]}], + ",", + RowBox[{"TableHeadings", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}], + "]"}]], "Input", + CellChangeTimes->{{3.524307054351258*^9, 3.524307205361724*^9}, + 3.524307262579295*^9, 3.524307393253102*^9, {3.524309375390078*^9, + 3.524309380051313*^9}}], + +Cell[BoxData[ + TagBox[ + TagBox[GridBox[{ + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{"gt", "-", + RowBox[{"2", " ", "gp", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Epc", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "+", + RowBox[{"G", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "d1", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "da", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"gp", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Epc", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "Epc", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Efc", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "d1", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "-", + RowBox[{"G", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "-", + RowBox[{"gp", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Epc", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "d1", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "da", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"gp", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Efc", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{"gt", "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Efc", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "+", + RowBox[{"G", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "Epc", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Efc", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "da", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{"G", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Efc", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "d1", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"G", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"gp", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "da", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"G", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"2", " ", "gp", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Epc", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Efc", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"2", " ", "G", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxDividers->{ + "Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {}, + "Rows" -> {{False}}, "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.5599999999999999]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + OutputFormsDump`HeadedColumn], + Function[BoxForm`e$, + TableForm[BoxForm`e$, TableHeadings -> {{ + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 1], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 2], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 3], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 1], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 2], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 3], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 1], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 2], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 3]}, + None}]]]], "Output", + CellChangeTimes->{ + 3.524307018971411*^9, 3.524307075938764*^9, 3.524307109764846*^9, { + 3.524307160561649*^9, 3.524307172673792*^9}, 3.524307206201787*^9, { + 3.524307263669585*^9, 3.524307291493324*^9}, {3.524307394696453*^9, + 3.524307438870627*^9}, {3.52430753126664*^9, 3.524307595687757*^9}, + 3.524307887690143*^9, 3.52430801698964*^9, 3.52430870896515*^9, + 3.52430938085923*^9, 3.52430978379848*^9, 3.524309869099255*^9}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"eqs", "=", + RowBox[{"eqs", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"Efc", "\[Rule]", "Ef"}], ",", " ", + RowBox[{"Epc", "\[Rule]", " ", "Ep"}], ",", " ", + RowBox[{"d1", "\[Rule]", + RowBox[{"da", "+", "d"}]}]}], "}"}]}]}]], "Input", + CellChangeTimes->{{3.524307458740539*^9, 3.524307469154199*^9}, { + 3.524309130251093*^9, 3.524309138828676*^9}, 3.52430919612042*^9, { + 3.524309638524346*^9, 3.524309671517801*^9}, {3.524309725894808*^9, + 3.524309728377661*^9}, {3.524309817825289*^9, 3.524309863778695*^9}}], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"0", "\[Equal]", + RowBox[{"gt", "-", + RowBox[{"2", " ", "gp", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "+", + RowBox[{"G", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "da", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"d", "+", "da"}], ")"}], " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"gp", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}]}]}], ",", + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"d", "+", "da"}], ")"}], " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "-", + RowBox[{"G", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "-", + RowBox[{"gp", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "da", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"d", "+", "da"}], ")"}], " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"gp", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}]}]}], ",", + RowBox[{"0", "\[Equal]", + RowBox[{"gt", "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "+", + RowBox[{"G", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "da", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{"G", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"d", "+", "da"}], ")"}], " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"G", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"gp", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "da", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"G", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"2", " ", "gp", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ep", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "Ef", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"2", " ", "G", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}], "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.524309672083385*^9, 3.524309729281384*^9, 3.524309789339478*^9, + 3.524309822769915*^9, {3.524309853706028*^9, 3.524309872142201*^9}}] +}, Open ]], + +Cell[BoxData[ + RowBox[{"Needs", "[", "\"\\"", "]"}]], "Input", + CellChangeTimes->{ + 3.524308087648338*^9, {3.524308961969795*^9, 3.5243090170597*^9}, { + 3.524309168675656*^9, 3.524309185278702*^9}, {3.524309274048782*^9, + 3.52430929781512*^9}, {3.524309386065924*^9, 3.52430939305321*^9}, { + 3.524309433031015*^9, 3.524309452256637*^9}, 3.524309684685198*^9, + 3.524309723959268*^9, {3.524309982508775*^9, 3.524310015946306*^9}, { + 3.524310077800565*^9, 3.524310124188593*^9}, {3.524310167623911*^9, + 3.524310168175304*^9}, {3.524310232289191*^9, 3.524310249731075*^9}, { + 3.52431029037146*^9, 3.52431029246203*^9}, {3.524310388752021*^9, + 3.524310454965432*^9}, {3.524310707096789*^9, 3.524310707339371*^9}, { + 3.52431115037595*^9, 3.524311180234761*^9}}], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"params", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"G", "\[Rule]", " ", + RowBox[{"2", "*", "6"}]}], ",", + RowBox[{"gt", "\[Rule]", " ", + RowBox[{"0.01", "/", "2"}]}], ",", + RowBox[{"gp", "\[Rule]", " ", "2"}], ",", " ", + RowBox[{"da", "\[Rule]", "100"}], ",", + RowBox[{"Ep", "\[Rule]", " ", ".001"}], ",", + RowBox[{"Ef", "\[Rule]", " ", "13"}]}], "}"}]}]], "Input", + CellChangeTimes->{ + 3.524308087648338*^9, {3.524308961969795*^9, 3.5243090170597*^9}, { + 3.524309168675656*^9, 3.524309185278702*^9}, {3.524309274048782*^9, + 3.52430929781512*^9}, {3.524309386065924*^9, 3.52430939305321*^9}, { + 3.524309433031015*^9, 3.524309452256637*^9}, 3.524309684685198*^9, + 3.524309723959268*^9, {3.524309982508775*^9, 3.524310015946306*^9}, { + 3.524310077800565*^9, 3.524310124188593*^9}, {3.524310167623911*^9, + 3.524310168175304*^9}, {3.524310232289191*^9, 3.524310249731075*^9}, { + 3.52431029037146*^9, 3.52431029246203*^9}, {3.524310388752021*^9, + 3.524310454965432*^9}, {3.524310707096789*^9, 3.524310707339371*^9}, { + 3.52431115037595*^9, 3.524311177427666*^9}, 3.52431122885174*^9, { + 3.524311524641037*^9, 3.524311524903175*^9}, {3.524312004987617*^9, + 3.524312005209647*^9}, {3.5243172979346*^9, 3.524317302891587*^9}}], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"G", "\[Rule]", "12"}], ",", + RowBox[{"gt", "\[Rule]", "0.005`"}], ",", + RowBox[{"gp", "\[Rule]", "2"}], ",", + RowBox[{"da", "\[Rule]", "100"}], ",", + RowBox[{"Ep", "\[Rule]", "0.001`"}], ",", + RowBox[{"Ef", "\[Rule]", "13"}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.524311229628232*^9, 3.524311525783165*^9, 3.52431200606623*^9, { + 3.524317283500434*^9, 3.52431730377196*^9}}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Re", "[", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], "/.", + RowBox[{ + RowBox[{"NSolve", "[", + RowBox[{ + RowBox[{"eqs", "/.", "params"}], ",", + RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", + RowBox[{"Im", "[", + RowBox[{ + RowBox[{"-", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "/.", + RowBox[{ + RowBox[{"NSolve", "[", + RowBox[{ + RowBox[{"eqs", "/.", "params"}], ",", + RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"d", ",", + RowBox[{"-", "50"}], ",", "50"}], "}"}], ",", + RowBox[{"Frame", "\[Rule]", "True"}], ",", + RowBox[{"PlotPoints", "\[Rule]", "100"}], ",", + RowBox[{"MaxRecursion", "\[Rule]", "1"}], ",", + RowBox[{"PlotRange", "\[Rule]", "All"}], ",", " ", + RowBox[{"PlotLegend", "\[Rule]", + RowBox[{"{", + RowBox[{"dispersion", ",", "absorption"}], "}"}]}], ",", " ", + RowBox[{"LegendPosition", "\[Rule]", + RowBox[{"{", + RowBox[{"1.1", ",", + RowBox[{"-", "0.2"}]}], "}"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.524308094188334*^9, 3.524308094191923*^9}, { + 3.524308124766632*^9, 3.52430816521818*^9}, {3.524308215017632*^9, + 3.52430821599524*^9}, {3.524308278827747*^9, 3.524308417340977*^9}, { + 3.524308457756842*^9, 3.524308519015868*^9}, {3.524308627034058*^9, + 3.524308649205349*^9}, {3.524308803024812*^9, 3.524308805097356*^9}, { + 3.524308851297888*^9, 3.524308857191146*^9}, {3.524308980168808*^9, + 3.52430900618334*^9}, 3.524309066640106*^9, {3.524309244411378*^9, + 3.524309247426896*^9}, {3.524309455544498*^9, 3.524309458269017*^9}, { + 3.524309929887741*^9, 3.524309973047037*^9}, {3.524310032108643*^9, + 3.5243100388017*^9}, {3.524310105170209*^9, 3.524310107302507*^9}, + 3.524310260188325*^9, {3.524310401182218*^9, 3.524310401316028*^9}, { + 3.524310445626734*^9, 3.524310579827762*^9}, 3.524310745021266*^9, { + 3.524310821036282*^9, 3.524310838368384*^9}, {3.524311016000181*^9, + 3.524311029712519*^9}, {3.524311758192257*^9, 3.524311758374465*^9}, + 3.524312080157748*^9, {3.524317317505721*^9, 3.524317351600485*^9}}], + +Cell[BoxData[ + GraphicsBox[{InsetBox[ + GraphicsBox[{{}, {}, + {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" +1:eJwtVms41PkfnVw2whYpJURRNOOS+6X5zde4jXTDUCJaGpXIZWhJuZQoyVpF +s6iNkCgpzG9QH99x7WJsm9ptbXKLchkRKrlt/+f5vzjPec7znOecF+fN0fIP +deNIUCiUS9/xP17bkfxlcZGFS5usKjoHa+DENXruCyELL+1xE31orIEXh6eI +orMsrEzTq/wzvwZasm43vJxzwlTTm1bt+2vgfOkb78k4J8ycX8OTVasBelqs +SqqkExYFKTNbegVAW+q/vOy0I96afFZgXCyA4SMtanUURzwQd+X913AB9AdE +BHrEOODnV3/TkKELoJ2a+r3SHjfMuxTVywsgpXM9+2i0Pc58t9gk0U9C7IZ5 +xekJO7yc88LCt4YEwnXfQGikHX7QPOw2nEXC5I71//rPMLGY81HzyAkS+nv1 +FXq4TBytUj06tJeE/AO17B1fbLF7QvfVRYIEjSOF2a2VtrjdfO2xSWMSciLS +XzPDbPHfu7kGnzaTkBFQTv2mb4uTbjg40zRISGa3x90fQfiBxuj2sFXf8y3v ++vTcRdgp48oY8SMJSD3NenkYwoqxuRHzS0mwbk83l9RH+F7a/vXOEiQELWzg +jHUw8K80rkzdPB/0nYojmj0ZOG9W0if1Gx/Gf9FLyPuHwD0XboUEfuXDWPjU +k3lXApOvVr93+cKHUff6lX5P6Xgu8JZq3Hf9RuJzvKUDHbdTzrTPffeL7tNG +FfE2TMlabfN8lg9pTr0hnXbb8B11jw0Vi3zY3pX1saDVBovfRMi3SZFgL595 +dxrZYNrA24BWORLoNunHWLXWuFZ5QslVmQRpVxlG6jZrXNjCN6xXJ0EUeEap +DawweXJGulCXhPPOR2SS7aww5Z9N5m2mJDBpuxYYjy3xTYPFhRgmCRYlsUZJ +TEu8Mfh4opo7CTTt2/6PH1pgmuWl3ZUcEsaT2aWzDAsc/0Fr5UA0CZVDixMG +jea4k+UeOX2JhAcDn6JGbcwxi/HniSW3SKjoHZi5XWWGSau87NiG73uW2t/o +NjTDa6qy7011k5DJvem4qswUf+YorpWnCGBFhw/4VprggcYsMspOAFKcovKH +xcY4ddmLs695AshqGnrytWwrrpAt6MmbFoAcSG/R4RvhtIJydpJvDYg7fpJu +8zTE4yeuRnr01cB8yz35ZRx9bHHhc1x/WC3MaKhJhztTceMa1t9ntOvAQCnB +/YqrHuZ2uG7V/FAH+laXqbyAzVi0tX5hU+tDUGlummpy0cF8+758z/5HULLP +K6nGVRub0U0OVcUAWI+KV5bv3Yg/bnyup6BeD8wHimokawOeHXozznlbD87R +ZtrYSgu/s0uZ4HhhMHttFF5jqIn33KpbWNeGwS5s3ymOiwYO4S/3TdouBI9n +jsHK3mo42PPTcs82IRzeZObTGKSKi8bW16/zboBDg7b03D1rcIZRYkj4D43g +X7xLg2u+Gs9oB8rTmxuBt8TdYylSxm751f20i03wh8/etFxnJTy1o1klMrAZ +no8s27niwApMvfesT5XdAjemT61b1iuPQ+lGIUVerRDdpRnvUCWD/x49ZJqW +8Rj2NDf1JaRIYZ2eyze0ep5ATv/eT6YFFNx7bIHro/MMnkr+JfkiZqZ+lVyL +IN+vDRReRr3vWjpR//lRYX1uuAhusKjZHdTeepNVPnKxbSKoGMvwme7KrDe+ +fhCWlLZBELcp4cNsN6N2fLSgbOgxrNEajZ2O/MgAXua3cq0GoEvVec9GfWG8 +lH9vXSWqAHToB7PXrxcZMbv9tDse8gitPt2UTnUpdOIL7+RshICo8O52er5U +BinYtAm1rYQE41WWTMuEHBpMvJya59JIxDakTFaprEDeZVP/FkU2EntzmvqS +zZXQ7lfeE7vONBBHCTdWtIsy+qO7pD9no5CI7eu+e/TgaiTL9Q2V2lNPsEei +Hl13XYNyKezhk3kPCf0pOVEHUxUFpMRP6q+qJVR5Z0e6D6ih26sNAtyvkITM +tlnZ0WgNxLz6NbHHvZrwLaAPqVtqolTeZOiBsEpCUHxa1GyihZ50Tazte3if +0FccDD69ZQNijwgsqm0qiILYXfJmWhuRuA7eXYS7REHlZpPXNG2U8Wl6cGJl +GZE/Qtkfa6mD2B7uDSF3Sggpz7ceyHgTouzMJvVvFhOHcZ2rNG0zGlgh7iJa +Cwn2V9lX1da6qPrwtTP88QLC1mjfvkBnPdTpV/m+3S6fcG5vz97kvgWJwr4t +WXfud8I12OHVoA8Vtbpp6xUL8whdBZu50h36qDh/6loWlUcoOysZOwYaorbF +dGXjwctE/9TX80rlRkj790Nz17kZxF6qYpVi4VbkdDDSf/5bKuFpmBM4V26M +DJP8ax08zxECzuYxmRIT5FOa2z9bkUAUHtWZp/BN0cujIWXBkdHE1O+be1Uf +mKHz2bKSB2TDCb9tbgn2t80RW3nuw3MJDsEuFhd7VVugJ17vTsv/uoe4w7xU +kHHPErkrftJL8DCBX+5c06kEK8QJmkMKrV5w6dRfAQOPrRF1uy5XlxYIY3Er +f7YS2qC3qt9yZuWOwz+7hIox7dvQJpOLovihCNB15SZ2PqEj4a3aF0FWJyCz +ZucdF0wguZ/b3JBpDCR/5PmWPGOg+HTp3bNbTsFH6lTEZX+ElrmAWFAVBz2O +7JOPhxDqC8etL68lwNsrLL9zx21Rry4901CYCD/OgYH7sC1aWyRxvbruDEg+ +FQuzw5jo1m8/rvDin4Ut968zRsRMpGP5dI6ZngS+z/pzWo/YId58fHm42znY +t6O3Zu2YHTL4s2I4RCUZzg4ebDwVZI8mfxo3TRAmA/c9L8Njwh75yrZ6agen +QNYSdxYj1AENGysf4y2mQPOu/K6KYQek2Rp1tOfceaiVKDHnhTkiEI/5Dchf +gJ4/jE5miB2R0iWFHSWJF6BNMiJxIdIJbbfff7jr8wVoDnIKnJpxQtI/OywY +/ZQK48PXzWajWIiRflyk+SgVpLozs+drWUgYauEXKk6F//8XpKIeVyBadxH+ +AxXzhaw= + "]]}, + {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" +1:eJwtlmk0FdoDxclMypShkHm6poyZzj3XeEV0zSLDvQhPMtaVeET0ZErIEGXI +M5MpoeNURJGxvAae6FHmhJdKef3X+n/Ya6/96bfX/rQlqWftfPcwMDAU/dL/ +XGQ86cvuLhm3Kzr4EzpywLkio8Kxh2Q82b6fNdg2B4yd3gR3EsiYLt35RP5D +NniSU/XoxY4FrlJP0RTjzgZXqifdNmIt8K0GSt/bY9eBUWq0UAqTBQ7lHmlN +ys4CymzU/TUx5ni0O+Ki/F/XwKL/E9FOBnMcxz7j26lyDbynhfk5RpnhyiOL +4VExmWCIkPILaYrbTSrTUuszQPKbww4BdFMszsZ0ojUhHURL/eDdWjfBHR2B +Ca+PpQFAcZk7G2GCd+vCytzVU8GG9eG31K/GeCyGYpclfRW8n1HhfhdujNex +C7MkewooOdXhYP2FhEf+jd6JZf0DFISlvzIOIeFGhnn5B1vJIMlhKPbuEsTd +Eo/P5qwlASiWqr8/BOIbSk5DeruXQeBPKd/VcSJmuPnmCtfPRPApQzHu5muA ++cSPxTnxJIJl+25+z2dGuPMrRZPAkwCe31Ve5sWGODskbf+EwCVwbCpnrbTP +AId+02axUYwHRgbpv5E79PEmGy3eVj4OPPe7xDeI9HCmzIfP0z6xwFjZ5iex +/yju0JkoYr5wESjLVFH7u3Qx2V+/guJ4ATQv7K6rPtbBt31PmV8i0UHjzNzX +qhZtnFkr4hM7FwmywsvMD9Ro4Td4MFM+NBzwjLsjj2ZNnMmdY5m0GwKYfe/U +d1VoYIU7qcMnzINATs/C0+2aI3jv2+h46VA/wIVYlGTb1PGVURtihJwXWBn3 +Zhl0UsMfeQuVszko4MeThr2cviq/9hgOs67bC76Ki7KEWhJw4zFxR0GSPVLl +i7PPpiji9llixv0yH1R/5w9i7kkFXJljp7z5IBCp6F0n5NHk8TuzwcWRphAk +tUvIrHeWwzBopWGuOgIJ9fZs9ljJ4gMXK52t+KJQpYtr4n2KDBbmlVPqL4tB ++ssr/PXO0tjQ5kX6tHs8Mm7iFb1HlsKMfdRG/3OJyJKuLYP1JPGhAbPbPD+S +kfYr9dD7ahJ4usf0C8fGVWQS4nLR10ocm4Y1ieqSMpHjgHmQgJsohjs6fR2t +Wei0nLb748CDmMPlsbFqWg7ymScZFZ4QxtKFlwhPCfmIWmEjHq4jiKVYH4mx +xxahPEZ7RzYogDP3dUqJKZWgYXfn1EJLPkzXlWIt4i9HI0ucx3lO8eD79PNb +iVf/RLe3Lh7inNmL38m/taUN1iD6lMTvZi3sOJvvjo79s0Z0ordnNi6ZGV8x +qd1THduCCt47f9YqZcAy8j7WZZ/a0TOmCaaxqK/dbGr+9UpVCHG/iPwwxbbe +Hfmm223Z6zG6TSbkjhNmusU1ZKuvVvWjxtVM962prG7aPs3gMtlhFBjeE/fx ++zRRrLlE5qXBOBKWXI7eilgjTtXZfGZ1nUBGzJ1u3yO/EIVm6BuOwq8Q9GHV +fvVql5gumCGQH/8XkpxVSH4jxgy7Ti2Y9Pz5AjW6TVuMsLHD8n3hdZKSo4j4 +Mof9yToXHFvHHomRAyj6UfJGixAP/Mw87qtm14ucC3pmk3T4YCbDwgvfHIwC +gB2ZbiUAb/M3Dt6S60DRs9N1AV6CMD+CbeDwZAtyWIp8UEwRhmQj3T+m+O8i +lU2u5+PGB+GmO+dffxvVooN5CUvTp0Qhh4CINtb9E7EbfudYpotDRVk5x27T +MuRRarQgdlQCCj0vYYy1vY3aK2Ke92pKwnM/R9qe9hciFd75oBglKfjvZrng +1ckbqDTaZq+2pDQ0OCARdzM7G5U2y2u+UpaBbo0jC+fyr6GSJYaT0UdlIauj +GRTWTEfMTn87Qg056D4lp33IMAWdxp0UFmV56MUSajs5loQctjletuorQKpz +nWdyeQIiqbu4+FkqwiRbydHJD3HIcmgoV85eCSp8FuIqlY9BlCCzl/PuBJhe +09u5LRSFugzxx34HZUjPMlS49SgSKXAb7FRbq8Dt43ynvJ+HIfEauRt0V1VI +brbk1Fs6iwQs+TTM/dTguHnwiaXZQNS2l3G0QF0d7nbxL1c3+aH3m9tX+OrV +YaHPhpLgJyoS47kszqd4BGr/HsQ8YeCJnAm8LbzlR2AVz4hbl74rcqpz5E5W +1IBsl2M8PrnaIye1Ar+deg3o7iETPSdmjZKfeVVfImhCxSUx5yRlE9TuK7/K +XqkJD34r8c/g1UH1pyu2mNW0YGXxbye/KQmj8gDZHwxtWlA0uXV4dksCDCbK +rXFracOhzp7JxHEtsHlLfuZgkzbsrk+rYNwPgdJqV2ODig7cfnZnNVjSDHga +2sWZVunAwB3i4u9PLcHJ9Vv8tmq6kEOauBMZYAMcKlYqXFt14dy1YlVHCgXU +GqeVZjYchd6L9BbPpw6g+PyBfyR19eD5xAZZaogTyKgtkm1GetD7gpyI+YYz +SBfoMB000YfBaT9YhG1dQdrFCdpcvz5UN7nLuZZ2EqzG8p/Xe2gARQVvBd4s +dAevbR7yRg0Zwnv739YxxngABUp4/JunRtDW+XPY3S+eIOv+8VorDGDSSGD4 +4XwvkOoQzvLNjAjtYBOv8D9eIGktz6NygAi3U5Z7YhS8wWuKxKimDIQXmOK4 +xqjeYI2wGXadCuG+7rLrunnewF+v/F+VCgjZdVglFwa9wTtzhwv9CxAmibyD ++TveYPrM0LKcMglu6Cj4z8lRwd/ZZM/LwSTY8nKQxH6cCs71M1kE1ZIg6pe0 +OnSGCvbtIFX7RRJ0DGobZ0uhAnaa03aEijGkSRha81VQAdOzlYe5IcZwbi5+ +ZQZRQa7REwZSgzH0omfk241TgdLdYuLSijFsrLx+2WaOCkwB6YwrwQSeMb1W +2rxJBR4D7wv6/E3giTUBV5Y9NPD2KrU6pMYE0pk/TpntowEX65n7Iqsm8NHN +4xHewjQQLFICrJRN4byt8EkGCRpImPd6fDHQFH4a5Jv7LksD3+d3FBfqTOHW +yMHdTiUaCP+Ql+m4bgof6TF7DajQQOJmZNAxdTNILvYU0VOjgRxGezLxrBm0 +GY+97vYrqyh849uuNYPRccUatqo00GtTMtW4aAa1LK4kKSrTAK6USSlXMYcT +Fb4F1Qo00LGnUicvxBzekDljzS5DA8cDglwEGsyh0XnbPiROA++G1S9krpjD +XNsextxf/ScCRmMsjlhA+Rr/Bzs8NDDIFBb/M8ICNim2ccWw0wD53mR41D0L +WDRm422/SwW9gRZ+m18t4GjzUODpLSr4tFis/T2SDHnUOHfZZqiAeTor90cH +GQa4z7R2vqCC//83ONzWZjbURwX/AR2xl6s= + "]]}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->True, + AxesOrigin->{0, 0}, + DisplayFunction:>$DisplayFunction, + FormatType->TraditionalForm, + Frame->True, + PlotRange->{All, All}, + PlotRangeClipping->True, + PlotRangePadding->{Automatic, Automatic}], {-1, -0.6180339887498948}, { + Left, Bottom}, {2, 1.2360679774997896`}], GraphicsGroupBox[{ + {GrayLevel[0], + RectangleBox[{1.1500000000000001`, -0.25}, \ +{1.9500000000000002`, 0.3500000000000001}]}, + {GrayLevel[1], EdgeForm[{GrayLevel[0], Thickness[0.001]}], + GraphicsGroupBox[{ + RectangleBox[{1.1, -0.2}, {1.9000000000000001`, 0.4000000000000001}], + InsetBox[ + GraphicsBox[{{{InsetBox[ + GraphicsBox[ + {Hue[0.9060679774997897, 0.6, 0.6], + LineBox[{{0, 0}, {1, 0}}]}], {0.08, 0.08}, { + Left, Bottom}, {1, 1}], + InsetBox["absorption", {1.2100000000000002`, 0.58}, {-1, 0}, + Automatic, {1, 0}]}, {InsetBox[ + GraphicsBox[ + {Hue[0.67, 0.6, 0.6], + LineBox[{{0, 0}, {1, 0}}]}], {0.08, 1.24}, { + Left, Bottom}, {1, 1}], + InsetBox["dispersion", {1.2100000000000002`, 1.74}, {-1, 0}, + Automatic, {1, 0}]}}, {}}, + AspectRatio->0.7500000000000001, + FormatType->TraditionalForm, + PlotRange->{{-0.1, 3.26}, {-0.1, 2.42}}], {1.1, -0.2}, { + Left, Bottom}, {0.8, 0.6000000000000001}]}]}}]}, + AspectRatio->Automatic, + Background->None, + ColorOutput->Automatic, + ImageSize->Automatic, + PlotRange->All]], "Output", + CellChangeTimes->{{3.524310696655616*^9, 3.524310712400555*^9}, + 3.524310748075032*^9, 3.524310842512368*^9, 3.524311025047665*^9, + 3.524311165720685*^9, 3.524311199077887*^9, 3.524311239713523*^9, + 3.524311537889152*^9, 3.524311765539826*^9, 3.524312087990248*^9, { + 3.524317311737578*^9, 3.524317358859573*^9}}, + ImageCache->GraphicsData["CompressedBitmap", "\<\ +eJztnQV4VEfXgLfZKC4FylfaUqdQd4FCKS6FQktxinspwd2tWHEJrsEJIbg7 +Ce4eJLgGt8Cfd2S5m9zdbLKblu/5Px6yyZ1775kzZ86cOTpbsnrzerUbV29e +v2b17IUDq/9Zr37NZtkLNQmMbbK+YLF4ZbNYLFHZLfz9NPZP9fE09r/8eJUP +mv8/NbQWv1KVCA0NnVy5cmVo8sDX13dA06ZNfR88eMBd7m356quvRtatW3fz +119/zfXb4jXry1FRUU81Kb3Fp/+avHnzWlQnZq++I276mN2y5Ew62BxJG8g2 +SYY2smOvmJgY3jz8zjvvWLxEm98He/bseeTt7V1vxIgRtDQYNmzYQx8fn/f3 +7t1rUXSY9csvvwxr0KDB15s3b7Z4ic8UudevX9+2R48ePOEMxlsudJPT/W5y +JHGEEZJAbcWvlLx66N1339UzEVSrVi3asly4cIHrrOfOneMaEmviZLp06dL2 +Tz/9NMfBgwctVtEW4P3o0aME31eUcfpMTjf7eC8J41IkaSG7rj5u3Dgbs/qI +T2v7bt26AS46TZo0isrWF548eXIzderUB9577z2LXATW7JGRkRu//fZbMZXe +cri29xQqdu+95cIzudyCnbTxKJI0lLfu+/n5xQHhk+769evcZTEuL1CgQOqb +N28qUL5xqX83ICDgxOuvvy4n0hqZPXv22ylTphRXWR12YdVdiB8J2psJZM23 +7NOnj/Xx48cKed2D4VH7bt508blcHunGXaKES/K3lG/mWbduXa/WrVvrNzUk +hcCTF154QSx/A1JH3n777RgvL3klu/TLeOXKleNvvPHGoqJFiwbcvXuXVtu7 +VpP33nQR/vtJhP+WZ4aniNVK7kPD69ev//aRI0eMkCyG6YPORlAnX3vtNRvd +pVD1LTNnzhze1Vjp96wmr7zpIugPEg/6bQ+MyJ44TNGUSpUqsdbjgDKVJbdS +pUq1P2fOnAqVFCnu3LmTJjo6Wj/D38DZ+fHHH3OtYRhEig2EE1Fneyan+928 +4+ZIleST3OjNdFWePHmyPU/6ja5duzZNL50/fz7ediJplTa0RIkSY2rWrKl7 +YVA8s+G7777j2imMt1zoJ6cH+nk36cNUhFKa1pBGjRrFpTP6BnpH/eHDh9PS +cOjQoVzn2rdvn6ZSt/bt2zMXgKalWFhYGHCaDhgwgGunMN5yoZ+cHugnRxLH +aE8idJpLmTJlEq/L9e5TfOHChaiuo+rUqcNv0FIs7Me+07pXr16rfvjhByYY +7u/UuXNnVD7VvbP3ze/lchP2e4kci9LH49kpL4lfATBd+BdffIGM2/TNN9+g ++YIbd6dWrFhxxyeffKKUHaHqhhUrVkzIQtX2yunTp5cWKlRImAQ+UsQypSx9 +puqx1WpFw6YfNSxTQ0WgdkyilkUKoR9WrVoFCHn/6dNPduzYwXWr3r17cz27 +bNmy+3LlyiV7tRZctmwZ29LrJ06c0JL4P2fPnkWdKj1v3jyL37NRAIZnFeWc +K+wCtaNG1KxzypQpcydFihSCUmpYFzNnzqxVEwSauOcrKVJ00aJFbKGvnTx5 +krW89/333y87e/bsAAnOTjNRfO1UYTZBKerll19m8zduRFwzLDnVUtJAzYM5 +cuTY/eGHH/46c+bMFI5RcKrcGlFIJWGYqJApjCokFAWez8OHD7WgxKQ8/cor +r0g0vF+8fPkyEwMhGbFj7BJWBUWfR4xE8kOVuZE2bdoOXbt2BbP+gYGBwO7a +oUMHRSDfDFevXsXyqTF27FgIxFwxCY7nKmENyQSVKxkzZjz16quvFl6yZAkK +w7X06dODjlhI/hJG2hs3brA4BVsquBWnTp2666OPPoJS+jlH5HGqmMTHybo+ +d+7c9/z9/YUQSvlsudD+x6BBg/Six6KBRAJXv8QxkG2fl1Prg1XFcmJKMMe/ +CA8Pl8tGMFBGPkLtsEREcU+YpmpkhZYuXZrq1q1bsl/ZlnP//v26Z425XZuv +Y8ydbrwSc9+FxYsX/ykkJISrL7du3cpqY4RKHlmkN+ypuorfluJfakv5HOHy +POHsZdIWYrdmEQ3nsmbN+leLFsJXwebHGv99/PjxlsySz1gT6B6aq9QO41RN +kaLFz+/+/fuIa615Awowr546dcryP67678TZCVdJFcwXdQpZMq569eqoYCPq +1asHKyiG+nPgwIHTKlSogCa27bPPPlOeJ1NlL/YO8lT6OiwBQKUNlYgW4Q2J +vUaqcZ3tzJkzpoz1iknbJyZtn4pPH2Pbd+f3nMhy99pNy0cOn7dvy+aYQMXl +UN86evQo6CL4WRuDGzduzM6PsDVFv2d8tBrvnb2uz5YRoZZuCXXni+VKd1CU +HZpdExeJr8OefI1tw9YPmH1rXKHWL967cbur485KyFtnsmXLJmQAV/6u9bAy +tMnwp6PyNO21deTCBHvwwfDS/mwoCfUsjsfiZ2w7M6VMF3rS47F0SbA7OBeF +H5UK/is/ffp0V7pL9fDufbqaubzjBH5XPLp8u7PufksY5KeXD58BVI1DC7fw +u9nu4NUJghR34gCqEIsLAHJdO3H+ztiCrQZsGjLf0sn2dKjLGHWJGLv4UVC+ +Zj4xjx4fCa7Qc8byjhPdHOS0lV0mHw6uKFpXh/4xbH1Iw8Fugtw2p1b/BUta +j9Hgj00v38NNkOcml+7EwuDvfpuHhdwb82OLpIH0120Pg35o3nnbuCX83XTP +jDVMUMZ70bc7JxlqhvvRd4DSYP/cDbSWO75qJ9cfXD1+LulQ371+6iJQfjm+ +ehetec7vPs514TNbDyYdat5zO48Bhd+0vhkddYXr6ofCtiYdKjgCBZxp9X/8 +4BHX7bdPXJYQVMPC8ebPRvvmrOdd5IbaBK9MLNF++Pr+s8RVB9fXj2hj7TDn +WuvZO6tqn3lL244TV52SMmTRNmpd35nnJ5fqqMEiXMUacg/s3KXtxu2cXaOf +BjtreYcJh2ZU6uUm2E3z6w1avrDpCA0Wal6aWLKDm2CPxq7wKSu7TtFgu0aM +WRwzOm/gC09jd9ikg2XbGLhp8DwNtsneWWs1S7gBFhBtdk5eocFWOrpsm41r +3QNb8+DCLRpsoTPhh2j79sLeyATBGrjfBqx05Lo9Gtjnlw6etrUllvVtWChg +2W+ev6o3NjcH/M6N05c02JSP7j2greWuqSvdBIsg1jY3sr7v5mELxFVHx2Bl +INLfUcKB9kb+A87IzM4HyA6u5Jxoi5pSpvO4Nb2mJzTA/zzDHGwMGQNW7cs0 +gk02h2Ym58O7MKlURyMeO+bU6Dd/aZuxCQ3vZUnwuGFW7QtNJldoAoPZN7Nq +H+NgEJ6b59X7O6HBKBZwFLu3PS7nwGNe1QRGsyq0yTDjaNAftfLnbDSOHbTO +0gjs0U8GD+2LzkfLnmkc7ZANA+egQiQ0WumtcRjWVu675PDzJjAgm+6jBoT6 +irT0jnkc42xA0lFgHodW6Carq1j24cRVK0xtZVlbn8TEcIm+pq1zrG8GKhwD +7WjzNux+animEWP/ZzIuGb3QifLl9pBtme9eu0XzH3tnrdPj1BYDhmLCW128 +qK+ay2RzXCfVz6hG/N71kxdo/u3Yyp36uR+jth1hxD+c3XHUdMRiqP1pkbyk +d0G7WK5csQ58p/7OfKfwpLveLjW8fAwh9h9D0s9h+tmMt8QMzy4+q4Zn7skz +D9tKvky860uNpeyJNbtp/ujK0bP6uZfuXL3JWOrvn7fRtbEkwSGm+q97IGQT +zVnvXInW/eP0oP+O28cvda1/V31kqtNWO6espNk35qGOvFqvTSjWbtDGQXPF +VQfXO3XdbaY67795aIitXT2Hi2f6is6TEt25y0607rLtraio6IXzW44V95Qo +RMsRpqLLnZvp9dK/6GONiXnSfUxQ+IMC+YOu9y/a1dgRuiE6YiI7Es8o8DUX +Ljz4NG+eUdtq15rztE+e1kbwY9f0Dj47+WfpfmhnezMjfw1LAHvpYfJLfefO +w/M/l5q89o9GC7wfP455PCRvSx57gY1GkRXn8P0x+Vs4HEV6kzahWga4hkSn +8eO2Pcn3/ajPDx28xB4ZM+r7QB57+fKl2xoJPJQskTQPbt/zLBKSfP4BsZL/ +8k8lJs7p0G4ZLWzIdCjk3vZtUQqP3w8vCqf5reioy8mCR+3QBWLCv96/Tzia +Prx67KzGo8G8ufsVHsVPbdpP81cX95/0LB7KvIUD9lWrOnNz/XrzdIZrwTMR +hzUuQ/4euEHh8sWlg6doLhW5fm+y4FI4fOsZaFJ1yZLDGpcqR5ZEaFyWNQsM +U7hku33pOs11ELPJgcv8tm2Wwifwi8YlcHfwGo3L6V/LTlW4INafxPJyJ3yx +HsWl4zPhFvND3tHdxgRFKPvWBx/y3bEFxCqGZqnu3n2oF9HFST91GLmu70xx +1T4ZEBo86O+NCMJsl2JXrkJo4uoeU09MK9dNI/TZ4UOXNUK7Zlfva/NUuoeQ +eEYROd2tWw9uFSk0bmLPHquVmuizLCxwxNZ5dQZqNCotW3ZUo7EkrNkocY+r +tjZoGZNKDYVGq6lTdtLVJ0eOXNZo7J71e1/hMlBoNAsO3q3RwFNyauovXT0/ +PQoYPHux9E+TFrRpvUTpHj5XJxRvJ+IPsf/uF8g/ps/IEVs0Qj3CR4fZJH9y +INRk1qy9UOHbvXsvKAr5plC+ttY7p6zglbNlf548tk/vNQonbTAJP5pHcWon +2/wfPHh85pcyU9gStasMXyCd4k/llR21asyZ167tUoUTOqXNuEkOnJoHT98N +nfLs3n1e46Tti+/P7TrGK8sDmy7c2LD+fIUTXlFuC53dozjJ+hxr+ps3718t +WXzC4hbNF+lsPr07vn7z3FVemda1y8rDlSsGK5zeiD4rQjGVjyzdliw49Rs+ +bPPjWIH48dEjVzROHbZPWIoUFrpv7L+/hwzaeKVkiYkKJx3IESFQj+Kkcmvf +OX36BjJxVL++65Tm5kdohcCffDlWbk2csB0NCGXSqJ8L1dnAB55BTCWQs8PD +5NdKFJuQ6fr1ewq3sMUtRofPrT1Q41Y3JOQAvJf52rW7Grf9M6v0tqnv7uEm +npEYWesskF2h9Cpzxg+BOXtZ+/EanbJr15zgmfdOnryu0Vm0qMVom+uyjQ2q +mfyuJKUexv/fTZo00a70zp06dZIJxAkRT5YreL995swNthhUDwipsEWairiO +wjbfzh1nwTbvrp3nNLb4ukRcLTHEqyzb7DzaOV3BVxbqePs+fBgTUaf2XCb7 +lYsXb0l8/bWwRYPROENZcC6zdu0JhTJxDx4LeHT/ocsoV5Ftdr6YeCRW3mST +MkxvXYb5L4c3JAGtLF+WKPyn3EX+OoD96/FVuzT1WCZQDz1eUQ+vEI/lvBZ5 +wbPUU3mfJsWaPsZiTVsMJbkTws2c9Kp2sf78efuhS99YEa18OP7FTm0+AGG+ +vHjglKYfIhA6t580cbui39cX953kMWwel+n3ufhMm3fNmjWgf/6ll17CcdGv +WbNmoM/Uf7p9+3Yc+31atmyJhxgP4cSqVatSeUDarBpyJry6uFMhM55mGJN3 +yNLmiQrTpk0D3piaNWvCcWu///57UvS5h6DRudQkEOO3EKQylN7hcl1cpEgR +WHHrl19+WXPMmDEqM50iP9KyiaA079u3LwnigOA10uyF40+CypAQGgyd93Bq +Nx48eDCzS76mRg0ZyALyccBlJoWv3rrw9V8IZTWXGPy0YcNJtvyQtq2XwDuK +tXRAPd2DW3c1a/Eb023A0CGbFGtpz1/DfXPXJ5K1UhIYYO8AU5ytsBX9IIx4 +ghFynX/lypV6lUF3YiIFli9frtpSQPtvNm3apOEDi/fG1qhRA/cWf+PRV4SC +8+jqs23btmnS24KmKgVST3P6a9eu0cKipk14y1RMG9RhIRHmMpSrxQ3AGlGw +uIKDGSy/uDwlIxv2lcOp5YwmZ8RQRacLbIuIuluowNgt9erOS3Hv3iOJlD92 +kC1nxMA0hypXmoEtqcQi5rUtbN82cUwDxfES6/Zjb775Jv0It7WBaQz1M1bk +DNRenS9fPs00dqHW2B9CNLxHtRQedGYXX6kC8d6BAwe4PalKlSqmMUzrM8YR +0l6BRd4QG2WH1Ixj94zhPWNo24iCxVUczNp84zKO44CtS0XZEkqyx2oDZTfF +N286dadwwbHba9eckyE6+r5E3h9fxIaQBoPj8hlmJba54rODMyr1skV6E8dn +vu26d++O1lNpypQp8JbmKzUAfWmYQxHYZPEYBuqPVtBoyJAhbE/EeHmHHR/y +GyrEmWbNfU7Yy5S+0JId0CELyHfjZU8kFgWXuEvGqLzj1osnYwGUGfc0lVjU +Whh68OGPPwRtrVdnHtwjZ8Y/ctqv3XCqxeWeNX80XoA9p7gHpxb5qoniHqVP +p31w+176+zfv8mPJID5FDpTtORmm9SEuiloyoVq1apdffPFFgYtjFktNjOxZ +6dezeCXPUT7Clqe3Qj2/Fg/xGDPxXPCYzAay2pXb/xNlba7lKjSWTxEMQlVH +ZV/aPDCMQJHaoK14Uh6Pztus3Y6JWonx1lyEGrazZo3ZignxNtsSU4TpLJ40 +s8wV6+EARSMT/vQM4tM6dWWXybbnhObgJVISxCtIdcZpIt3EUQ+qjc0B1oMF +9SYKaWALVFNR2fdUVi7xO+Lzzz93sIliIxinmoJFoQgbNkMisxpl0IDLsUFM +udTBJmpEIe4masAhXn/+9+7do02kccTTvFTFltODDAz23/OSW/KHkjgXLtxa +17hhCHyJJw8+tchOrNjXMIzIwojDl5O7d1t1vMJv0xXGOJd5FEGXWOFIlgAB +dRFUzyA+rSVPbthnz6EWX6bkQpYsWVLevn0b9rieLl06alnjMGmPtm3bWrwk +/2DE09azTZs2mkkh9tUMGTIILngqzYPA/v2FXP8tODiY59mQlBWIRadVc5YG +9jqPsETmlS5den6pUqVwjejUFp5FFPE2opw26qycSFPsZlu7ajNiotpSGVGh +RXeJVK02YYLQa1h6tJH94YhVnR4joSTic5cZ1EjyK75B3JnXixcdH12syPgK +K5YftaSTz/8UyzQw4cdXjkTF5ddhAwesx0ut+JXQqi3XOZGqIPY6gh4H2YKS +JUuifqC9KBVP8yGzNL18+fLUnCOp8Fo8E36+yEU0d1xv5OOgVBdZvHixvP06 +84+RwA6Oww5bBd8Ld9nVhjZs2JD7OCbePRT7L7bXGeXKlQMUf7MjsdPh/0Bs +8JymNUqo9uShoPI3K4V7ZN606dmzJ74dJUfTOcMFmPSJTgYcUoxW/Pjjjxjh ++H1IhXLEh04P6nBa5JrsiVryNCwfIo2ogEhHfr9x9my0Zo0Wu6atgoUoJ4vL +bT1Hj9qKpqm4jeQGHq11MHSzy9yW216siSt1OgnqoW3RveaAuk7P/XBa8enZ +PLH6kt+JrU/p3nUl8XWcRixiFnMG+Qq5N2S3G+SIraqytYr7ihQBJXfIa8Fv +ICI6HiApZgdrRb0lPpGHlMqKq6xxyZyElLW68hW4akbnjstxs90r+OMYomyE +2JXpQoYTERgzUmiv70tXr97R2gLPL17UfJS4auMiKb6TbcwaSq4ghzqQTx/K +YtyiYA5KJcxJ4Wr2XC3JQsxjtcWLD29o2EDoHcjx3qNGbs1CREx5mdCJHwTl +b07IXGc+aFikGvAekUBNhMmruk2xxfoTSQQ0BgYo1Kvi5oNzPUtPsos/YW/c +FZN6dF91s2jhcSCM3+vPWTP3EOpVTuBPLh+JsoU84oyzxKaNp3iNPC6LQdEi ++pr64Z37Lo8zXqQwscl/VcVnAAQnfDm3fbuluGFAjpA1sZzvd+06J7Lc1Cl/ +uhRWJHbFGRjP8m7+7dvP6oGVVJu3iF0keWBmETu1L/8xe9ZeLP+ZnTouZ8Vx +XXr9ukioS7i2lMQR9+U3+/ZdYJ4It0eVLTPF4gW2Fu+T5X6dOvTvARsKhYef +8Xn0KEYVlA/e+Pfc6PFF2ogatjhDJXLOyz+vWxuph6orKEVRlXtDFc+ozYcl +RdLCkUoVgsk88RZIp2CiDlStPGN1kz9CEcCMncGhORFOzRV54hpBtrzPFuf7 +J05cBeF2kybuCO7SaQWvI6w0HcjJQoCRP0d0M7uSlyENBq9d0GioQYba6PD6 +uXM3eRkkbebQk5gnROXHrO0dLI1Z99KEJOcGIBuZVCa38ZzZe8nAwVzBzMFk +QeRafMRI0jzKny/oXJnSk3fX+H3WiqZ/LpzepfMKZrjLuLERJNOQIVdy44aT +JNTkOHXqOowCh8hdIyDN7dsPWBS59+w+T3i30dw5+3rFSjLojHQj1yZWR6Yr +X4JwMNCili0WkWAGemRkqlMFyZugfk1UfHvbEy9jdPQ9gDAaLVjZIWwlR609 +uV7Sis9UdAojwCPwCusFvMkdwitBbgy5KGjVjM1PDDM1+ztB8RPly03bVaP6 +bJYcXLmwVcvFLL3Rff9ai7z4a8TwLQh9VCWLF6ldFmvgjODd5CzwY/EXn2la +Tpu6i7v8kNjKOwOHDN4EDHhzVscOy4FPQu/RiuWnXyhdahKql5xgf/6M/O3X +aTjzJvTqsZowaLlVq45/evjw5ZS2ibSS9GNLuYxDfVY6wHhVU5/McspWhb3r +UepLj2l6oRpFR99/82xUNMxMhOXX1auO48Mkx42ZIDuQMc3u2H4ZJGCMkIFZ +YYlavJgIi5XIDAMQFEknP2/HSgXukpnFothTvdqsTQ3qzWeaWCwsAqaGvqos +XXKkyNYtpz88duwqiytWg3yiztygXBs6UNAel2780DUzremmM1757Vm6fSw7 +x6/G9qp/RM6zt9DbrUg53W7xEp9WVrANxvcSLrnspMlIsRp/UCR4j+zfd53N +yxjLBBBBlBt4dFAqDZTEV06DYKPReYbG55hwJJcu0UIu2DTIVsmAkF4uovjD +BCEyY8JatVisESJFhxJtBpIsCCE1yawUxpgJQsj29Y0ahmiEdLq3KCZKDoQI +KuiTLcwQQoVizWmEyATCniHd2LMIqeRZrWgKpcM3PkIIklPlfpmqjxYi3HFQ +HyPQ0i2EjKnEPbeOWkhVc6Z712+ZoTFo8KCN+HY0GvX2z98I2qTtyxQF93SE +9s9WFAmDHJ6g1BE7NHoEjQ4XGo9CA/mGOfLXluEL3KSGOUL6PAyOAlAI2Z3E +o21glA+FE4neHJuDGqWzgjyKEzXAnMgiOjDBSRuj2G0KJ525W+LUxv2exUkl +k+g0XPJRlPy1w6nysqVHwAl3g8IJUxLTcF1IwyHJghN0IgFRZPOZ4FRqw/pI +cMIWUAeB6XQazrBSmTeezdzV5pSgU0B8nCjB0RnQCidk5+WJJdoTTfcsTtLG +8SY5ErlItiuTYoLWlwcOXAQtLOdU9qQS51k08zxaVpKHMak5LkdHUozP6fxN +lGCJkzfeJ85cYTTEcQM9iZbSIHRBTvfwoEXqcTu0qAnRiZEqkEjxEsJVxPfc +w0k8o3Jz85/dfgThx4E1jNwEmbSxahTIoMGr6FHbHZOWg3/z3dNXWZrYYCZZ +cqvEW3ZsjO09s6r9heKVKj4y6M4gg7mQ5tmEQRXmudrhxeF/enLCpEzxJlkf +HQTVkTy41PEx44csZ2xwaWZ5sxDw3oEZOfNNPImZXC4+JBxMWN1jGtPBJIoE +hDTm6GENo9zKmIoP6HEylz4wTeT/NU4qjiUlUNNcYTPfsUzc8GX20FsQsvA3 +pxnQltZ8CKjDU7t1WSlR8sUtQz42LAwEDq7iHISGSR2F9J45z9z1NgEkp9YX +gUE5HVsrZOUsNbSz9OajIdcJq0wuHF+CsjhaeJMDOWofXLAZyf2zuO1Pyqa2 +cf5z+fIdLB+seKrEvjh48JIXhqTFG3MOc5KfisuXHxWlAhZvdnRtbOPqMDv2 +MzEkcpqEakYiGeXzY3JZ6EQFbsQudga7ZV7dv0VYOKM5nXS6jnQg+2HJb59T +s78+VJAMH14XFsLX4plMJPG/eOPGPZQFCARtyEevvijsEL4WlC78DQTG8TfA +VCjuGNvUcWqfAwY0flChuGYSBrYPO5kRPYvLwk/RzmkuphntZKDFn9oqDpcK +XtFpIuUTmgAIgG8u7IvMZE6+0NatFpMvJ/3SATyJX45kEyCweDisDP29zIm1 +u1+9deGa+kqB1Oik8BluU9KHa4QtPATp+g8bunl8r56rScHDG7a/WpWZiBec +ApYA6S7CP4MfAk8ZZITbeRYSQ2pcRkF/9bG5jPCuKXeRD+5H+Bb/BIxM3xbF +4ODClPLz7ulT163CBeCNU0svD2bfjI6JYPCEkxnNVpAMvPsiWqlww/XPJo/F +TkWpl0jS8aYSPWhtnxk/R67dg+aUxXze4Ek8viqDDMMG5wp2ZMTc2gPEOXYS +ov/18UXbcqwbS6FbRNAiuKRAVMRhTtvgjBEZFAxgL//o2NErkFP7T4lirGza +JBRPMOEai690I+FcxtVEihL38cbh4eOdtpMn7cAhyvTgQ8XrjwrMTGj6v+0m +/RNMBzSjv6xZCoBUlDejg3MGKAe9oQsuDQsciWQVh29J0vlARhQ+BBISVxwA +97L5jIzo3289LiJ5tK0fjl1WEyKf8yEAf3Lqr13J+LJ4C/CZAc9hWBjcG+fX +H4TngF2XBOreW0eGkhRDoSYwKPaDZZhlZGTuqD2RVSKW7GkZNnXrsKABq8K6 +tgjZVb968I3SRcZ4PS2YZ7gl9dP8eUYyXyw8ZnDVn01CcfKhhrSYPm3X74sX +HUbjZoMgIYgFbfnCA0vDaf6cmJqnUiw6kI1FJVObVpd9lwi5aUuUMlvv0uuX +Hs0Gqfb+1RPnCEKxMrDKWSUoZpwyRCkaVcW4DVCkyAdlGyfJXbCLn5jPFDfH +FW7NSYds1GQcM++4SlFisPBzxLIPa1p9/UdcDuo4Yfx25gtHq/rKpTR+Dx8+ +xlhD9C1q3SLsStni454WyzP0afE8Qx+XzTvkWMPfxq/s02TG2Im9FvVZNGJ5 +k/CZG6scWrLNS1TuWzkj05ZkJc8vEb4YuIsfi5f4tCI3WAT8yLrK91H7LD45 +1EGdCe5nxWSbXa1Tbgdz5TRTyGyu5LF1GaAdKjZ73WeXD53BQiH7h7XBmaqM +j9FB9/Gre06n4BGvLvPFUSmogcxRCjFdaRGMeAjQ3PESLFzcMojlN2J9v1kE +oDFh0BrRKXKf330Cqc15Myxt5XiON4dNZ87YwxwiTfVX1RFBYv6WNG8WpuOn +xEv2/l51FpscmxmBCSSj0pUTXn8yD8E+EcvR2nB6NrwZvXU0IlaFxgVG5JLz +JVkbyCASWiAOuwnOaXQM3FJ4REhLOD79t+7oIGJtBMgUVDzlRP2wnSE4a4St +D30FfqMSBAUflR349MMJtpjneAFfu3X+Gms1nzndCZBAV4oy1TcPicpcQnQE +TI5VKD9dhTHRR1Dt2JyItZTxJMWVqWOaSmNm6khrMTXnsUBlavRwUlc9vCTi +zz0z10Jh2HHOsnbjoS6bEbsI2rHF/xll0deQPFQcw/FIKnIj2Ek4xZuVgU+V +g6ZRh1k5rCDC9Phk8WGVMads+ZUrjkG4nJGR19R3ofkTnkIlw3OsdxiMlXoh +8/czA+VcJKlMrXsFWY05RRUPWcDLChYsSO0bpDaW1MUr2Yt9O6GqQp43qwxU +KkJW0l46dunShT0KlY58qd6tWrWiZMdh1WEC/SZ3aaF/XK5znP+QkgMeyIyk +SBRhRrY58hFBhwnKKcfIRaEx+krBSEQCPZSAEtp/SKxegjwl6wr/DpyE6oS7 +l/XJIWbsoeJUoVrmbISiAat8dWD/RYvUDvgamCeom1R/IxCxCogxY5oS0auQ +KDby51syIBXJipAJtmrWr18/2tAWHVfnpXVWPKi5yGEloIILR9Am1BQvkRjn +WysoKAhu0hqJ7lcyn9OaRePjnqwhTOE681hRDmxVBFInTsUGykHTCHCEPsYK +my7KEj42xBceSc4QZsNuZs4PCGb4AY+0RX5lmB9Z6CQIkjDFPSL4bJx4NHTp +vovMYKXsETMh88WLF/VwdLax8TvN4lYLiIpAVcdirAbUXIBio8DZVfUZrEC2 +ViF+VBck6mrwcbp3WoBofN6QkOeRgsAA17nAB/GB8U8QhlkVAY9O5tOKBWlL +fJKJUn7swxjqelrxn7CriKKDqombVmgrak/kE64NVrYFOKrCM5kXX7tyutgf +igDZHsxKNayJAK/Qs1VlGVBOUlmUS/No8sUbQtqcPy+Ss/B7KavWB1uQ3B3a +8QsV3bL5tMptTHiOlCqJZoDjRhzVkkF8WsVZJPo5VbWMW8tmKjqeyxRxl6ij +cjfHNPO1q1yL/aFr8f2ibMUWKwn7vMa34zghva/znpOl7s2dCSa7mInEKFEJ +mr4Y+X3V+T4kORLeYh+ukbg5JqsCxx0/lgzi00p+Vtw5ZjGwPYnvTouzHRnl +YFzSOaopc1CrZVcbpp5ZmT9/foqFdE04z/Ceof7bvu5MzaILXXu8vMx8UxaU +72kyCboqNt/3o7qOHSO/hFQ6Cn3I1sLC4d7wAf3XC0O0hg2amemuROvnERER +DIQ6EGc1SiZtaZ1VVyVUIqVgvEQZDG0/rlixghZ9XXv06NHOSrCc9W3E1YMl +Vi7pUE4mjqgBVqm4UkUZeOPIUWVRFoyIOFPHxQUpHXZ+1J+SzI3yS3L3ksKF +C8edObsqHzVzjgqSdIWP06oiuXizUAaF/YNfBw2FPlh1jiqWiA856heIyVGN +5O6UIeJwh4srWbLhg9wkOoGMJdWMoJKq9kh43r41EfYl3ESSMAoRHXEll7oP +eaxEC0CS9E5xOFo9N5BUfdmVyeQwacvm5mCgKDEhcSXrhcT5WxwdinQj1tTA +xXF8I9u0zDXsPPY1LjlM2twdB3m6HAFrQM6bSSBowjiIZ7kalJYRTLGbssj3 +fPDBB4i/km6iOOav3mtF0rqhX1xk8AxFAypA66H0BCeIEJrARSrXvGzTJ+eJ +GGCScxASiQg1EHQqfLIqZ+O7vXvOcwQhE4pN4x4uCW3uDefO3afT7FTWhjcK +HcUEpDqQwtzIBijJ+TVOMMANAwYEUnVxOPnG0AA7weLRpBUniGCE2HxHKukJ +A5M2wo0Wj+b1OEGE8DKdcpKyOkJHzAnhbWKhWLT/FC46Pw1LWh/nQxotir04 +HLjpP4QItQEggvNXf+Mp1UUU2aCBupmS5joi1N7ZWEIhwvGyaFtkACQ/ImpL +QY0T5Q9cqUxveBdpL3IYPJrP6AQR+JK4vBERnK1Uy4ho7z+FCOFncjrElaqf +4Gh2potQtJuJpw5lqeqeJCGbKuH/jDPI3BEGUqANikNBaopcYulAhRgCXFwp +XxKVZHi/xf6WqERlj6BEphOOd1HFqVDSB5CLeuN/HiXSR2xbnypMJR5gO4w8 +Uan45ig9/yemOiEQRYS2EmF9ovec2Xttx6R7gED/DYeiOiERpIEckMp23nK1 +KjNtYsBzJHrOTvR0QpQs6lRdFpieMF2Vjf8hcSVI5kT5l46kdDJqJBvSDEmn +R02NN9Jf7IIOR93/2Y6gv1LrXzoJ0Wx4SgZRcsu+Yhwy6g7F4Jx/Y1qbaPeN +kf/2QX1OBkf1Nru3cXA6x4ZYk7PBPd8nxHV3PGgKnElYMQ4aDSq8bm35PVNi +SzZ+w91/6WlkTiaeVFI4WBjgccwvkbVudoKC3fcz/nceeOWEJCQsMXwktiYJ +rIIcE99PkzBJnuOzlxwP3A9XB9Zk5/HjhHs+65UrdxDo4hB0s1OA7Af9vByJ +ZDZCpTNyqoLWTLQRT3jWyeCScBCRYwR8CCNhBVC0SOciOmF2krfq3dWzf5x0 +yZc56PMJOI9AnI2ZYJeun8hj1rV67oPjx69Ss8aJLqbfVmLfpcsH5rxi0vaJ +SdunbjyXzTG6ZmbW84CSuGOWkp/iX2pL+Rzh8jzhLK6cfGX8/+bw+cfZy6TN +uBjFNp3RMNFPZWvsz6v/a3iOGiwv/B89/WWt\ +\>"]] +}, Open ]], + +Cell[BoxData[""], "Input", + CellChangeTimes->{{3.524310661537552*^9, 3.524310661580805*^9}}], + +Cell[BoxData[""], "Input", + CellChangeTimes->{{3.524308167496655*^9, 3.524308225146567*^9}, { + 3.524308611599059*^9, 3.524308618637643*^9}, {3.524308681290815*^9, + 3.524308696030959*^9}, 3.524308787305737*^9, {3.524309309530025*^9, + 3.524309327226821*^9}}] }, Open ]] }, -WindowSize->{960, 1029}, +WindowSize->{936, 1054}, WindowMargins->{{Automatic, 0}, {Automatic, 0}}, ShowSelection->True, +Magnification->1.5, FrontEndVersion->"8.0 for Linux x86 (32-bit) (February 23, 2011)", StyleDefinitions->"Default.nb" ] @@ -1433,72 +2612,101 @@ CellTagsIndex->{} (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ -Cell[567, 22, 36, 0, 74, "Section"], -Cell[606, 24, 66, 1, 44, "MathCaption", +Cell[567, 22, 36, 0, 110, "Section"], +Cell[606, 24, 66, 1, 63, "MathCaption", CellID->836781195], -Cell[675, 27, 85, 2, 30, "Input", +Cell[675, 27, 85, 2, 43, "Input", CellID->2058623809], -Cell[763, 31, 1128, 37, 52, "Text", +Cell[763, 31, 1128, 37, 94, "Text", CellID->525777075], -Cell[1894, 70, 112, 3, 44, "MathCaption", +Cell[1894, 70, 112, 3, 63, "MathCaption", CellID->429217524], -Cell[2009, 75, 1057, 27, 126, "Input", +Cell[2009, 75, 1057, 27, 179, "Input", CellID->433132487], -Cell[3069, 104, 125, 3, 44, "MathCaption", +Cell[3069, 104, 125, 3, 63, "MathCaption", CellID->133602844], Cell[CellGroupData[{ -Cell[3219, 111, 784, 23, 50, "Input"], -Cell[4006, 136, 990, 30, 52, "Output"] +Cell[3219, 111, 784, 23, 71, "Input"], +Cell[4006, 136, 1103, 31, 70, "Output"] }, Open ]], -Cell[5011, 169, 166, 4, 44, "MathCaption", +Cell[5124, 170, 166, 4, 86, "MathCaption", CellID->462076121], Cell[CellGroupData[{ -Cell[5202, 177, 508, 15, 50, "Input"], -Cell[5713, 194, 1472, 42, 73, "Output"] +Cell[5315, 178, 508, 15, 98, "Input"], +Cell[5826, 195, 1584, 43, 105, "Output"] }, Open ]], -Cell[7200, 239, 76, 1, 44, "MathCaption", +Cell[7425, 241, 76, 1, 63, "MathCaption", CellID->358620443], Cell[CellGroupData[{ -Cell[7301, 244, 530, 16, 30, "Input", +Cell[7526, 246, 530, 16, 71, "Input", CellID->167259034], -Cell[7834, 262, 634, 12, 94, "Output"] +Cell[8059, 264, 751, 14, 141, "Output"] }, Open ]], -Cell[8483, 277, 182, 4, 44, "MathCaption", +Cell[8825, 281, 182, 4, 86, "MathCaption", CellID->577766068], Cell[CellGroupData[{ -Cell[8690, 285, 1156, 31, 69, "Input"], -Cell[9849, 318, 1562, 45, 100, "Output"] +Cell[9032, 289, 1156, 31, 98, "Input"], +Cell[10191, 322, 1674, 46, 138, "Output"] }, Open ]], -Cell[11426, 366, 456, 13, 44, "MathCaption", +Cell[11880, 371, 456, 13, 88, "MathCaption", CellID->610306692], Cell[CellGroupData[{ -Cell[11907, 383, 933, 25, 58, "Input", +Cell[12361, 388, 933, 25, 154, "Input", CellID->645617687], -Cell[12843, 410, 781, 21, 72, "Output"] +Cell[13297, 415, 895, 23, 99, "Output"] }, Open ]], -Cell[13639, 434, 390, 12, 44, "MathCaption", +Cell[14207, 441, 390, 12, 64, "MathCaption", CellID->854192725], Cell[CellGroupData[{ -Cell[14054, 450, 1070, 29, 58, "Input", +Cell[14622, 457, 1070, 29, 155, "Input", CellID->465762594], -Cell[15127, 481, 1290, 37, 91, "Output"] +Cell[15695, 488, 1405, 39, 127, "Output"] }, Open ]], -Cell[16432, 521, 76, 1, 44, "MathCaption", +Cell[17115, 530, 76, 1, 63, "MathCaption", CellID->314466782], Cell[CellGroupData[{ -Cell[16533, 526, 250, 7, 30, "Input", +Cell[17216, 535, 250, 7, 43, "Input", CellID->298399236], -Cell[16786, 535, 16111, 429, 250, "Output"] +Cell[17469, 544, 16224, 431, 342, "Output"] +}, Open ]], +Cell[33708, 978, 34, 0, 42, "Text"], +Cell[CellGroupData[{ +Cell[33767, 982, 3830, 101, 404, "Input"], +Cell[37600, 1085, 6056, 190, 260, "Output"], +Cell[43659, 1277, 4176, 129, 179, "Output"], +Cell[47838, 1408, 860, 12, 287, "Output"], +Cell[48701, 1422, 486, 7, 43, "Output"] +}, Open ]], +Cell[49202, 1432, 140, 2, 43, "Input"], +Cell[49345, 1436, 271, 9, 15, "Text"], +Cell[CellGroupData[{ +Cell[49641, 1449, 420, 7, 71, "Input"], +Cell[50064, 1458, 593, 12, 71, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[50694, 1475, 1078, 28, 155, "Input"], +Cell[51775, 1505, 1211, 35, 126, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[53023, 1545, 1895, 48, 166, "Input"], +Cell[54921, 1595, 9792, 264, 243, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[64750, 1864, 565, 12, 43, "Input"], +Cell[65318, 1878, 6937, 196, 260, "Output"] +}, Open ]], +Cell[72270, 2077, 793, 12, 43, "Input"], +Cell[CellGroupData[{ +Cell[73088, 2093, 1304, 24, 43, "Input"], +Cell[74395, 2119, 449, 11, 43, "Output"] }, Open ]], -Cell[32912, 967, 34, 0, 30, "Text"], Cell[CellGroupData[{ -Cell[32971, 971, 3830, 101, 190, "Input"], -Cell[36804, 1074, 5940, 188, 138, "Output"], -Cell[42747, 1264, 4060, 127, 84, "Output"], -Cell[46810, 1393, 745, 10, 138, "Output"], -Cell[47558, 1405, 393, 5, 29, "Output"] +Cell[74881, 2135, 2502, 54, 179, "Input"], +Cell[77386, 2191, 22831, 391, 250, 8319, 152, "CachedBoxData", "BoxData", \ +"Output"] }, Open ]], -Cell[47966, 1413, 92, 1, 30, "Input"] +Cell[100232, 2585, 92, 1, 43, InheritFromParent], +Cell[100327, 2588, 264, 4, 43, "Input"] }, Open ]] } ] -- cgit v1.2.3