From aebc8a2feb25e64291b80d21cba4f6e9eef0c967 Mon Sep 17 00:00:00 2001 From: Simon Rochester Date: Thu, 1 Sep 2011 17:18:07 -0700 Subject: Mathematica notebook to generate Shahriar system. --- xmds2/Shahriar_system/GenerateShahriarSystem.nb | 1887 +++++++++++++++++++++++ xmds2/Shahriar_system/code.txt | 6 + 2 files changed, 1893 insertions(+) create mode 100644 xmds2/Shahriar_system/GenerateShahriarSystem.nb create mode 100644 xmds2/Shahriar_system/code.txt (limited to 'xmds2') diff --git a/xmds2/Shahriar_system/GenerateShahriarSystem.nb b/xmds2/Shahriar_system/GenerateShahriarSystem.nb new file mode 100644 index 0000000..1c4367c --- /dev/null +++ b/xmds2/Shahriar_system/GenerateShahriarSystem.nb @@ -0,0 +1,1887 @@ +(* Content-type: application/mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 7.0' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 145, 7] +NotebookDataLength[ 63341, 1878] +NotebookOptionsPosition[ 61116, 1798] +NotebookOutlinePosition[ 61481, 1814] +CellTagsIndexPosition[ 61438, 1811] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ + +Cell[CellGroupData[{ +Cell["set up the system", "Section"], + +Cell["This loads the package.", "MathCaption", + CellID->836781195], + +Cell[BoxData[ + RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input", + CellID->2058623809], + +Cell[TextData[{ + "We define an atomic system consisting of two even-parity lower states and \ +two odd-parity upper states. We apply a light field with components at \ +frequencies ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], + " (near resonant with the ", + Cell[BoxData[ + StyleBox[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]", + RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], + " transition), ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], + " (near resonant with the ", + Cell[BoxData[ + StyleBox[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", + RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], + " transition), and ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "c"], "InlineMath"], TraditionalForm]]], + " (near resonant with the ", + Cell[BoxData[ + StyleBox[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", + RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], + " transition)." +}], "Text", + CellID->525777075], + +Cell["\<\ +Define the atomic system. Three level \[CapitalLambda] system\ +\>", "MathCaption", + CellID->429217524], + +Cell[BoxData[ + RowBox[{ + RowBox[{"system", "=", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"AtomicState", "[", + RowBox[{"1", ",", + RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", + RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"AtomicState", "[", + RowBox[{"2", ",", + RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", + RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"AtomicState", "[", + RowBox[{"3", ",", + RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]"}], ",", + RowBox[{"Energy", "\[Rule]", "0"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", + RowBox[{"1", "/", "2"}]}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", + RowBox[{"1", "/", "2"}]}], ",", + RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]", + "}"}]}], ";"}]], "Input", + CellID->433132487], + +Cell["\<\ +Define the optical field. Field (1) is probe, fields (2) and (3) are pumps\ +\>", "MathCaption", + CellID->133602844], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"field", "=", + RowBox[{ + RowBox[{"OpticalField", "[", + RowBox[{"\[Omega]1", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[CapitalOmega]1", "/", + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", + "\[Phi]1"}], "}"}]}], "]"}], "+", + RowBox[{"OpticalField", "[", + RowBox[{"\[Omega]2", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[CapitalOmega]2", "/", + RowBox[{"ReducedME", "[", + RowBox[{"2", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", + "\[Phi]2"}], "}"}]}], "]"}], "+", + RowBox[{"OpticalField", "[", + RowBox[{"\[Omega]3", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[CapitalOmega]3", "/", + RowBox[{"ReducedME", "[", + RowBox[{"2", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", + "\[Phi]3"}], "}"}]}], "]"}]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"\[Phi]1", "-", + RowBox[{"t", " ", "\[Omega]1"}]}], ")"}]}]], " ", + "\[CapitalOmega]1"}], + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"\[Phi]2", "-", + RowBox[{"t", " ", "\[Omega]2"}]}], ")"}]}]], " ", + "\[CapitalOmega]2"}], + RowBox[{"ReducedME", "[", + RowBox[{"2", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"\[Phi]3", "-", + RowBox[{"t", " ", "\[Omega]3"}]}], ")"}]}]], " ", + "\[CapitalOmega]3"}], + RowBox[{"ReducedME", "[", + RowBox[{"2", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]]}], ",", "0", + ",", "0"}], "}"}]], "Output"] +}, Open ]], + +Cell["\<\ +The Hamiltonian for the system subject to the optical field. Probe couples \ +|1> and |3>, Pumps couple |2> and |3>.\ +\>", "MathCaption", + CellID->462076121], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"H", "=", + RowBox[{ + RowBox[{"Expand", "@", + RowBox[{"Hamiltonian", "[", + RowBox[{"system", ",", + RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ", + RowBox[{ + RowBox[{ + RowBox[{"Cos", "[", "_", "]"}], " ", + RowBox[{"ReducedME", "[", + RowBox[{"_", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]", + "0"}]}]}], "]"}]], "Input"], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + { + RowBox[{"Energy", "[", "1", "]"}], "0", + RowBox[{ + RowBox[{"-", "\[CapitalOmega]1"}], " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]1", "-", + RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}]}, + {"0", + RowBox[{"Energy", "[", "2", "]"}], + RowBox[{ + RowBox[{ + RowBox[{"-", "\[CapitalOmega]2"}], " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]2", "-", + RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], "-", + RowBox[{"\[CapitalOmega]3", " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]3", "-", + RowBox[{"t", " ", "\[Omega]3"}]}], "]"}]}]}]}, + { + RowBox[{ + RowBox[{"-", "\[CapitalOmega]1"}], " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]1", "-", + RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}], + RowBox[{ + RowBox[{ + RowBox[{"-", "\[CapitalOmega]2"}], " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]2", "-", + RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], "-", + RowBox[{"\[CapitalOmega]3", " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]3", "-", + RowBox[{"t", " ", "\[Omega]3"}]}], "]"}]}]}], "0"} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell["The level diagram for the system.", "MathCaption", + CellID->358620443], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"LevelDiagram", "[", + RowBox[{"system", ",", + RowBox[{"H", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", + RowBox[{"-", "1.5"}]}], ",", + RowBox[{ + RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", + RowBox[{"-", "1"}]}], ",", + RowBox[{ + RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}], + "]"}]], "Input", + CellID->167259034], + +Cell[BoxData[ + GraphicsBox[{{{{}, + LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{}, + LineBox[{{-0.9, -1}, {-0.09999999999999998, -1}}]}, {{}, + LineBox[{{0.09999999999999998, 0}, {0.9, 0}}]}}, {{}, {}, {}}, + {Arrowheads[{-0.07659574468085106, 0.07659574468085106}], + ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}], + ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.}}]}, + {PointSize[0.0225]}}, + ImagePadding->{{2, 2}, {2, 2}}, + ImageSize->94.]], "Output"] +}, Open ]], + +Cell["\<\ +Apply the rotating-wave approximation to the Hamiltonian. \[Delta]a is \ +average pump detuning, \[Delta] is relative pump detuning.\ +\>", "MathCaption", + CellID->577766068], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(", + RowBox[{"Hrwa", "=", + RowBox[{ + RowBox[{"RotatingWaveApproximation", "[", + RowBox[{"system", ",", + RowBox[{"H", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Omega]2", "\[Rule]", + RowBox[{"\[Omega]a", "-", + RowBox[{"\[Delta]", "/", "2"}]}]}], ",", + RowBox[{"\[Omega]3", "\[Rule]", + RowBox[{"\[Omega]a", "+", + RowBox[{"\[Delta]", "/", "2"}]}]}]}], "}"}]}], ",", + RowBox[{"{", + RowBox[{"\[Omega]1", ",", "\[Omega]a"}], "}"}], ",", + RowBox[{"TransformMatrix", "\[Rule]", + RowBox[{"MatrixExp", "[", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", + RowBox[{"DiagonalMatrix", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "\[Omega]1"}], ",", + RowBox[{"-", "\[Omega]a"}], ",", "0"}], "}"}], "]"}]}], + "]"}]}]}], "]"}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Omega]1", "\[Rule]", + RowBox[{ + RowBox[{"-", + RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",", + RowBox[{"\[Omega]a", "\[Rule]", + RowBox[{ + RowBox[{"-", + RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]a"}]}]}], + "}"}]}]}], ")"}], "//", "MatrixForm"}]], "Input"], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"\[Delta]1", "0", + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1"}]}, + {"0", "\[Delta]a", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2"}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3"}]}]}, + { + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}], + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2"}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3"}]}], "0"} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell[TextData[{ + Cell[BoxData[ + ButtonBox["IntrinsicRelaxation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]], + " and ", + Cell[BoxData[ + ButtonBox["TransitRelaxation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]], + " supply the relaxation matrices. Add additional term \[Gamma]p for \ +incoherent pumping from |1> to |3>." +}], "MathCaption", + CellID->610306692], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"relax", "=", + RowBox[{ + RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", + RowBox[{"TransitRelaxation", "[", + RowBox[{"system", ",", "\[Gamma]t"}], "]"}], "+", + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"\[Gamma]p", "0", "0"}, + {"0", "0", "0"}, + {"0", "0", "0"} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, + "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]}]}], "]"}]], "Input", + CellID->645617687], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + { + RowBox[{"\[Gamma]p", "+", "\[Gamma]t"}], "0", "0"}, + {"0", "\[Gamma]t", "0"}, + {"0", "0", + RowBox[{"\[CapitalGamma]", "+", "\[Gamma]t"}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell[TextData[{ + Cell[BoxData[ + ButtonBox["OpticalRepopulation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], + " and ", + Cell[BoxData[ + ButtonBox["TransitRepopulation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], + " supply the repopulation matrices." +}], "MathCaption", + CellID->854192725], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"repop", "=", + RowBox[{ + RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", + RowBox[{"TransitRepopulation", "[", + RowBox[{"system", ",", "\[Gamma]t"}], "]"}], "+", + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"0", "0", "0"}, + {"0", "0", "0"}, + {"0", "0", + RowBox[{"\[Gamma]p", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, + "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]}]}], "]"}]], "Input", + CellID->465762594], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + { + RowBox[{ + FractionBox["\[Gamma]t", "2"], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}], "0", "0"}, + {"0", + RowBox[{ + FractionBox["\[Gamma]t", "2"], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}], "0"}, + {"0", "0", + RowBox[{"\[Gamma]p", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell["Here are the evolution equations.", "MathCaption", + CellID->314466782], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"TableForm", "[", + RowBox[{"eqs", "=", + RowBox[{ + RowBox[{"LiouvilleEquation", "[", + RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//", + "Expand"}]}], "]"}]], "Input", + CellID->298399236], + +Cell[BoxData[ + TagBox[ + TagBox[GridBox[{ + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]], ")"}], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]t", "2"], "-", + RowBox[{"\[Gamma]p", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]], ")"}], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[Gamma]p", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]a", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], ")"}], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[Gamma]p", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]], ")"}], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[Gamma]p", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]a", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]], ")"}], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]t", "2"], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]], ")"}], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]a", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]], ")"}], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[Gamma]p", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]], ")"}], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]a", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], ")"}], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"\[Gamma]p", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", "t", " ", + "\[Delta]"}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", + "\[CapitalOmega]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", + "\[CapitalOmega]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[CapitalGamma]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], "[", "t", "]"}]}]}]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.5599999999999999]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + Column], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell["Convert to c form.", "Text"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Collect", "[", + RowBox[{ + RowBox[{ + RowBox[{"eqs", "[", + RowBox[{"[", + RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], "\[Rule]", + RowBox[{"2", + RowBox[{"E1", "/", "\[CapitalOmega]1"}]}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], "\[Rule]", + RowBox[{"2", + RowBox[{"E1c", "/", "\[CapitalOmega]1"}]}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[Rule]", + RowBox[{"2", + RowBox[{"d", "[", "t", "]"}], + RowBox[{"E2", "/", "\[CapitalOmega]2"}]}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"]}], + "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]}]], " ", "\[Rule]", + RowBox[{"2", + RowBox[{"dc", "[", "t", "]"}], + RowBox[{"E2c", "/", "\[CapitalOmega]2"}]}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"]}], + "+", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[Rule]", + RowBox[{"2", + RowBox[{"dc", "[", "t", "]"}], + RowBox[{"E3", "/", "\[CapitalOmega]3"}]}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Delta]"}], "2"], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]}]], " ", "\[Rule]", + RowBox[{"2", + RowBox[{"d", "[", "t", "]"}], + RowBox[{"E3c", "/", "\[CapitalOmega]3"}]}]}], ",", + RowBox[{"\[CapitalGamma]", "\[Rule]", + RowBox[{"2", "G"}]}], ",", + RowBox[{"\[Gamma]p", "\[Rule]", + RowBox[{"2", "gp"}]}], ",", + RowBox[{"\[Gamma]t", "\[Rule]", + RowBox[{"2", "gt"}]}]}], "}"}]}], ",", + RowBox[{"DMElementPattern", "[", "]"}], ",", "FullSimplify"}], "]"}], "/.", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", "a__"], "[", "t", "]"}], "\[Rule]", + SubscriptBox["r", "a"]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"MapThread", "[", + RowBox[{"Equal", ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"DMVariables", "[", "system", "]"}], "/.", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", "a__"], "[", "t", "]"}], "\[Rule]", + SubscriptBox["dr", "a"]}]}], ",", "%"}], "}"}]}], "]"}], "/.", + RowBox[{ + RowBox[{"Complex", "[", + RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]", + RowBox[{"a", " ", "i"}]}]}], "\[IndentingNewLine]", + RowBox[{"DeleteCases", "[", + RowBox[{"%", ",", + RowBox[{ + RowBox[{ + SubscriptBox["dr", + RowBox[{"a_", ",", "b_"}]], "\[Equal]", "_"}], "/;", + RowBox[{"b", "<", "a"}]}]}], "]"}], "\[IndentingNewLine]", + RowBox[{"StringJoin", "[", + RowBox[{ + RowBox[{ + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{ + RowBox[{"ToString", "@", + RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",", + RowBox[{ + RowBox[{ + "\"\\"", "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", + "~~", "\"\<)\>\""}], ":>", + RowBox[{"\"\\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}], + ",", + RowBox[{ + RowBox[{ + "\"\\"", "~~", "r_", "~~", "\"\<,\>\"", "~~", "a_", + "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"r", "<>", "a", "<>", "b"}]}]}], "}"}]}], "]"}], "&"}], "/@", + "%"}], "]"}], "\[IndentingNewLine]", + RowBox[{"Export", "[", + RowBox[{ + RowBox[{ + RowBox[{"NotebookDirectory", "[", "]"}], "<>", "\"\<\\\\code.txt\>\""}], + ",", "%"}], "]"}]}], "Input"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["dr", + RowBox[{"1", ",", "1"}]], "\[Equal]", + RowBox[{"gt", "-", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{"gp", "+", "gt"}], ")"}], " ", + SubscriptBox["r", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{"E1", " ", "i", " ", + SubscriptBox["r", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"E1c", " ", "i", " ", + SubscriptBox["r", + RowBox[{"3", ",", "1"}]]}], "+", + RowBox[{"G", " ", + SubscriptBox["r", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"1", ",", "2"}]], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "gp"}], "-", + RowBox[{"2", " ", "gt"}], "-", + RowBox[{"i", " ", "\[Delta]1"}], "+", + RowBox[{"i", " ", "\[Delta]a"}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E2", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E3", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"E1c", " ", "i", " ", + SubscriptBox["r", + RowBox[{"3", ",", "2"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"1", ",", "3"}]], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "E1c"}], " ", "i", " ", + SubscriptBox["r", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E3c", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E2c", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"1", ",", "2"}]]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "G"}], "-", "gp", "-", + RowBox[{"2", " ", "gt"}], "-", + RowBox[{"i", " ", "\[Delta]1"}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"E1c", " ", "i", " ", + SubscriptBox["r", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"2", ",", "1"}]], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "gp"}], "-", + RowBox[{"2", " ", "gt"}], "+", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{"\[Delta]1", "-", "\[Delta]a"}], ")"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"E1", " ", "i", " ", + SubscriptBox["r", + RowBox[{"2", ",", "3"}]]}], "+", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E3c", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E2c", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"3", ",", "1"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"2", ",", "2"}]], "\[Equal]", + RowBox[{"gt", "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["r", + RowBox[{"2", ",", "2"}]]}], "-", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E2", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E3", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"2", ",", "3"}]]}], "+", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E3c", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E2c", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"3", ",", "2"}]]}], "+", + RowBox[{"G", " ", + SubscriptBox["r", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"2", ",", "3"}]], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "E1c"}], " ", "i", " ", + SubscriptBox["r", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E3c", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E2c", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"2", ",", "2"}]]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "G"}], "-", + RowBox[{"2", " ", "gt"}], "-", + RowBox[{"i", " ", "\[Delta]a"}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"2", ",", "3"}]]}], "+", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E3c", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E2c", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"3", ",", "1"}]], "\[Equal]", + RowBox[{ + RowBox[{"E1", " ", "i", " ", + SubscriptBox["r", + RowBox[{"1", ",", "1"}]]}], "+", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E2", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E3", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"2", ",", "1"}]]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "G"}], "-", "gp", "-", + RowBox[{"2", " ", "gt"}], "+", + RowBox[{"i", " ", "\[Delta]1"}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"E1", " ", "i", " ", + SubscriptBox["r", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"3", ",", "2"}]], "\[Equal]", + RowBox[{ + RowBox[{"E1", " ", "i", " ", + SubscriptBox["r", + RowBox[{"1", ",", "2"}]]}], "+", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E2", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E3", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"2", ",", "2"}]]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "G"}], "-", + RowBox[{"2", " ", "gt"}], "+", + RowBox[{"i", " ", "\[Delta]a"}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E2", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E3", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"3", ",", "3"}]], "\[Equal]", + RowBox[{ + RowBox[{"2", " ", "gp", " ", + SubscriptBox["r", + RowBox[{"1", ",", "1"}]]}], "+", + RowBox[{"E1", " ", "i", " ", + SubscriptBox["r", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E2", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E3", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{"E1c", " ", "i", " ", + SubscriptBox["r", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E3c", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E2c", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{"G", "+", "gt"}], ")"}], " ", + SubscriptBox["r", + RowBox[{"3", ",", "3"}]]}]}]}]}], "}"}]], "Output"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["dr", + RowBox[{"1", ",", "1"}]], "\[Equal]", + RowBox[{"gt", "-", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{"gp", "+", "gt"}], ")"}], " ", + SubscriptBox["r", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{"E1", " ", "i", " ", + SubscriptBox["r", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"E1c", " ", "i", " ", + SubscriptBox["r", + RowBox[{"3", ",", "1"}]]}], "+", + RowBox[{"G", " ", + SubscriptBox["r", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"1", ",", "2"}]], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "gp"}], "-", + RowBox[{"2", " ", "gt"}], "-", + RowBox[{"i", " ", "\[Delta]1"}], "+", + RowBox[{"i", " ", "\[Delta]a"}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E2", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E3", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"E1c", " ", "i", " ", + SubscriptBox["r", + RowBox[{"3", ",", "2"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"1", ",", "3"}]], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "E1c"}], " ", "i", " ", + SubscriptBox["r", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E3c", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E2c", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"1", ",", "2"}]]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "G"}], "-", "gp", "-", + RowBox[{"2", " ", "gt"}], "-", + RowBox[{"i", " ", "\[Delta]1"}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"E1c", " ", "i", " ", + SubscriptBox["r", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"2", ",", "2"}]], "\[Equal]", + RowBox[{"gt", "-", + RowBox[{"2", " ", "gt", " ", + SubscriptBox["r", + RowBox[{"2", ",", "2"}]]}], "-", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E2", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E3", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"2", ",", "3"}]]}], "+", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E3c", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E2c", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"3", ",", "2"}]]}], "+", + RowBox[{"G", " ", + SubscriptBox["r", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"2", ",", "3"}]], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "E1c"}], " ", "i", " ", + SubscriptBox["r", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E3c", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E2c", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"2", ",", "2"}]]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "G"}], "-", + RowBox[{"2", " ", "gt"}], "-", + RowBox[{"i", " ", "\[Delta]a"}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"2", ",", "3"}]]}], "+", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E3c", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E2c", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"3", ",", "3"}]]}]}]}], ",", + RowBox[{ + SubscriptBox["dr", + RowBox[{"3", ",", "3"}]], "\[Equal]", + RowBox[{ + RowBox[{"2", " ", "gp", " ", + SubscriptBox["r", + RowBox[{"1", ",", "1"}]]}], "+", + RowBox[{"E1", " ", "i", " ", + SubscriptBox["r", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E2", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E3", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{"E1c", " ", "i", " ", + SubscriptBox["r", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{"i", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"E3c", " ", + RowBox[{"d", "[", "t", "]"}]}], "+", + RowBox[{"E2c", " ", + RowBox[{"dc", "[", "t", "]"}]}]}], ")"}], " ", + SubscriptBox["r", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{"G", "+", "gt"}], ")"}], " ", + SubscriptBox["r", + RowBox[{"3", ",", "3"}]]}]}]}]}], "}"}]], "Output"], + +Cell[BoxData["\<\"dr11_dt = gt - 2*(gp + gt)*r11 - E1*i*r13 + E1c*i*r31 + \ +G*r33;\\ndr12_dt = (-gp - 2*gt - i*\[Delta]1 + i*\[Delta]a)*r12 - i*(E2*d(t) \ ++ E3*dc(t))*r13 + E1c*i*r32;\\ndr13_dt = -(E1c*i*r11) - i*(E3c*d(t) + \ +E2c*dc(t))*r12 + (-G - gp - 2*gt - i*\[Delta]1)*r13 + E1c*i*r33;\\ndr22_dt = \ +gt - 2*gt*r22 - i*(E2*d(t) + E3*dc(t))*r23 + i*(E3c*d(t) + E2c*dc(t))*r32 + \ +G*r33;\\ndr23_dt = -(E1c*i*r21) - i*(E3c*d(t) + E2c*dc(t))*r22 + (-G - 2*gt - \ +i*\[Delta]a)*r23 + i*(E3c*d(t) + E2c*dc(t))*r33;\\ndr33_dt = 2*gp*r11 + \ +E1*i*r13 + i*(E2*d(t) + E3*dc(t))*r23 - E1c*i*r31 - i*(E3c*d(t) + \ +E2c*dc(t))*r32 - 2*(G + gt)*r33;\\n\"\>"], "Output"], + +Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\xmds2\\\\\ +Shahriar_system\\\\\\\\code.txt\"\>"], "Output"] +}, Open ]] +}, Open ]] +}, +WindowSize->{1010, 875}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +ShowSelection->True, +FrontEndVersion->"7.0 for Microsoft Windows (64-bit) (February 18, 2009)", +StyleDefinitions->"Default.nb" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[CellGroupData[{ +Cell[567, 22, 36, 0, 71, "Section"], +Cell[606, 24, 66, 1, 43, "MathCaption", + CellID->836781195], +Cell[675, 27, 85, 2, 31, "Input", + CellID->2058623809], +Cell[763, 31, 1290, 44, 47, "Text", + CellID->525777075], +Cell[2056, 77, 112, 3, 43, "MathCaption", + CellID->429217524], +Cell[2171, 82, 1057, 27, 112, "Input", + CellID->433132487], +Cell[3231, 111, 125, 3, 43, "MathCaption", + CellID->133602844], +Cell[CellGroupData[{ +Cell[3381, 118, 1085, 32, 52, "Input"], +Cell[4469, 152, 1306, 40, 53, "Output"] +}, Open ]], +Cell[5790, 195, 166, 4, 43, "MathCaption", + CellID->462076121], +Cell[CellGroupData[{ +Cell[5981, 203, 508, 15, 31, "Input"], +Cell[6492, 220, 1755, 50, 71, "Output"] +}, Open ]], +Cell[8262, 273, 76, 1, 43, "MathCaption", + CellID->358620443], +Cell[CellGroupData[{ +Cell[8363, 278, 464, 15, 31, "Input", + CellID->167259034], +Cell[8830, 295, 535, 10, 94, "Output"] +}, Open ]], +Cell[9380, 308, 182, 4, 43, "MathCaption", + CellID->577766068], +Cell[CellGroupData[{ +Cell[9587, 316, 1379, 38, 72, "Input"], +Cell[10969, 356, 2462, 70, 117, "Output"] +}, Open ]], +Cell[13446, 429, 456, 13, 43, "MathCaption", + CellID->610306692], +Cell[CellGroupData[{ +Cell[13927, 446, 933, 25, 57, "Input", + CellID->645617687], +Cell[14863, 473, 717, 20, 71, "Output"] +}, Open ]], +Cell[15595, 496, 390, 12, 43, "MathCaption", + CellID->854192725], +Cell[CellGroupData[{ +Cell[16010, 512, 1070, 29, 59, "Input", + CellID->465762594], +Cell[17083, 543, 1226, 36, 92, "Output"] +}, Open ]], +Cell[18324, 582, 76, 1, 43, "MathCaption", + CellID->314466782], +Cell[CellGroupData[{ +Cell[18425, 587, 250, 7, 31, "Input", + CellID->298399236], +Cell[18678, 596, 23733, 623, 315, "Output"] +}, Open ]], +Cell[42426, 1222, 34, 0, 29, "Text"], +Cell[CellGroupData[{ +Cell[42485, 1226, 4538, 123, 228, "Input"], +Cell[47026, 1351, 7965, 257, 164, "Output"], +Cell[54994, 1610, 5305, 171, 107, "Output"], +Cell[60302, 1783, 658, 8, 145, "Output"], +Cell[60963, 1793, 125, 1, 30, "Output"] +}, Open ]] +}, Open ]] +} +] +*) + +(* End of internal cache information *) diff --git a/xmds2/Shahriar_system/code.txt b/xmds2/Shahriar_system/code.txt new file mode 100644 index 0000000..8c80657 --- /dev/null +++ b/xmds2/Shahriar_system/code.txt @@ -0,0 +1,6 @@ +dr11_dt = gt - 2*(gp + gt)*r11 - E1*i*r13 + E1c*i*r31 + G*r33; +dr12_dt = (-gp - 2*gt - i*δ1 + i*δa)*r12 - i*(E2*d(t) + E3*dc(t))*r13 + E1c*i*r32; +dr13_dt = -(E1c*i*r11) - i*(E3c*d(t) + E2c*dc(t))*r12 + (-G - gp - 2*gt - i*δ1)*r13 + E1c*i*r33; +dr22_dt = gt - 2*gt*r22 - i*(E2*d(t) + E3*dc(t))*r23 + i*(E3c*d(t) + E2c*dc(t))*r32 + G*r33; +dr23_dt = -(E1c*i*r21) - i*(E3c*d(t) + E2c*dc(t))*r22 + (-G - 2*gt - i*δa)*r23 + i*(E3c*d(t) + E2c*dc(t))*r33; +dr33_dt = 2*gp*r11 + E1*i*r13 + i*(E2*d(t) + E3*dc(t))*r23 - E1c*i*r31 - i*(E3c*d(t) + E2c*dc(t))*r32 - 2*(G + gt)*r33; -- cgit v1.2.3