From 2336e0b8d60e086bb7110696cb41f75ef5a8644d Mon Sep 17 00:00:00 2001 From: Eugeniy Mikhailov Date: Wed, 17 Aug 2011 01:05:45 -0400 Subject: Mathematica file for degenerate 4-wave mixing --- mathemathica_fwm/fwm_degenerate.nb | 2535 ++++++++++++++++++++++++++++++++++++ 1 file changed, 2535 insertions(+) create mode 100755 mathemathica_fwm/fwm_degenerate.nb (limited to 'mathemathica_fwm') diff --git a/mathemathica_fwm/fwm_degenerate.nb b/mathemathica_fwm/fwm_degenerate.nb new file mode 100755 index 0000000..9a95bfe --- /dev/null +++ b/mathemathica_fwm/fwm_degenerate.nb @@ -0,0 +1,2535 @@ +(* Content-type: application/mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 7.0' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 145, 7] +NotebookDataLength[ 102785, 2526] +NotebookOptionsPosition[ 99915, 2423] +NotebookOutlinePosition[ 100292, 2440] +CellTagsIndexPosition[ 100249, 2437] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ + +Cell[CellGroupData[{ +Cell["General setup", "Section"], + +Cell["This loads the package.", "MathCaption", + CellID->836781195], + +Cell[BoxData[ + RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input", + CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9}}, + CellID->2058623809], + +Cell[TextData[{ + "We define an atomic system consisting of two even-parity lower states and \ +two odd-parity upper states. We apply a light field with components at \ +frequencies ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], + " (near resonant with the ", + Cell[BoxData[ + StyleBox[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]", + RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], + " transition), ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], + " (near resonant with the ", + Cell[BoxData[ + StyleBox[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", + RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], + " transition), ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]], + " (near resonant with the ", + Cell[BoxData[ + StyleBox[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", + RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], + " transition), and ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]], + " (near resonant with the ", + Cell[BoxData[ + StyleBox[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]", + RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], + " transition)" +}], "Text", + CellChangeTimes->{{3.522532429821333*^9, 3.522532492302448*^9}, { + 3.522540911043191*^9, 3.522540911147507*^9}}, + CellID->525777075], + +Cell["Define the atomic system.", "MathCaption", + CellID->429217524], + +Cell[BoxData[ + RowBox[{ + RowBox[{"system", "=", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"AtomicState", "[", + RowBox[{"1", ",", + RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", + RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"AtomicState", "[", + RowBox[{"2", ",", + RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", + RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"AtomicState", "[", + RowBox[{"3", ",", + RowBox[{"Energy", "\[Rule]", "0"}], ",", + RowBox[{"NaturalWidth", "\[Rule]", + SubscriptBox["\[CapitalGamma]", "3"]}], ",", + RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"AtomicState", "[", + RowBox[{"4", ",", + RowBox[{"NaturalWidth", "\[Rule]", + SubscriptBox["\[CapitalGamma]", "4"]}], ",", + RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]", + "}"}]}], ";"}]], "Input", + CellChangeTimes->{{3.522536311483895*^9, 3.52253631268178*^9}}, + CellID->433132487], + +Cell[TextData[{ + "Define the optical field with three frequencies, ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], + ", ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], + ", ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]], + ", and ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]], + "." +}], "MathCaption", + CellChangeTimes->{{3.522540939999547*^9, 3.522540967294499*^9}, { + 3.522541679413973*^9, 3.522541681294852*^9}}, + CellID->133602844], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"field", "=", + RowBox[{ + RowBox[{"OpticalField", "[", + RowBox[{"\[Omega]1", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[CapitalOmega]1", "/", + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", + "\[Phi]1"}], "}"}]}], "]"}], "+", + RowBox[{"OpticalField", "[", + RowBox[{"\[Omega]2", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[CapitalOmega]2", "/", + RowBox[{"ReducedME", "[", + RowBox[{"2", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",", + "\[Phi]2"}], "}"}]}], "]"}], "+", + RowBox[{"OpticalField", "[", + RowBox[{"\[Omega]3", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[CapitalOmega]3", "/", + RowBox[{"ReducedME", "[", + RowBox[{"2", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",", + "\[Phi]3"}], "}"}]}], "]"}], "+", "\[IndentingNewLine]", + RowBox[{"OpticalField", "[", + RowBox[{"\[Omega]4", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[CapitalOmega]4", "/", + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",", + "\[Phi]4"}], "}"}]}], "]"}]}]}]], "Input", + CellChangeTimes->{{3.522534194542496*^9, 3.522534219533982*^9}, { + 3.522540920436486*^9, 3.522540924714358*^9}}, + CellID->534530029], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"\[Phi]1", "-", + RowBox[{"t", " ", "\[Omega]1"}]}], ")"}]}]], " ", + "\[CapitalOmega]1"}], + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"\[Phi]4", "-", + RowBox[{"t", " ", "\[Omega]4"}]}], ")"}]}]], " ", + "\[CapitalOmega]4"}], + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"\[Phi]2", "-", + RowBox[{"t", " ", "\[Omega]2"}]}], ")"}]}]], " ", + "\[CapitalOmega]2"}], + RowBox[{"ReducedME", "[", + RowBox[{"2", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"\[Phi]3", "-", + RowBox[{"t", " ", "\[Omega]3"}]}], ")"}]}]], " ", + "\[CapitalOmega]3"}], + RowBox[{"ReducedME", "[", + RowBox[{"2", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]]}], ",", "0", + ",", "0"}], "}"}]], "Output", + CellChangeTimes->{3.522533257349164*^9, 3.52253422045873*^9, + 3.522536315439293*^9, 3.522540739248025*^9, 3.522540970145529*^9, + 3.522541564921328*^9, 3.522542172549766*^9, 3.522542936599973*^9, + 3.522544786198204*^9, 3.522544854264734*^9, 3.52254522556669*^9, + 3.522545943915771*^9}] +}, Open ]], + +Cell["\<\ +The Hamiltonian for the system subject to the optical field. Each field is \ +assumed to interact with only one transition\[LongDash]the other terms are \ +set to zero.\ +\>", "MathCaption", + CellID->462076121], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"H", "=", + RowBox[{ + RowBox[{"Expand", "@", + RowBox[{"Hamiltonian", "[", + RowBox[{"system", ",", + RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ", + RowBox[{ + RowBox[{ + RowBox[{"Cos", "[", "_", "]"}], " ", + RowBox[{"ReducedME", "[", + RowBox[{"_", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]", + "0"}]}]}], "]"}]], "Input", + CellID->494599775], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + { + RowBox[{"Energy", "[", "1", "]"}], "0", + RowBox[{ + RowBox[{"-", "\[CapitalOmega]1"}], " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]1", "-", + RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}], + RowBox[{ + RowBox[{"-", "\[CapitalOmega]4"}], " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]4", "-", + RowBox[{"t", " ", "\[Omega]4"}]}], "]"}]}]}, + {"0", + RowBox[{"Energy", "[", "2", "]"}], + RowBox[{ + RowBox[{"-", "\[CapitalOmega]2"}], " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]2", "-", + RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], + RowBox[{ + RowBox[{"-", "\[CapitalOmega]3"}], " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]3", "-", + RowBox[{"t", " ", "\[Omega]3"}]}], "]"}]}]}, + { + RowBox[{ + RowBox[{"-", "\[CapitalOmega]1"}], " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]1", "-", + RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}], + RowBox[{ + RowBox[{"-", "\[CapitalOmega]2"}], " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]2", "-", + RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], "0", "0"}, + { + RowBox[{ + RowBox[{"-", "\[CapitalOmega]4"}], " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]4", "-", + RowBox[{"t", " ", "\[Omega]4"}]}], "]"}]}], + RowBox[{ + RowBox[{"-", "\[CapitalOmega]3"}], " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]3", "-", + RowBox[{"t", " ", "\[Omega]3"}]}], "]"}]}], "0", + RowBox[{"Energy", "[", "4", "]"}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{3.522533260351258*^9, 3.522534225599567*^9, + 3.522536320272253*^9, 3.522540741905562*^9, 3.522540981472922*^9, + 3.522541568259588*^9, 3.522542173099244*^9, 3.522542936745729*^9, + 3.522544786457194*^9, 3.522544854514756*^9, 3.522545225737479*^9, + 3.522545944334553*^9}] +}, Open ]], + +Cell["The level diagram for the system.", "MathCaption", + CellID->358620443], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"LevelDiagram", "[", + RowBox[{"system", ",", + RowBox[{"H", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", + RowBox[{"-", "1.5"}]}], ",", + RowBox[{ + RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", + RowBox[{"-", "1"}]}], ",", + RowBox[{ + RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}], + "]"}]], "Input", + CellID->167259034], + +Cell[BoxData[ + GraphicsBox[{{{{}, + LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{}, + LineBox[{{-0.9, -1.}, {-0.09999999999999998, -1.}}]}, {{}, + LineBox[{{0.09999999999999998, 0.}, {0.9, 0.}}]}, {{}, + LineBox[{{0.09999999999999998, 0.5}, {0.9, 0.5}}]}}, {{}, {}, {}}, + {Arrowheads[{-0.07659574468085106, 0.07659574468085106}], + ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}], + ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.5}}], + ArrowBox[{{-0.45999999999999996`, -1.}, {0.45999999999999996`, 0.}}], + ArrowBox[{{-0.45999999999999996`, -1.}, {0.45999999999999996`, 0.5}}]}, + {PointSize[0.0225]}}, + ImagePadding->{{2., 2}, {2., 2.}}, + ImageSize->94.]], "Output", + CellChangeTimes->{3.522533274929177*^9, 3.522534231598043*^9, + 3.522536287987677*^9, 3.522536326037291*^9, 3.522540747140555*^9, + 3.522540990177467*^9, 3.522541571244472*^9, 3.522542173445689*^9, + 3.522542937562187*^9, 3.522544786610477*^9, 3.522544854751983*^9, + 3.522545225868822*^9, 3.522545945164071*^9}] +}, Open ]], + +Cell["Apply the rotating-wave approximation to the Hamiltonian.", \ +"MathCaption", + CellID->577766068], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"Hrwa", "=", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"RotatingWaveApproximation", "[", + RowBox[{"system", ",", + RowBox[{"H", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Omega]3", "\[Rule]", + RowBox[{"\[Omega]2", "+", "\[Omega]43"}]}], ",", + RowBox[{"\[Omega]4", "\[Rule]", + RowBox[{"\[Omega]1", "+", "\[Omega]41"}]}]}], "}"}]}], ",", + RowBox[{"{", + RowBox[{"\[Omega]1", ",", "\[Omega]2", ",", "\[Omega]43"}], "}"}], + ",", "\[IndentingNewLine]", + RowBox[{"TransformMatrix", "\[Rule]", + RowBox[{"MatrixExp", "[", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", + RowBox[{"DiagonalMatrix", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "\[Omega]1"}], ",", + RowBox[{"-", "\[Omega]2"}], ",", "0", ",", "\[Omega]43"}], + "}"}], "]"}]}], "]"}]}]}], "]"}], "/.", "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Omega]1", "\[Rule]", + RowBox[{ + RowBox[{"-", + RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",", + RowBox[{"\[Omega]2", "\[Rule]", + RowBox[{ + RowBox[{"-", + RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]2"}]}], ",", + RowBox[{"\[Omega]43", "\[Rule]", + RowBox[{ + RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]3", "-", + "\[Delta]2"}]}], ",", + RowBox[{"\[Omega]41", "\[Rule]", + RowBox[{ + RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]4", "-", + "\[Delta]1"}]}]}], "}"}]}]}], ")"}], "//", "MatrixForm"}], " ", "//", + "Simplify"}], " ", "\[IndentingNewLine]"}]], "Input", + CellChangeTimes->{{3.522537910365833*^9, 3.522537961926054*^9}, + 3.522538015680879*^9, {3.522538077788326*^9, 3.522538108632129*^9}, { + 3.522538220981776*^9, 3.522538294286786*^9}, {3.522538364562097*^9, + 3.522538365489798*^9}, 3.522538408544395*^9, {3.522538642590504*^9, + 3.522538692268066*^9}, {3.522538753179414*^9, 3.522538789067889*^9}, + 3.522538841634358*^9, {3.522539728181287*^9, 3.52253981610592*^9}, { + 3.522539877916903*^9, 3.522539880715579*^9}, {3.522540013440722*^9, + 3.52254005705363*^9}, {3.522540998041653*^9, 3.522541007397957*^9}, { + 3.522541371243734*^9, 3.522541473321752*^9}, {3.522541586733216*^9, + 3.52254160084184*^9}, {3.522542443165734*^9, 3.522542553763046*^9}}], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"\[Delta]1", "0", + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1"}], + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"t", " ", + RowBox[{"(", + RowBox[{ + "\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3", "-", + "\[Delta]4"}], ")"}]}], "+", "\[Phi]4"}], ")"}]}]], " ", + "\[CapitalOmega]4"}]}, + {"0", "\[Delta]2", + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", + "\[CapitalOmega]2"}], + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", + "\[CapitalOmega]3"}]}, + { + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}], + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}], + "0", "0"}, + { + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"t", " ", + RowBox[{"(", + RowBox[{ + "\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3", "-", + "\[Delta]4"}], ")"}]}], "+", "\[Phi]4"}], ")"}]}]], " ", + "\[CapitalOmega]4"}], + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3"}], + "0", + RowBox[{"\[Delta]2", "-", "\[Delta]3"}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{{3.522541474095441*^9, 3.522541485568013*^9}, { + 3.522541574936735*^9, 3.522541601520124*^9}, 3.522542174052798*^9, { + 3.522542462309133*^9, 3.522542468302471*^9}, {3.522542523892669*^9, + 3.522542555317527*^9}, 3.522542937866057*^9, 3.522544786796598*^9, + 3.522544855009029*^9, 3.522545226303203*^9, 3.522545945473287*^9}] +}, Open ]], + +Cell[TextData[{ + StyleBox["Assume that it is degenerate four-wave mixing ", + FontWeight->"Bold", + FontColor->RGBColor[1, 0, 0]], + " ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], + "-", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], + " = ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]], + "-", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]], + "." +}], "Text", + CellChangeTimes->{{3.522541626868227*^9, 3.522541723219086*^9}, { + 3.522541835758232*^9, 3.52254185271491*^9}}], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Hrwa", "=", + RowBox[{"Hrwa", "/.", " ", + RowBox[{"\[Delta]4", "\[Rule]", + RowBox[{"\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3"}]}]}]}]], "Input", + CellChangeTimes->{{3.522541725461055*^9, 3.522541787947193*^9}}], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"\[Delta]1", ",", "0", ",", + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1"}], ",", + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", + "\[CapitalOmega]4"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "\[Delta]2", ",", + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", + "\[CapitalOmega]2"}], ",", + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", + "\[CapitalOmega]3"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}], + ",", + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}], + ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4"}], + ",", + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3"}], + ",", "0", ",", + RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.522541788900106*^9, 3.522542174067565*^9, + 3.52254256103613*^9, 3.522542937980884*^9, 3.522544786810239*^9, + 3.522544855387083*^9, 3.522545226372991*^9, 3.522545945925881*^9}] +}, Open ]], + +Cell[TextData[{ + Cell[BoxData[ + ButtonBox["IntrinsicRelaxation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]], + " and ", + Cell[BoxData[ + ButtonBox["TransitRelaxation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]], + " supply the relaxation matrices." +}], "MathCaption", + CellID->610306692], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"relax", "=", + RowBox[{ + RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", + RowBox[{"TransitRelaxation", "[", + RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", + CellID->645617687], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"\[Gamma]t", "0", "0", "0"}, + {"0", "\[Gamma]t", "0", "0"}, + {"0", "0", + RowBox[{"\[Gamma]t", "+", + SubscriptBox["\[CapitalGamma]", "3"]}], "0"}, + {"0", "0", "0", + RowBox[{"\[Gamma]t", "+", + SubscriptBox["\[CapitalGamma]", "4"]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{3.52253328148618*^9, 3.522541927263808*^9, + 3.522542174082849*^9, 3.522542571871882*^9, 3.522542938071843*^9, + 3.522544786827352*^9, 3.522544855406043*^9, 3.522545226441606*^9, + 3.522545945953746*^9}] +}, Open ]], + +Cell[BoxData[""], "Input", + CellChangeTimes->{{3.522542008327447*^9, 3.522542028419855*^9}}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Version using complex DM variables", "Section"], + +Cell["Remove explict time dependence from the density matrix.", "MathCaption", + CellID->690131918], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"SetOptions", "[", + RowBox[{"DensityMatrix", ",", + RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", + RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}]}], "]"}]], "Input", + CellID->718931880], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", + RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",", + RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",", + RowBox[{"Label", "\[Rule]", "None"}], ",", + RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",", + RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output", + CellChangeTimes->{3.522542122980978*^9, 3.522542174200228*^9, + 3.52254257611812*^9, 3.522542938179186*^9, 3.522544788879686*^9, + 3.522544855426596*^9, 3.522545229935206*^9, 3.522545945983281*^9}, + ImageSize->{432, 33}, + ImageMargins->{{0, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}] +}, Open ]], + +Cell[TextData[{ + Cell[BoxData[ + ButtonBox["OpticalRepopulation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], + " and ", + Cell[BoxData[ + ButtonBox["TransitRepopulation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], + " supply the repopulation matrices." +}], "MathCaption", + CellID->854192725], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"repop", "=", + RowBox[{ + RowBox[{ + RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", + RowBox[{"TransitRepopulation", "[", + RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.", + RowBox[{ + RowBox[{"BranchingRatio", "[", + RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]", + SubscriptBox["R", + RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input", + CellID->465762594], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + { + RowBox[{ + FractionBox["\[Gamma]t", "2"], "+", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "3"], " ", + SubscriptBox["R", + RowBox[{"3", ",", "1"}]], " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}], "+", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "4"], " ", + SubscriptBox["R", + RowBox[{"4", ",", "1"}]], " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "4"}]]}]}], "0", "0", "0"}, + {"0", + RowBox[{ + FractionBox["\[Gamma]t", "2"], "+", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "3"], " ", + SubscriptBox["R", + RowBox[{"3", ",", "2"}]], " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}], "+", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "4"], " ", + SubscriptBox["R", + RowBox[{"4", ",", "2"}]], " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "4"}]]}]}], "0", "0"}, + {"0", "0", "0", "0"}, + {"0", "0", "0", "0"} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{ + 3.522542126889324*^9, 3.522542174305952*^9, 3.522542579319489*^9, + 3.522542938528408*^9, 3.522544791355964*^9, 3.522544855628949*^9, { + 3.522545232720883*^9, 3.522545241737016*^9}, 3.522545946211666*^9}] +}, Open ]], + +Cell["Here are the evolution equations.", "MathCaption", + CellID->314466782], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"TableForm", "[", + RowBox[{ + RowBox[{"eqs", "=", + RowBox[{ + RowBox[{"LiouvilleEquation", "[", + RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//", + "Expand"}]}], ",", + RowBox[{"TableHeadings", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}], + "]"}]], "Input", + CellID->298399236], + +Cell[BoxData[ + TagBox[ + TagBox[GridBox[{ + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]t", "2"], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", + " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "4"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "+", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "3"], " ", + SubscriptBox["R", + RowBox[{"3", ",", "1"}]], " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", + "\[CapitalOmega]4", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "1"}]]}], "+", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "4"], " ", + SubscriptBox["R", + RowBox[{"4", ",", "1"}]], " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "4"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", + " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", + " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "4"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", + "\[CapitalOmega]4", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "2"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", + "\[CapitalOmega]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SubscriptBox["\[CapitalGamma]", "3"], " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", + "\[CapitalOmega]4", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "3"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "4"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", + "\[CapitalOmega]4", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", + "\[CapitalOmega]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "4"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "4"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "4"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "4"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SubscriptBox["\[CapitalGamma]", "4"], " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "4"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "4"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", + "\[CapitalOmega]4", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "4"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Gamma]t"}], " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", + " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "4"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", + "\[CapitalOmega]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", + "\[CapitalOmega]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "1"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]t", "2"], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", + " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", + " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "4"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", + "\[CapitalOmega]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "+", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "3"], " ", + SubscriptBox["R", + RowBox[{"3", ",", "2"}]], " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", + "\[CapitalOmega]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "2"}]]}], "+", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "4"], " ", + SubscriptBox["R", + RowBox[{"4", ",", "2"}]], " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "4"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", + "\[CapitalOmega]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SubscriptBox["\[CapitalGamma]", "3"], " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", + "\[CapitalOmega]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", + "\[CapitalOmega]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "3"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "4"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", + "\[CapitalOmega]4", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", + "\[CapitalOmega]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "4"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "4"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SubscriptBox["\[CapitalGamma]", "4"], " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "4"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", + "\[CapitalOmega]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "4"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", + "\[CapitalOmega]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "4"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", + " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SubscriptBox["\[CapitalGamma]", "3"], " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", + " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "4"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", + " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SubscriptBox["\[CapitalGamma]", "3"], " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", + " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", + " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "4"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", + " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", + "\[CapitalOmega]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}], "-", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "3"], " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "3"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "4"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "4"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", + " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "4"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", + "\[CapitalOmega]4", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", + "\[CapitalOmega]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "2"}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "4"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "4"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "4"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SubscriptBox["\[CapitalGamma]", "3"], " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "4"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SubscriptBox["\[CapitalGamma]", "4"], " ", + SubscriptBox["\[Rho]", + RowBox[{"3", ",", "4"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "1"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", + " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "1"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", + " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "1"}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "1"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "1"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "1"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SubscriptBox["\[CapitalGamma]", "4"], " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1", + " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", + " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "4"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "2"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", + " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "2"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", + " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "2"}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "2"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "2"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SubscriptBox["\[CapitalGamma]", "4"], " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "2"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2", + " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", + " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "4"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "3"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", + " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", + " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ", + "\[CapitalOmega]1", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ", + "\[CapitalOmega]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "2"}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "3"}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "3"}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Delta]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SubscriptBox["\[CapitalGamma]", "3"], " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "3"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SubscriptBox["\[CapitalGamma]", "4"], " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "3"}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "4"}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]4"}]], " ", "\[CapitalOmega]4", + " ", + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "4"}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]3"}]], " ", "\[CapitalOmega]3", + " ", + SubscriptBox["\[Rho]", + RowBox[{"2", ",", "4"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], " ", + "\[CapitalOmega]4", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "1"}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]3"}]], " ", + "\[CapitalOmega]3", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "2"}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "4"}]]}], "-", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "4"], " ", + SubscriptBox["\[Rho]", + RowBox[{"4", ",", "4"}]]}]}]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxDividers->{ + "Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {}, + "Rows" -> {{False}}, "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.5599999999999999]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + OutputFormsDump`HeadedColumn], + Function[BoxForm`e$, + TableForm[BoxForm`e$, TableHeadings -> {{ + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 1], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 2], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 3], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 1, 4], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 1], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 2], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 3], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 2, 4], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 1], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 2], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 3], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 3, 4], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 1], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 2], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 3], + Subscript[AtomicDensityMatrix`AtomicDensityMatrix`\[Rho], 4, 4]}, + None}]]]], "Output", + CellChangeTimes->{{3.522542134400776*^9, 3.522542138220477*^9}, + 3.522542174324492*^9, 3.522542207187112*^9, 3.522542582215765*^9, + 3.522542938655801*^9, 3.522544793068121*^9, 3.522544855825677*^9, + 3.522545244285186*^9, 3.522545946433595*^9}] +}, Open ]], + +Cell["Make plots from paper.", "Text"], + +Cell[BoxData[""], "Input", + CellChangeTimes->{{3.522545604432086*^9, 3.52254560497677*^9}, + 3.522545837580253*^9}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"params", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",", + RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",", + RowBox[{"\[Phi]3", "\[Rule]", "0"}], ",", + RowBox[{"\[Phi]4", "\[Rule]", "0"}], " ", ",", + RowBox[{"\[Gamma]t", "\[Rule]", + RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", + RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", + RowBox[{"2", " ", "2", "\[Pi]", " ", "3"}]}], ",", + RowBox[{ + SubscriptBox["R", + RowBox[{"4", ",", "1"}]], "\[Rule]", "0.5"}], ",", + RowBox[{ + SubscriptBox["R", + RowBox[{"4", ",", "2"}]], "\[Rule]", "0.5"}], ",", + RowBox[{ + SubscriptBox["R", + RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",", + RowBox[{"\[CapitalOmega]1", "\[Rule]", + RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",", + RowBox[{"\[CapitalOmega]2", "\[Rule]", + RowBox[{"2", "\[Pi]", " ", "15."}]}], ",", + RowBox[{"\[CapitalOmega]3", "\[Rule]", + RowBox[{"2", "\[Pi]", " ", "10."}]}], ",", + RowBox[{"\[CapitalOmega]4", "\[Rule]", + RowBox[{"2", "\[Pi]", " ", "0.001"}]}], ",", + RowBox[{"\[Delta]1", "\[Rule]", + RowBox[{"2", " ", "d"}]}], ",", + RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",", + RowBox[{"\[Delta]3", "\[Rule]", "0"}]}], "}"}]}], ";"}]], "Input", + CellChangeTimes->{{3.522542639308531*^9, 3.522542653876242*^9}, + 3.522542961645403*^9, 3.522543008355341*^9, {3.522543075408626*^9, + 3.522543098002856*^9}, 3.522543145146279*^9, {3.522543184507017*^9, + 3.522543189475381*^9}, {3.522543261197481*^9, 3.52254328797459*^9}, + 3.522543355566535*^9, {3.522543426678711*^9, 3.522543426918095*^9}, { + 3.522543480813404*^9, 3.522543483724296*^9}, {3.522543596096022*^9, + 3.522543597336738*^9}, 3.522543637720401*^9, 3.522543700412568*^9, { + 3.522543819190993*^9, 3.522543969803677*^9}, 3.522544019666515*^9, { + 3.52254405332497*^9, 3.522544053804354*^9}, 3.522544121248746*^9, { + 3.522544624131693*^9, 3.522544625322849*^9}, {3.522544811206698*^9, + 3.5225448127211*^9}, 3.522545891693146*^9}], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Re", "[", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], "/.", + RowBox[{ + RowBox[{"NSolve", "[", + RowBox[{ + RowBox[{"eqs", "/.", "params"}], ",", + RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", + RowBox[{"Im", "[", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "3"}]], "/.", + RowBox[{ + RowBox[{"NSolve", "[", + RowBox[{ + RowBox[{"eqs", "/.", "params"}], ",", + RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"d", ",", + RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", + RowBox[{"Frame", "\[Rule]", "True"}], ",", + RowBox[{"PlotPoints", "\[Rule]", " ", "50"}], ",", + RowBox[{"MaxRecursion", "\[Rule]", "1"}], ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", "Full"}], "}"}]}]}], + "]"}]], "Input", + CellChangeTimes->{{3.522542076105163*^9, 3.522542106948172*^9}, { + 3.522542247272649*^9, 3.52254227331632*^9}, {3.522542379859035*^9, + 3.522542404138859*^9}, {3.52254260442503*^9, 3.522542738601174*^9}, { + 3.522544168650641*^9, 3.522544235160111*^9}, {3.522544324681123*^9, + 3.522544357750749*^9}, {3.522544495634713*^9, 3.522544514917687*^9}, { + 3.522544546544331*^9, 3.522544579418693*^9}, {3.52254589412908*^9, + 3.522545902384872*^9}, {3.522545984364466*^9, 3.52254603852176*^9}, { + 3.522546191788578*^9, 3.522546295569195*^9}}], + +Cell[BoxData[ + GraphicsBox[{{}, {}, + {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" +1:eJwtlPs7E2oAgDGFjuRSWZc5dsYsc9nF5jL2fcPmMk6TkEWJmuSkTrpQdEIk +SkkiTiUKlSOVU55k36c5apVVCockSkrkUrlU5HSepx/e5/0L3pccvmXFBg01 +NbXQ7/xv3rPtAzMzvjjgEWnYUGgGuir1f4dRvjikvaFA1WIGkpIrxvc1++Bv +b5jkG1vMwUHj6PvnM8V492ZSW14PFZg00Epipd44qDi0MGErDUybbVzAt/XC +e2WEJZFcS/Crj5g9dsgT+7FOkjg+dHA61sav4p0HDu9SGDknWIHr1OwRe38P +XEq4Zjhy1Ro0tX88oqgV4TLzEKlYyxY0EhbPP2sswitG28j05Qwgt4b5e2OF +2BNsiljHZIJOZlmUtNkdj2TzqEdpLPCZo8fjMt1x4KXYwSQeGzz/59PhvgI3 +nOVb1dkeaAfqA551n9B0w0FLpIenMjkgLSSVeHKdK/50y+BO6wcuEEfYSgrl +ApzPkFEd1zqAtrFVOtuoAmxd4HF58JAjiEhPvu2ZBfFx34YPZxycAO1dezbv +A8B9p8cNzlc5goOKytOv7/Dxm+d+B9IfcEFFxpwd7P0umFo9Jzaz3gY88pOJ +k6AzNr2taWMUqguSGPVmcYY8/FQh4Ao3/oxY85Z+i+l1xF15XlVHVTbo/LPp +Ip1TDnhkt25udRgLEctfuJ0LsMf5stmbaP1M1EJzS+LN52LT/cETSIOBjl0o +lTc322Fbv+WtGTI66hTozBiWsfGFVMh+RrJAFh3RwH8PC2dotFyUm1CQXViA +lz2XiU9YVRzSX2uC9j1ILOW+tMXg1DyVp8QYVWstx5IUa3wz6ciTqXAD1O9q +2rHJjI6biBy1eD1tVBw8k/bgGA0HJn6bS3H6Kl+9tYtto07Fx9qMXUyDe+Tl +w3jBwT0U3Dduce4i7uR/iimZeDVmit3mFF6ZiP7Er3HSRmR7Eo57KnoQNjzN +P5CnzNqTTMTe74d6a+ZqgDWXSvev32iEE2SJ46UmBBC9V2us4E9dTI2Puu0e +pw4OhN+crF5AwGcG3txKbf3CFx3umDxF+og6sw0ex4je83Fa38J3fYUo3lJn +dGgql68fTCmX8T+Aqs+a4681BuV6NYsYCwUEeNYiqzxl1ld5joKs+zl8LlQW +rYltvKKOAg4S3yqjjWAT8q97ZEJAPQxTb2MqEVKN3J9YcTWQjKyb1iIkwfDj +s9J3tU7Lx7SnupUsMvyNbyXd4PNRXpI/pLx8nQJ19Z/UeEjb5H60nqu5TlR4 +PCxCK0TWy+9Nb8ldlkODQae3Brx3/srf2a+MqxuwhNqkO2TSUi2QGlN1V2eX +NWxdU7SkXWgA7sWLdenqDFhET9aePGcMGs4BJo3JhKva6EmRAhMgf8gONF/H +giuUi6NLlL+AGFFpt3kmG05Zkr1Gb37vtY4YTf3bDq4e2j4wMmEJdEWaVimT +HLjGqu89pcQWfFEND77g2UPGjVTC43tMIIWdF3OiHOD8hOiBhjgWqL1yd6NH +niNMqRMolBkMIOXYhAZ1OcGiRiH7mxoFTNbk+EWaO0Psqbl0RyUBaZt/cVUF +ukDTPW+Nl72go0XZYXacdD7UhEt6O2o5qNtTmHnmGoArJFbFT/0dkb/agtH9 +WyCkDOYu8nRxQgGvFfZvDQQwo1HidKLSEQXd27ZXXC2ACpP1eUd2OKBjlGK3 +DrErlBjG1Kso9kiV8Fg76pUr7OyUWK97wkG0tS795w+4wYjV6yU/JdqhFMEF +5Uu6O7xikdlKFLJRjdfTEHKTOzSp3e0/m8lCQ34zw2tjhHBp7+ijFgcmClFd +VL+nKYIVTJudg5EMdN870MiuUATlpcGWNStt0SoJH/rwPWAjS79+Ubc16gug +bl7f4wF1dt51S8yyQn89zCKWx3vC6rLEq4MxdLTda0IxYOAFu6837VDJLFFN +umjfTmdvGNx/d9dIAQ05dejFhu4TQ2leWuWqYSqymf9veGGlDxT9MbPyca45 +qt5FLfMN8oXZoUWmxW/M0I9/wx//Rv8B4k6yBw== + "]]}, + {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" +1:eJw1lX04E3gcwDdTkZfkZRuhxjYrZ142htX8jG1mXCH0KqbkvS5KLyolWhQP +e6507rru5PUqruT0wvdXJC9FiV6koRd56VKW0Cl39zx3f3yez/+ffz40+bbA +LRoEAiHyH/41/1ny6OysP5Y/uaLUV87Uqy4afIdi/HGWDt+rS/y1/tDh85/S +Ov2w+E3yWq4RAebc04kwsvfDXcMFMSUcIhyjxLUVZ8vwha07Z47v0oCuP6V/ +6Kp9se2WfEVKMwksG1lFSet88ShxS3SV1xzISfbpfdIoxeEihqpqcC58oUeb +COyl2KXp+gKzm1rwrZ+MM3HcB7etfnh6SF8HziSxA86PSLDAPmiKcEMPaph5 +73lBEqy3POlUYaAB3Huqzm24LsaTwTvaFXMNoYlkZvwLRYx3E6wU912Nod4O +FRxIEuHZ+NVhf70gQ69jacy6Tm9cdLluf7ipGUw76/NdHL1xP4n+9DnVEp7f +/nhi8Acv3HipSRwYSYObwc/6T2p6Yc3bho+11tIhc0MG9XSEEHP148YnM1gg +i7RfVVjviUc0q6XfmrPh8cQa7R1MT9yb5XNCkuMEkYrDt3xyEE7vacx05fGA +NfI0jz/ugUM2RBSXWK2AYw0Xz7y+I8Dbtd+Th0yFcD5r/k7OkRX4yt31Aw+b +RHA/IEp2CC3HWYvdN6piJXDI4SZ9tyEfM7WXTRp2iMBpgfnXxFduWN22t/2L +hhCKn305q/2TK363oPZTjxEfqGV9XueCeTh5piMs5iUHulleh/jGLjjs6tj1 +B9gO8stL6js7uVhTriiYGGVCr6f2rGEpB3+aW2cXedIKbHriPIL2OWHqkCLE +1mMxcMODpTwXR/yBRl7zjrAI0u7uL3F5YY/71AW5wVupUD1vJV6Vboc7t0Xu +30qlwLBwSU8s3RZXnlYGckrJ8Ova2cy7+SxcuV6lc4BIgfXbVRw2kYlZ/HMz +KVZUKBvDJsf2WWPs/FJ3eNwUPiYWTb6cWII7E3qIkgRzqHXXAhrPAlPGkqPM +fBfD0VMtOfsOU7FU6TrSKKNB2G8lRzZHG+E3jw+mTPOtIe7AvIkfftTF2p35 +HbcYDDgqvzZVbULCDs/T51MqmSA+0TP1k4Ua8vSn69pu2ADOHCSPDBaCidaC +iIMWLDBYa10WJRj3IDeabPa5bQP6taYOZE8S6npSdWW2jAnKBprutFwPPbv0 +5aC9BgOCj1GHWuKM0Kmz0vEKd2sYcFjiS2FS0er7lY3TCTSIoulmdossED3V +LS8WLYYJrZn+Ficaenjm0XDqMnMoKnjXUlljjTI/pN6h3zSFANbApe/dmYjY +dIdRTaTCK0X390uVLESQmXTK/+m3a7hld93oMpTsKmVWlJAhI7GqWTvFDvUj +5UJ9Ywq07pHp2hIdED16PsMqjQqN5zwcWY6OqCr0s6pKbQb1HZwQRoQTwuLC +4vIuS0gUl/QzsjmoptVqZ53QCizrqHHMK1yEajN2VccyQVes+U36lDO6ejKm +IU/PDj63j73t4/OQf4FwWXwsB9ah3gpljCuyeHTZrfWeG1z/vTlacsoNGUyn +7BG9RbDOmb0xVOWOZrLkYpJQBFO1yoCtjOUowlPSnRslAS3GZ2F7yAp0y5gX +ymGLwTQvnOusECDugxcfLgwIod9HlP3zZQ/EltDyMrIFEEQw+XBkG0LxTkvl +3YGuEPy6gTe00BM9Xf3cR2TOgdDWHQdk1Z6oYt7QNzaZbMi3/tWrRyZEx6VO +zRZ2S6E99YFWzEshao71fqyziAGsTSuGi496ofwi/5x912iQ7lne8sLWG2mu +od5XCSyhVtq1gXbPG1nX0fONeWbwLmB2bFOiCNmzywtzP5NhQ3sFsVVTjHKq +TvyYkGYMbb4hRtxCMcq+pC5TJxjCmlUC5CeQoJ9rzkrrswxgMJiZsHlAgrTa +48vTBvXgQkcOtWyPD3Jr4gdprNeBZOlkw+hCKaK6bwxLZmgDedjSyrFUiogP +9vrOQfOgViFO27XcF9WYhL29oJwDe36vmI5R+aJbfaRc+2kSuPfoJ21Mk6H4 +SVKRMEcDuCnq2FSKH9q8suAgIZwIbOMn8sKLfihacbyubyUBqlOYpf6h/mih +4SubI/u/1v/3B/T/H/4GZmzqsA== + "]]}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->True, + AxesOrigin->{0, 0}, + Frame->True, + PlotRange->{{-60, 60}, {-0.0007146440279521698, 0.00040010361659988916`}}, + PlotRangeClipping->True, + PlotRangePadding->{Automatic, + Scaled[0.02]}]], "Output", + CellChangeTimes->{{3.522542156195219*^9, 3.522542182530973*^9}, + 3.522542280444924*^9, 3.522542411408412*^9, {3.522542593479043*^9, + 3.522542626285554*^9}, 3.522542681997767*^9, {3.522542723280386*^9, + 3.522542748242407*^9}, {3.522542949188668*^9, 3.522542977352989*^9}, + 3.522543024498731*^9, {3.522543088219265*^9, 3.52254311067984*^9}, + 3.522543163269546*^9, 3.522543203476909*^9, {3.522543258287421*^9, + 3.522543307465341*^9}, 3.522543371309052*^9, 3.522543444314203*^9, + 3.522543500408285*^9, 3.522543615581949*^9, 3.522543654012719*^9, + 3.522543714809282*^9, {3.52254383655232*^9, 3.522543954209074*^9}, + 3.522543987854934*^9, 3.522544040177055*^9, 3.522544138645664*^9, + 3.52254423961056*^9, {3.522544332311615*^9, 3.522544359410752*^9}, { + 3.522544499019484*^9, 3.522544519115584*^9}, 3.522544551529608*^9, + 3.522544583202106*^9, 3.522544798152048*^9, 3.522544856018762*^9, + 3.522545918022345*^9, 3.522545953245106*^9, {3.522545984075476*^9, + 3.522546042552423*^9}, {3.522546198674039*^9, 3.522546306798113*^9}}, + ImageCache->GraphicsData["CompressedBitmap", "\<\ +eJztnQe4VdWVx5/wqCZmxpRJMkbNxMTJmEkyTkwmKkWwBTWKLYpdxN4QsRsT +RUSNCnbABgiISG+CIiJNuvQqHenSRJpwZv/W2f/NuXjeue/exzeQmckXn957 +z9l77bXXXn2tfdZVd17f5Jar7ryh8VVHnnbHVbdff0PjZkeeetsd7qvKB5WU +VDqspOSgWkeW8N9RSYn+RO7/8Z/D+cPXBX9xvP2rarRjx47o5ptvjho3bhzd +eOON0eWXXx6tW7euUuLnW2+9Nbryyivtn9tuuy3auXNnffu5etSxY8eoQYMG +gBU1adIkWrVqlU3kX6vEOyWV9Za9VMf+Vo7mzp0baUWV7W+V6JBDDinxYGqI +krQxapcHuopNUa+iKywWtZVy96dFixZR8+bNA8wvvPBCdO6552qQxx57LLri +iivCz8zRqlWrkz0GZsyYYZDv3r27JM8rJ/lXzjjjjOjhhx+OJk+e7BDD3yrR +q6++Gh7X65X88/71nH3JA1VFpqhf+MrqVgiVOftRM/rxj38czZ49Ozy1evXq +qFKlStGmTZvsM78PGzZMoH/wwQfRT37ykxzQZ82a5c9xFED3r4Vh/XvalBUr +VkR169aN1q5d61+pEu3atSs8rtfTpq2dPcXJ+2CKIlZWt+L4PCjemd/7n9av +X28U4c5VmHz79u323bx588Lva9as0WjuMNtXGzduDHypTZs2gWmU+r+c4Dyv +a6cWLlwYXXLJJcYnKu8FmXu1JO3dWuV87uQKzFHB5dXeN0j2W/Yr/1O1atUC +MFX8XzeCbfz8+fPtt8WLF4eZJkyYYN8xC7Px34FlVuY/7Sv3aslxZU5RPUyx +bdu2qGHDhtGWLVvssydfDZeYoaSwKSprisRJqAxOogsvvDBme+Wco1Y5nzul +AnNIXlUQHSKRCm5czqk+OFqwYIH9dO2110bLli2Lli5dGp1wwglR/frGdPJC +VdezskmTJon5BzZV3pXF7K0arDE65phjorFjx5Zr7vJu3qlFjr8v1lZ7H+F5 +r23bvHlzdNBBB0VTpkwx9alGjRrRiSeeGC1atMiG27Bhg73q2H0qu4rZaWnU +smVL2P/etJjv9ZM93bVr1y467rjj9p4yiwnnG/q0woeu4GJq7yOc+i063v90 +7LHHBsFcpQxhPXTo0Oioo46q5xfAhjdq1CgaNWoUo1bOfusk/zPwLlmyJPzs +eFNUpUqVshQE/3ad7J9PrtDgxS2obuGY20ub79KlS3TWWWdJsYqGDx8eXXfd +dUkV1KmdYZDLLrssevzxx6VeuXVyHmMRk/2KcF+nTp3otNNOCxP27ds3Ovro +o/NMWCf755MrNHgRq6lbIfT5PTjBc8u2bdtGl156aXTLLbdExx9/fDRgwIAg +p7DJbr/99mCTNW3aFBqR4tW7d++v6bdlvKINgJdiSZxzzjnRDTfcENWrVw9q +y/N2nfLAU+zgRa+mKNx57O8Ln8W++OLE+Av3vzmmDCa+dVQodPDPP6R8948V +eO7/2rsHOnxV/3/r/3/rv/bTGSnfnfk/8FyBIB0TfxetmLoginbvtk+HV2D6 +H/nxNi5bs/ccFQH9Xj9sn5uei1ZMWWCfbk557ib/3Np5y6NBd7W3T/cXNtU9 +foj1i1dFbWs3jYa3eqvkloypJr4x2J5bPWtJcVOVRmOe7xO1rdU0eu20e6Kd +W7dnLazHNU/ZoyyuwNnutr9Vol07voo6nPlA1PWiR22ouYMnpOLyRv/8ljUb +bYFd/9TCnl81c3HJfXmmtl804fyhk+3FpWNnuUlbRP1uezFzwhm9R9nzq2ct +jjqc9aCt9Z4waoakjSesGvW//cWoywWPRLt37Y4mdhgStatzR7Rpxbqbypyz +ajSoeTtg41P0SeehWui9haH4LvtbLdq4fK2hbFKHITbi5hWfGxCOVkrSoLjB +v7fjy23RK/WaO4Lobe85Yog6/vHBaGDzdiVFgVI5Gvty/6h93WbRF6s3BGPO +bYBtBAf+xjLBqRwtHD7VELF80rzwbgI5OirlBam5H2LXV7uiTmf/OXr3nleC +29ERoQ372SfzM0Ea9miX6I0z7ndbu2uP+yCBpSJBWjB8ik2/eNSMABLDciI/ +fKxrKkjX++ccKEamQx9+s6TUfzel6wcxlqYv8lRZMEhQ5Jvn/tVWqmEdLxKT +EEZSQXIs0qb/9INPwrvC0uD7XysUpDv9ECLj8a8O8vbqnqnmDBqfCdLHL/Y1 +0t7+xdbwLstxICXptVCQJrz2roHkQAvDOrKO3rq4ZdTv1hcyQep2yWPRgDte +jrmO/256jxG2nC1rNxYLUufz/mqkuOfxPULiy3WbNH3Ou9f55zYsWW3TOzDC +uyumfGrfLfl4VqEgNfNDuMNvQ8zoObKkmv/OHepwuLNAmtJ1mD23eeXnASS3 +ibacyW8OLRYktxobFmkukBx2YjB7jcoECS2gx9V/s096F+n0/l86Jo9QoSB9 +0iU+tJBodf/dGw3ui0a17pmcPufda/1z2zZucXTYLBr/yqDwrjtpUbdLW5UL +JPtFgHzQonPU+fyH7ZMG631Dm6h/05fyAuLOoS1izeyl4d2Jrw824HZu2xHP +kU+QCpB3rvpbUKM02Ifu0Dq+lBcQJ8Oi10+/14SM3l04YloQHgVu0h1+CIQH +fMTJtZIagUT3bFwWSLBUp0DlLMfpBfburL5jigXp84UrbYh5QyYGkJwgiVc6 +Y1EmSChhCA4+6d3X/3BfNPLpHkmmUihIUrnWffpZGHbjsrWeU49LBamJMOz0 +QzQGRzUlNf13fW953p26ZysC0rj2A6L2J90Z7dr5VQAJ0flKfbeZL/XLBClg ++L2JAaRRbXqZLIS+igTJKSBR9yuesE8atvuVT5piktikVJAWfhTrRmvnLgvv +zh4w1r5zmC4WpC4XPhIN/WunHJDe+3MH5FlekBw3tumdFhneXTNnqX3nFJws +kL4Rf8jOJaka/fznP7e4vn87N3mlak7ySqE/10z9OSXtpWrKKpr61e7Yss3L +pfdLDvbfxRpCs+irHTszsZfka8Kee8eOAgpPObCXmflR1UJybgHhZ/+4fk5m +p1T8Z5+kIh3Z56jYpyoZGFw5fWGsCI+eETA4//1JgZlkYbDPjc+abccnveuO +VzhOzfJjsIwkj6rZP+dJESnXz9UyM0iyUDazz+igIGnZ6+Yv9wr45EyUYYeP ++Fv3HJSZ9L/g4Xwo0+P5EjZKy3yuavK5r2dcFPWzO7QCIpHOkYm/kc/0QFHI +wYHTVEytd4c3FX/X+OdQu8Dz1G4fehrao7Bu27QlC3+xnaekC7cc/u5JG8kX +pxZav/5c1eRzX89SKOjnRA6EgEikQGSiNSmyhZqkktwkA62BC4yZGd5dNn5O +sBfKQZb7C381c37OyEYweKuwgts8KPgVRjzVPQdjTvtFJciLsTkDx3nRvya8 +u3X9ZvtuWvfh8Rw2W/VcPOULtpeW+VzuAfxa6kCen2vm/JyREpAmb2/3QAW7 +0hls3/Tf4cxEp8NvkYWxsW37R+3r3YlCH95989y/mLuFT3cULi18rLwsaZET +Sq/Yz7mx+xoZKErauVrmrH5jgp6YhSIMyLcvi2W63jUbpvFT5UVRGaHsqtk/ +lysQnvfnMqLsWQSVNMG1YkIT8s1lYav75XtUDb07rt0AsxYhsnJgq4zQc9Xs +n8sVuC7z59jdmB4Sz0JV0kmg5TqRZ6j6pPPQVFQ19s+Z3VUvtrsO8d85VSVo +eRmoSjNeBFLSXaBhcTnqSF+TAdKmz7wd3v/j8K6FYIhQvDu+UJDE05Pugm/5 +7/re/FzU6/rWeUFaMmamP7qfBpDA3Ksn32WYKxKkpLtAIDkdMOhAWSA5UWLv +OtES3u1x9R6sNy0OpKS74Ft7TbVlzcZMkJzExGNhn/Tu0IffxJKtCEhJd4GG +JYBkKsjEuZkgEd/ode0zOSBN7vS+aZS4zosEKeku0LBO6Q+e1SyQcAq7E5vz +7qKR04OrrkiQku4CDYv7+7VT7zEXUhpIV/vnCDYxPUEqH/BGfQknLh9I9sut +Gixhef+jCPOapwjFJfGQCsiaucuCsSRAwjlz5/a2MFuGy1KArJq5OBiwAsRh +iA3IC8i89ybGx2D+8vCu8bS749N1e2GbJJBm9//YhnUsLgw7/tVBhi/IMQsk +XLd6Lrkcp8lXBCScs9AIzjMNO2/IhLD6LJAMm17w6N3k6SoSpAHNXg6HVsNq +Mz8d9kkmSFDaAO8c17vyNa+Zs7RYkJLqqIbdvvlLG9atOBMksDvi6Xdy3t2w +dHWIuBcI0i2ansiLG2LKW8NKvu2/I/j4Yau3ktPnvHuVf07a+rR3Pio5NHHO +zAPrzlmRICkCSHxKIOEK6nPTc3lBUhAq+S4nTnrcbcWBJJfMF6vXh2GHtexC +1DkvSMo+4LTqXTtxcXZAsSCNat0zSHgNy6mRtpsF0ujnegeTSu9O6vhefOK2 +7SgWJMSk26gckNxJCzIpCyTMEKdw57wrl7jj58WC1PGPf44+evLtnGHlS8P5 +nwUSoRSC28l3FU91vK1QkHyGSsKK/6jkO/47YulwZUIkaSBd6Z9zyov5jzld +ejd54vKBZL8IkM8mzw/az3f9d6gVCh9dlQHI+kWxzjln4Ljw7jtX7Yl03Bxm +yxCxAmR6Tx8jX7cpDJZUubIAkc7jjLrwbny6HrVPtxa3SSihHc58wD5pWNOp +vWKaBZJszq0bvwjvTrKsoThiWiRIBKn73vJ8DkiOawf1PQuk4Y93wxuV824y +4FQkSObg8jJJwypQyYZkgcRyel/fJufdPadrYqEgKZ9ty9qNwYP0PRGrN/sg +1iyQyCEa9miXHJCCZdu2f7EgLR03J6QiCaRwkN2waSBd4Z+TeEY7+Cf/HRHF +wffGVclpiYTlAEm22LaNW8KwsLv3HnwjiZFUkJI6lN7lxCmiWCRIkKjEqYY1 +oeCdpVkgBU3TmZt6N5w4p0EWCZIjz5AioWGJEr96yt2m6GaBNP6VQSZOv9q+ +I7wrXkUMv0iQSIBwIOSA5EzFOF60an0mSO8/1CHEgfSuU2jCcSkQJJ/CFixW +Eh6+vxfJI1qyQEI1U8aU3kX7HP5EtySjyZZnAkTulZXTF4bByDCz9fUelQrI +5f65YOM+06PkB/47B1jU85qn9yw2nzwTIEmnowAhdRQpTSZmFiBuE0PClgD5 ++KV+wemYDyNlgGQ2lt97DYt/U5boFRkguU1Uum14V869tfOWFwvSW41aRkPu +fz0HJMtwuuSxvCBJpyZLT+9KeMDlCwRJyaBKQ3O6cMkP/XdjHfLNb+SQnwXS +6Gd7eZ16dwCJTSelZFSbnsWCJINm6bjZAaRZ3v4nNpQFUlKntncrIXWLBEQ5 +UVs3fBEAUSYhYb0sQJKiRe86nBhuwFdaCnM5QIKhySuoYbf4lD9iZGkgXeaf +U1ISAvif/XeKuTlKygJp/+e25LZ1kcM/rSNMWkBX6COldcgD8QEUCpAv0ugu +z0CffM7kfuldaiTkdisH+vZfcktu4xYFRJONW9LiJMryNYeN90we5r8zf5GX +Y1lokwaAiBLaQkThpX7lQdv+yGhRMnOyjUoWiiQxlo2fE1CEBOpywSN5UaR6 +AFRTveukcEBvWub8AZLBUprzc5s2beIckMpknAVYK2fgTYpDcu1JZSILb+S+ +dzgjtlj1rlOjUKfy4a3kwMxcqZHzcxlNQJSvnYpPEh3l2BZOFD/HGsvCJ/ap +nFmHeQ7rtGR7t0v7UVG/vrOirVt3puaVHyCpKzkINKSlNeQwBFomyZ4c4hYO +dW/koE1yFb00C2043Ia17JJ4t1q0YFzMDi6p9VRUp1bb6MwGb0QvvfhxtGLF +ptjbdSDlseTOooO9V4eMNKJTMYHFzGvHMfPDA1YexMBNYirn3UuTssWb+zH2 +akYzpq+KLj6vU/RyrTuiznd3iqZNWxn99S/vR/VPah+dVKdddP99g93+rkuL +zB0A6S2VPQL3amiRhUAlhi2bMDcgcEDTl4I7MAuB8mk6QetVwqqYdtHb3aYa +wi65+K3ozYta4j+p5A/12rVbotdeHR+d80enPp3+ejR1yorUQMwBkAgjmk92 +qMjCpCVw144zF4VJ0qlwYOD7z8KkXER4FYTJnj2n2wF+8P4h0RdfbI8+eORN +Inelfo/B5BWXvx2ddsqr0diPl6Q5sg+A/BgpM8kuE2nKjJDoOGHwJguJc9+N +i2LWL16ViURiRBLKP/Tc8KYb+0TXXtMTsrS9ndrtw2BYCZMbN261Z06u1z76 +cNinaR7CDPtIkJOd6URgDuRJJT0Lcjwz8n3JnF29+ouobu22UdcunwSWLPsU +Va+Khx7SuPXmvsad+veflebuyIA+WQFlkcmuH5Qc4b8zt6kzxse1H5AK/SV6 +bkf83JgX+gbLsPvbUw36zz7bFKAXv4VXV/XQO6Ee3dV8oD3bs8f0NCOyHNAH +D9ikeSVHBpw+GRJrLs2AXvkLBJkEPVRzXZOe/q3E/nqzWtDv2LEr+vOD7xn0 +Q4bMSxPV5YDe2TbGOFA6Bb3lh/mkhyzoVbSyftHKVMoRE4N54OvDk1otAX3z +Owca3Y8auShti8sBvTNqgzda0IckbqdaZ0GPW0LsMTjKEpQj6OWD+XzBCq+5 +xJRz/XW9jP85KZ02TTmgT6bgCPokNWVBb5lo17XOObVJyhH0Kt2a3nOETzaF +52yLrrqiu8nATz9dd0lh0KsAQdFNh++SH+/1HT6ZNOgb+edgiTggCNimUY6q +RaliFl8T9Dz3pwu6ROed+2a0bNnGRnmgt18Es7LVyOz4F/8dsSDlQKShotFe +mJzZZ3QqvQhmqB0tEGqv6WF2cEZnn9UhanRR12jdui1/CoBl+JgFs8ORr1vf +HWAeeGfbUI6YBfOCD+PidKom06hEMAcaX7jSq+Wl0by5a41CoBTH5y8qjkqw +MOR6EvQUdJOhhaM1C/rx7QeGUKq860kqUQGv9UzwoY1veOgnT1pup/PG63tz +Wv9UGPRKDA5BhZ4jS37iv5s3ZGLAVRb0g+5uH719+eP2SdAn6UVlpE6tCjQu +6EeOXBTVq9vepJPjlBcWB33gz053EfTrFnxm381/f1Im9CQwOUrOgT5JOYJ+ +mJMVzhK0T9/00DtpZKvEdtm1a/cFxUFPJqiq6gR9Mic3DfqLU3iToN+0aZtB +1fnNyaGKVPl1SLBDPPTsEapvyxbDgP784qDvdM5DIWvzKP8d6bbu5CbxnAq9 +ZABmkaCfPn2lQfXxmCV7ynITdP8tD33HDpPsucdaGvTnFQa9ck6drPNO3/El +P9VOOw3XUUVe6JOuLUE/cMBsgwo/gCokoXtVFAn6N16faM893upDRMS5xUGv +TgzkcAn6oHuv35wJfTJ8JujbvjQ2OvXkV8FngB66VxD7Hzz0r782waB/8onh +QN+wOOgH37cnMibo5WYlypoFfbdLW4WEAUF/3z3vRldfFTv6Bb3iH3CGf/TQ +v9J+vEH/1JMfAf05hUGv5EWyKKhCpxrqZzqNG78ImYdp0HvRYrlR8HtK9ySt +Lm30FnwkB3oV3iOJD/XQt2s71qB/5K9Dnem36+zioKdvECM7uVlydIITys91 +cQb0q2YssncXjpgWcO8gMT7uKCPUdjnqCnQv6N/sNNl40913DUJa/bE46NHl +yUQgHUnQU4WmThJZ0IdS1BWfB+gXLvzccDr0/fkBeqP7hg/Zp2976Pv2mWkW +4C039Yk2b95+Vh7o7RfBjLtHRUlHJ9ahLLEsmNGMZHML5uHDFxjM8+etDTAn +qf07HuZhH3xqtoc7GWhkDQJgGRqZ0gWp7UZ/cXpMyb9q932uDAlNWTBbZru3 +tgUzuw/+tm3bGWBO0vh3Pczjxy01nQbXltMo0xqrZVDJ1xJnx8wM0Nupdfo4 +nss06L365HuV3GFeS53QR1t8gD5un1RNBI07PmafBP3MGavM83bWGW9EEycu +b1Ac9FbcUe9OS/b5uf+O6go5/9PUVEEvbdid8gC902fQsnKgxzJUw6Hveeid +5DJNGNdin94z/lAc9Oy+s9zsk3QaKHHI4LnRl1/uCPb+1Ldjl5yjgswVkahI +n5mkDYvO/vxzo3NWpEI40sfjhKAq0ZYtO6J7nWzgtLR+emT0ldPGTytsWd7f +E9LuSA+Pl1WT4aILz+9sw0O0DzvGPHrUYmOJck05BTVrdRa29nkjSf2fIfv0 +mRkqqxBXpLOS4vJ9vzonqy3ywLNNb+8ffb7uS9/kvODVqQ0E7Eir+8BtGkM7 +ZTJq/cxII2w+n3VGh6hr58lWne/U57TVeWU+x7bQ3k2YsMyGmTJlRSjKoeDC +qHHzl/650ujdQXMMqQ3P7hRNmrT8lOIWZl2sPC/Swm64vpdZqeg67hvbRqdz +Bj9Z91tfQiJmLUxKNckVWlivnjNsYZ9//mVYmFgmmQU/9Nu2YMG66LJLuhk7 +7PDGRAOjfmGr82680L/EgRPOGhEWwOjxzjTvIakSbd/+lfmy7zijTZASaeai +ludkd/COaXmcnzMbxP65ZDEVHp5Bzdv5DIAqnHHjl8Bw5x0DovXrt/prfgpe +XuiK5shCy/vLn9+LzvjD68ZK5KKdPWt1dHad52UopK3sggTEVhHyWNfgjbyj +aX/sPvukCislShFsOMxPM2hgTJEcBGe9nlTYopLJedgFJONrUStXbjYd6sUX +xgSLnyhO61rNo243vZi6V1qRGA1SWSu64LzO2Bc5K0rSyo8SpIh2YLbgo8Pw +gegKk0KXpTqX+UMnh2W55diy3PKCUxTe2LJBy+j52s2jTRu3ppn9Wpl5OX1b +OFEhHB1o8Y2oSgceOqBZnFChleF7bd9unE2PF23sx0t0dUa20qb1jHj6ndBM +UE4dSBvaczQYDNQRr8cZHq3u6l2StZiBiexfLQa6ZTFOZoTF4BCC8FBwj/CL +4bkrLnvbmNMTrYYTUIl73efT5kJ+mONw+OvwxGpzHH+wyR2/CH5HaWTX1moV +fTR8YZpX43wNueMrcy2Pfq53IDucIgy5dOmGsJ51n8bOmFn9xngHcFVjR6+0 +H2fK6R/P7EBYhVNxfGGUp8Wp7pWaRu0UohEW71h9cPbBqB7/wyN2OJwamub0 +0OI++2R+SAXU4qAmAIZdq4AG6SJN98d+s5YsXh81va2fIeKmG3qblv774lbm +A25W5auVjRix0IZ20jmsjGyZV065J6pb62WcI1krE3nRBUsre/CBIdGVl8ed +PbQyFAIyCvEl/IvfNkLPaHHwP87VM0+PiDZs2Pq7whanmBwWhvzjokkkMAoV +etrBHp/yRT5yW+zNR8tJc/loheS5q7hOK3SrY5U5K1TRD9bHUX6FzrKzVaEB +c9A7dZwEqRxX3Aqli382eX5Y4bnndIpaPPKBfdIKVeUx/MUBRmF/e/Kj1BX6 +7yyxVz4ErRAdhnfdsQrVHs7mDI0gf+pXiJf+gfsHGwmB6fffmwdF/2dxK6Tt +InG7pN8eHHq10evmVWjTYW2Hn3t2tFHOwgWfl6Q5vrTCkFk4bWFYoWMqNq5j +MmGFilyTT3y0XyFecSwensWa+fDDBazwPwpboWJQSgrG/6g9JGeF0d1RDCuk +YhmrceWCVWb9YW9lrdC3dbL4gFaI6cC4c2avCSuEc6MtIN9iS7aancMRHy2M +rr6y+96r1J1facvc/5m+pcmfuTdS93glrotUVC91N8gBJyeLaIl2Y0D/2O+6 +ZMkGvxtV43YZceq7Jcvw+/hxS9O8lecmEE2YjDCFklm7dP7EXkXXVK2TZY7X +jmsFfp7YEDYANqMNQRbCxv49/4YcSI3x/KWRle1qs8rJ+yJTN0ahFFNCfa2B +QgFof7AksHCIn67frS+YurbDaQDIZ0jYkW2aI1Ybo0p1zrg2Bt+5E+P2SRtD +jwW8ssNadPY99auZGjB06HxTnozjXdA5eqf7NEt1TOu7fwBkJyuZ4+sXRVZO +XhSZuRs4+NFdsZu0G7hdJeS1G+qGi+sE+gVF7jhl7QYRP988PuzGrbf0xf9g +n1SKNeaFvubDIj7xi8QxGT16sWXTyJHQ9uWxFjH5edm7sb8TodNyKHNvh6ye +ArzCFQSwUKRwpCrUcfGfukYPORtiz15UC/3UfbFYdPNNfUxZgPekefo9L7O2 +BdaP9o3BIb0V5+ljLYflbAi1cWwISUS/8sueOXOVpdfgieAfMuGc+Dy67L0o +OTCTq3NnkYcxeUtjWmKhtojyaFBDV3MdF6f1GUpefWW8t6CrmpqNzGarZjmT +DHPMWelZuzPJ369A3qF255T6r5iaxie5/Ag5wLwcEyv5tacI3LEvv/SxHROO +C7wSYYZ/6aj8x+XA2AvNkrx0cU9vQfmbaG1OtAHi1yFxdpMt22mofgeqBScD +Pl7ozWnS5pFZvfqLkrSAkudkVromP5W2gaxExu/Vc0YwyCXGyNI71r6rbpSA +gdrkmh72PLbBffcONkNs585dPwqLOSBTvpUfmrhHMbWMSrEb+g5CsBuWrg47 +gY2geJN2ItwiEHe0NQ8W8eOWLYZl7oTSoem4rJ2YP3+djT9y5KKgC9PvBr0X +/fg3fk5nNVic+ryGnex57NDnnxtNfpdyKguR5v9z/RDLvD8xLVNXkQGsPFgC +OZGKMhN9hytt3/6Vj2lXC61OiKMwNI4VnsGKSAtTaieoN0SXxrmgnRj78RLD +7OxZq/fYXeNmBwvot/5MoFeNGbMYIeZUvFfsHc4HeSXr1289LP9m7M/Oi2Vc +qJi1GXZDRa34GiNtBp7oiy9K9j+qZlLWrrJ5fbANjceQAIZTkfwlUVXs6LBZ +TEOqEkX1XoaQNm2i6OOX+oXLovr3mxXHFdZ9GVQuvIkQB+6Z//KbQsojOe2k +g/E8RHDbrf3M0ecY5A/yb8r+SGDXz2Vcspi2KZIatGOjSJn4meLqmF733D3I +Ph3qNwVeAvf3N3gZNwdBHw1f6ONl37SWymQIojqTw4Rr0224TcvGIxWIv+HF +ICwBf/TB6TjvpnYcVdGmcVKRFOTFa9NocEU4gzuzTvCbRv4BWSkyHdEp8F4Q +dHMW7ffK3rQ0r4UwQ8YBmgrXGolcObOcVadSeB9Y9dC7HA8VmOEZ1AwUSCfb +4qjUoUbVCAYifjxOyir9BOjaBFsAAtx0OEFAYK9rn7GFchKgVHoZOBF8uocE +b5A8dMLXE48PxzqzT4Ebvdzf8Mo1QbU8xHhXySUAR+AKnIE7p6dFc+eu+XZh ++JJzXi03yCAWJcnfNHDA7OAzdEfVYtH40UPH6fFxPPOtrlNKdB0pBcXwVzyt +eOocD8ennGazVfJEigrEbVyk4gAKwpUKPQwtXTseQtzvjg8lELhM3YlPIK7U +FFSEJ6H43bt2xRGdGiaj4dDYazAHoCbL+Km/jTDzj+jPtwpD4Pl+RpImCDD0 +ur41EAuHo0YuCjEGdXii/wOEQX6ycIgH+vRTX4vWOD2utschJ1KZEOCc9zav ++DyNIZT6VyiooJdDn5ueNTz1bPI0/bF0Eys7Yvr7th0BfVC7TDHR4qcffBIk +Xhy5rInSbUWSQIoXmlXhycSWhR4J0bjTc3Ax6ItLW6EVWr4oXwUOwCzsinCH +TsAhpG+kcMeuogOTQVbLixi0LAiI04NpQTVOmpFazT9PXzOcX76HgGHoJI0/ +baGNM779wFC5QtDmuWfj/Athsr/jOQQrmOtkjzW80nhLOZ2cWFEdeeKPPDw0 +GvzuXERTGmgZWJMP1awBB9m4dgNCngxRzPPOjXN65UNVriTRnEp7YXfSpOX+ +2ugqhl2wxbPkdFMFVDNl/up6fvOXtnN2/d9Fj1rmYh1/IGD8kF+nhg8RaxGS +iHyJWQiZZJaw+STon+5fd0qUqd2kuDr9oRIvua9xHPAVuRHOPEzjJxl4O9cP +TugOHgzMjqMJdRR73NG0fwJ1NexEEeR6+/LHLQEHIbHDvU7K4uWXdkNIeP2j +CrqRoS1JRGnnoaZ/Htc6Y4M+RCqKqK6HnzNoXMibEJ4IXShV78gEM1EBWAM/ +Lm4mTAUcfYQ6nP1cEiOwioU8SJ8kV2PBAtPBsuKn8nrRKBswyVb+N/8dXKBN +61H2ST5IxS0IdorSxo1bGrb8tx5EYMSRzLbjTaODwjdT5leECIZulObG7nVd +a+u+eILfTRrVIjRoK+DGFbY+mfxZSLM5MrHxhMfoDeRE1Fl+dKQ+1jYIQ6M/ +95xOHmF5YuXychjDdOghIVboURJT714zgpcD7y9J48TU01j/bzxApLZT/sFy +EZ34MQ9JQY+S8ZkfbRjm7v7bx5Et1glYNG8TwbznQ9TLl230EdtSU28QXhCj +4wENw/oyKOMc/y4eA3RF7pNw6NXqpRRMduxFqycBQ7d27M28EUH/6YckERpm +zLAz+4xOu233EI8o4hyIXBBFpiimhA/HWicrtGPycFW71LVLHNBwR9jH60qt +yBgdxWnR0E+B+ehn+1HYMlQOsiLdf+viXNXYYrvIyQKLZW2k4VbaC7APh33q +/V9VLCKjxmN0d3K2Uuo1w99KPm9huGb2POr4b7Xtf+5gDiZuoREyCEY6QWSf +FExSYR1X9xWIiT8mDhntFliiUz5+4UcmrKz0qR947kp7LGiW8lTOBNyVw3j9 +tb3MubFhw9aSX/rV8SzDWqD48W72/KEpYCjVnRRYUdHsAWN/o6M6LD6q3MSn +iC1HsLHPnv9JQn5x9ECm43oF5vl7D5DRJLORa+4DYdHtziRVtlXsY6huBgIz +oaHJSoOFY684dv3vHijYKyoGOJv33sTvpMx8qEcXHR5gN6CLKhscq//hhyED +HrTASb/asVNoIC3w7rti0/EoMdct26zggJSx9YtWFlgwcGYCmbrF2FHoL/2E +uPed3WOfZCOqsgQC1OEgC4HD4bRpz15jiYDfGuzC+bFHv5sCwrf982Q/K6cD +W5iGIb9K8D9MOs6vO7s6C+TJkIrAp5/6RzG5eRTHkZMgBZYgnJHAhwHvFjrm +hb7ChzIH3u421ZsyNexRTEqogzbIUAZaJd4m/ICbNm3zGnMVu5cHrZdnyd/j +TrM0A/q7/nmqGeD5MBjiVXDPX3gQwS/mE6TmtPJQnOVOp4odjg44WWuuAWjE +PVpgYUMDPwobRIABnDjD18fxQ64BNVE/8qfFYGscw+ZvEscHasFWpx3+zC+P +BJuxZmw1M72MO1a+nwLB9xIkRVoCJIV6iK/r3xI7hoBgLHcKFSWhR4IPGvpd +KLWAF5QEOtbOXZavUmKvn/6QQAf7bkfmlUG/9hOi+DLhyhWbveFR3ciXySBr +ChZBh8qUHNqO8sujVY5sIvgSHCHNJ6bsairUIHVODNnyKCFHJ9BBzrKvv5Oj +XPl8Y8cu9QZJqYlohCJ8a83cZQXe7C57AFMDTwoTTuowxCezWCUcNhUh9iM8 +OtbMXmpWB8FEYudkQuIVww3pxLDS1Ej1o0EhI7LbGDv/nAJBjKKq1ggG+uSw +YIKSAe0sfTFKbKfB975qwzkiktOJNBUwgq4tWmJmMILG5mipwBKP0/wojrQs +9QgV2hl4x/oJn35qhOmvfDrSY4Qr2nFJsfPwwIXurKB0kZ3sNvJwv0Lon5/R +EzhatCN2OkWaM1u5zvQ2IAfK9HI3A54q6VWYdXAX6Gda9+FyiUgjgnEd44ch +TR6noxmz7QeYpVVg9cWpflYMJxaAReD4oc/rsgI5lbXGFFDNnFkUcgM8W9ev +59SQuHVYYtfxSpnnz0FH24QtazcengKBXgGlXBUBD+AVhnaQHOEBRIaDXRRu +p3rK20Ftm9sT+/QLMTAHoFgiHk2c3acXhpaTE7yQQhKGohk3Q0klQpTcf5/5 +6736U9WMM3gdDOPJ6ztG9R3PnzF9lQ4DzjpYKwvRGlfNXHxkCgSHe2xjptHR +nnUDBc0NUHtQd1QZAOsk55MhUU5w3wbHRothWN326ZcelxQ/o+KDajd9vsoW ++6W+n8usb6fZMBfWOjTn8xxN92z99Ej7pNRIXEpcVwnsrevdF9125nPRxg1b +vyticgimBzeVA4AE8uDfKO3/kgLXkQkixM3JUWZopgD5BEi+56eGhXL/KCcJ +2jZZvWOnbC1KX5xSaZ9+5VcHd0AewB3ki6gfcJBh153kB8ChiZoNehiI7CMZ +E3BUfM9vdprsvetxPHTB8ClR50aP2TpeOPUBqzck/+UfPB9irUiVDx/rasyP +5yAHhK5TItJi+iGf2ak8HCouZqoEUO47KAR7BTtKYVl4GFRl6HJrZysQXlxT +JEsE341SUGVrcc4BK3ZltbDlnlzYUavrh8KXzqrMDeTOCKiXTerEtrEYJ8aD +nxPMdX2if9TqxHtZWq2mbgz4JsEFmAV5uiTDx1Hrb9jzgEtiOVWPKJJowCwX +jCL3YFPIe0fUP0sBVfIaSURXKWd/+amrmuikPJmz6gwfMyR27fwqnr2meaV5 +Dd8jj2Bj4KFmZmwK9tIdW6m0eDbavjTWPh3rEYTBbX4vb5pQ3lBggUxtPxSx +WRw6DMW/uZzG55oHzXHChGWeicQZ3Fh7Deu9EL3bup9VFTp8VfZoB4WsH30A +nsKNHKX+N1zw+GSQkIsdhbGtaUlbUsZpYEzXLbbCe/lKNA9sE7cXCjZOyNdO +vSf8BgXSEx6PIDwHpVzKMK2YVNr0G78kzG1gIt6EXwunj9OW6haG0BP9aIZQ +L9DR6Wf1HYOWI4/SMF8St2Txeq/OHGpAoV/h016+fKMdVSwRzgE1jrAfjhad +t2DutFYGYH7jGfQEtzFpeaLxif2mKVfgAkZJuB9bkhOOgc6QMESYJseBGwuo +4pPkV4Hz8OELPAOraoFIwAHXMCLGdPIpX33MXj/9PsH6YGvcaqPoIF3c3c7o +vZCESzbbMV564c8lkADytmzZkVb9oasZxnsf6qxZq727uapdfAL9sgjUf+6C +cgtPgzRjEb/ziwDF07p/FA4mi+AmD2xIj5foxefH4PVNbE0pVb5mEKJgOTyk +FXpoEWoQgafzeL8IXBGkVKJVQ8GcFqfAF1gJc5xfhFM/zbThHLAI/EWEeNkJ +fyCivzz0Pp57+ySXjEqB2rcbl1qqohVQrYi5QaL5iX5OPAJcI2CqEGrw9a1N +8NEao8DKkGP9kJwIHH8IIuPoXBbllDe4my+UtDp8BSvEbIkhI5fdKfVUkr4M +4p2KEdX2sln7LxWHzUAMINMdDfymsJXEEMXeC+wxzjsWOyOjGaGCkm2ATang +7kUXdglJm1Lw0DSoIcKyd5SWhk8tijLn66+N71I4yS8K5zRmKjydqWmxBIUR +I3ULLrAk4hi/KDRZuAyUpmg1i+L8w/FJo1SoHweech3lbtqrNddvMxbVpHEP +klLtU30/PZ4B2PSwR7uEhAQEFzglE4MeZr8sbGWxbVbTtCf8psgQVoMKI5UC +Xku+9NYNX/iyfosJK4Mw+BZXfxGdf+6bZm07BpdWOaTFoWU/2yYOIMl8Y3FE ++Ul9cKQYKyWl5shFm8bodurevxW2vNioOdj0aJRINCtEr5aH/kLIHCpFOYFd +eLeNdchSrcuxHkg8s+r0tX791rSzoRs+pCpjU8r7h5UDh8An7xi3dD5ICaGE +XMQzBxQ/zbNQ++VHnpdy2PDF4eLGih4YF4tofDaRGDUhAkoGcaArgKXKG/Le +FIahlwNeAsxDJ+PTKqS0ys8+2xSXJg2e613fcYgPEYUkxMqmtb90TMgVdkBI +j8sfWK6CxPkMlH/yTNJnkdlSkP2oGAScnRKaMw+xBXQF4IAfOApT1gs9TQB7 +3botXp0qtfx8uA39Ojdv3n5sxqqnTV0RQujn+VWTjU7ZGwFTtEX6dcfQVAum +FEIb+p47eILJPxxxPyyMomVRkddLYASqxRhm2yErelM6S7GyxwOkRb4SvJAj +RCTOkZfKJchOIFcLsXbcXnhg9zdt2pbGKhV3gp9RdD937hpkOzQf8gbVQ4GK +2Is8nQIwhg0tYND/2SEnbip7NKF5QKcUILOxSCDMWTp1FJjeVN2zTIQbKUmw +TdDEQUdvJJkND4ebvUTTI/hQgvANYr7xPOoshfBX+lUly29+6xFGAwW4/TVX +9yC1+tcp4CjwT2dJaunJZCDoQoC+ig/Q000b4fCC07WmTFlhe6IovJRIqncu +88cAbZtOXmAJhHIMUOCdBepNlxpmuvhrE80YRkrAJFCX8A3u3tPzqmzMHmy/ +EOYEkxAcmhXMCm2cE44pCOY4gZoavY4Nhb0ieZEsYJT3oQOmVqtM3JHUK/Pp +dx6rY8cutbTqxle9QzQwrbov3uTvWC1/m9ajQnYSUogh6dvQs8d02yCoGjW0 +Y4eJ9iy/Q+XKpqarF885rCsjlQTrs86I45bX+GNHVAySBInccIAJTmkeWSJu +9fHiv2HsB0cvlikespFP9zAtHaOKAwD+iVJjSu5heif4ibkioSTOvvTorGkW +NgQLOpEVKJ64QLCjcGjB/t3B1g2ltLxQ2e9/eYyO8w2GIDLH+MrWFKoZJugH +CHYgbXr9UV1KTmcNjwqsv6Hvz7e8iT+c9po9S7UZVWcOixKj/Hz1ld0T8r+G +uZhwYiwePcNQwqnE5UQ7KxgYLQer2sJTyfIEDyW9VfgVQYIHDvUBAw/5do+f +nlrm57yq8XuPCCwX3BNkAC5atD7N/lReHWEesp1ZHGoq0Xqn/HzLQ0BSE4wO +lCofE0uZs6scWZKS724eB1eb6+w6053gDRoyTivUK7oZJohh/9esFnR5TVpl +xX0eA3A9da5Q7g4BIzRFKoYdt/tFyutaIpHHPr1n2FZSQUSEy0mabyd+BufJ +ElQnmKWqJmO595fN6g7EitSMy26y0L1kSZy++96QeZ6Dl5qedukl3Qx/Dlne +oMl5nRnRb3XucS4jvP8pgWfONpl4KLZ0EnQ8wLvec+LDD+TH8/4rMM0zdzpO +YRkg5ZPJn/lMvdiaA1n4BZyAjk2TasnXc/rmDH53boiecSKQ87xKYh49Wnz/ +KlOkFFnOQOT+rg0tqHQ0i1zJhJWiKO8ufBVvrXqdovf8q1+9KSMOf3yvTktO +nB3uX8V4QfrpVZKIlQbNb3zvJGF5ULu/6ggLKjPMQq1SfSmaquPxwzmVNwtW +CdqP9jyFIWCjyf5cR/r3sGcxFzjjFElQeiaXlCqoFy78/H8XXq3Id05CKu/v +EsdiKiBTSYP0YLf99qme32I4DwwN7o7yC9koaSJx4mw4epsp3cadPvNKWn/Z +v42wHEs5XZOe4yLEwv9kpWLm3OlYJLO/+Z1xf0mFl2nzBfbABiKXe2iO8L/t +1QDPxlTYiNwusKU6KHwTdfw8Sdd1ObC4P0sMM+dOxyLZbOrZdorHBvWY6Odg +iswW2HgsPePeFqSxYx76Hokl/qyGVBs6xUrHX7J4vQIZkLec5+VA5P4sC8yc +Oxfqe/3qICEQhg52WuLgku/L9xjGlBr/IEGOUveaNTUxKm6WM74yuubMXuOV +9g60LFfJAjhu9diH+ZCa5qcR5MqZ79tnps//qWKNBtTohwoNZ8L7BMaqVpqu +tmReucI4TbuUTxQhFRiqGTFioYxtAsOMQruDB4sDXmoFADbwNMpWUL6Ktqwa +Yfr+Y0GrqwJbQ0XmxRfFGrUzU/C4pbFtRQ5N57yht+1mv76zFJ39fN2XAX1F +LkIyfN7ctT57N17EoEFzTN7zG3UvvtwwHBGsDdgd1pkWOm3qirSuE4ocsnnc +dsaae7wzTWF75RCOGbO42EVQx6FGpLE7+rvGLah9QE/E16nav+fajLIdwjOE +AxMpxrMUJhB1JTRI6jrtSIDUMrIfHsri1AIxBwalaoM0+DXvvNV1ig/HhXzA ++fPXFbs6Ot46KOxTQz8b9x6wRURhnXFX3ZdL4ZDBkY0G6ER1WjGSIm2smfa9 +PgFOCSs4zviKTPwi4QVbF10Y946O6/1qWAkVGCZH46PhCw3LVAHDzykdoZ9F +WiXmrxLQqsdqxw6TlJhEcwS3fPtUJLQUjLu9tk9pdyv/OgGBbA+Hr+MSi3Xn +pCIQcMwc5ZQJwX8kIGA6KMwxAWXzUdyqbLB8ENgvmhengLNGy5xX0S9MADrG +wnwcL1OeBezLbYl9uj8MnhHIkW8OZqas97RL6xWP0n1McG5niCvhlQPZru3Y +YjAuCNR/g7h5GgSKDVGUSMzPB26Vk60waM+e00v+XBwE9JJgCCdOUyFQVGbV +qs0mvok+rlyxWXlBc+asiYOUHy0sFgLFwtwMqRAozEGePeuna67bEaUejPSF +zgQQi4QAkaJc7jQIFBLAK81zNG5yclQ5HKH79Lovi4XAaS8hLyINAjFxx89t +qjdenxhSSMjfRYFAshc5PYdKOcpp00tCwvg49GQ0KaeR7Fgx2SKnxyJRrkHZ +05eaV0b3ojlqUKUbjkIxziIhQFNXQkAaBMd7CNas2WKnAPntzqTyYMnrFOMs +EIK7/RCqwMFHfWvKc/Jb0zgMxkPzAbfjylEGJS96FlokBEpXo+tTGgRKKFMa +PZAqk1SctPvbU0seyjO9/aJJVaJLrWzapFLx6Y8GkbvlhzYRYp5Oc4z5bz6+ +r0nVt5J7ssqetNT2hJ0m8OLsP1VWiGU6tTvvYsuAgBACB4mAdRoEMhfj3W5v +xKXpxS9JZityetK1nNVin9Kml9kvdoNar8zdJLMscnpuZnTKYZ7pS800uufu +QUbcS5duUOlTklkWCQFORhUepEFQ10OAgCVREiPVaT2qRYNfOkZUEQgwV1o/ +M7JMCNQDgggnW9DtrSmhVNb4pQ+uFjj9XX4IuiMxLIn0t6U857OizU2H2oOX +VhnxMEu1oChy+sWL19v0xCTKnr7UbCIidNhADv9H+tfFLCns/0txEKhMHN9N +GgRyLdN12zhb92mhkh23hdohFDm9MlLBa9r0ihiQWyj8H+G/U6sweGaR0+se +NzysZU8fyzvyQui1Euq19vTFgoEWCQF+Wney7FMaBMrNFK+GUjQ9kSt4AuGB +jOklMomZJf4nCOAsqr0uG4KYC+HywPHkCE+tamg0Lx5gEjcpfZQhQFooQwIt +9h3ME5HHXUzN/EAkmKhvVhocisuRDwjjpfOFgMARpuByXkwcbCKDX0lAwU+i +pjCIGFgcqiRKLuEuD4qxP7dZZYKn+KtTn2w8/DcqqV6T6ETx13x0ckjyJ7tt +Ai8ItjmnX7ky6D6gHscCXhO3Ozf62dThxRF3ye1lQhpfK81mkhjhXg89wEfv +sYTyApv7UxxtqWmGIoyF3qFkY6lNFh5CDGYcJY6l6V5t9blyX6cCrFRedc4g +IitoVX9KWn+B0Fb30CLc6JWNBg8+mAKIicrRQRpCdQqKbg50nDKuahm/LAPa ++LzQaQBLcePGreo9QR6O/BMFAnywB5iRsQJRS/Cm4TcAImQp/UhxIbotuNLP +qMCuEzapAPs6T0s6IKr4lDtIyYsBnZmXD9r9nyRTdGP32MlVw5yh2NC0b1K/ +W9gVkh/h51heuBWDdluqJUnDqHJeuLNKlw2oCzJnA4LldD6cH6MHUh5MgZ3Z +D/WYxRELNyB8pMapsDFIFyUeJ7ESYXH0OjK2T1mY3bBhq5E7QT9hVpe30qSi +HJj9e2utHhpi7dptXlu80IpqhI7AHy20qK+Sf/Huq+V6GjqVGycDh7YB6iRF +qpf8URno3N/5L8X1Ro/5WzVTJpBSokuUbE4trWuVpI7/XsHlspFYai51fLAY +VW6T1PsNDU/pq+XA44HRNLu8DcxjDWdPO14CGOjp4BLzDPXEKc/Kn0YBUL+Z +NFT63hQhCIbBLTyipjiN5+8Lj9nNxw/z2EMTgxMqxIV8wLGFKuYwq15GKmUh +rNw0BQNK9cVKAdPE6tU3lA1CnHFn5UMBgAMkm6a4huHqIrF82UYzKHBIQjQw +RRga/S1EUKqPQXXMQt1s31SfOkShTnmcqKePFC5XDtAm3z/x2EM6k6SBqsrK +IRJueKPAWNKWMgjl66VhTwSKBs3p57Y93b6mgmXsoXJg7++kK/fP/Cs4i2Hw +rJpTS/h32tQVsljUt56EvCzEEVViCMJ3Qhxd1JHrNLgsB+L+Tjpn6wYpFDju +odeVrngW0F6I3sjnoZZ88LE07J2dwJT6zfv2fHbZjLwaGdhLM7N8ArHZ0XBl +bCDAIOBGqBwQ5RbD2j/91PgK5iwQ4fAslbiwQORSSC4rKAJE3WcDV8c4IZ/G +QLyyux1mQJTnlJCBE8Vlgqhu/NL3SEzS7arskryuLQoD8ZeeNvYGkXIrd0Lq ++hnIsFMiWNnQxdkcVLWgVLj/1qXEygd3/y4UwF8nAMSRRy88hsLgW7wnU42v +lVSVBuDeBZyU4go6hzb7jtsyC4TuWA8d5iI+DiK+mJK4rJwpqqwpZZq90n58 +yR0pw0jxIjaII4KjpOuq4dbn+/hBgdCp9QX0QXUXkEHeNEfb04MghNKogMiC +jug5q2j78tgA3dUJd2CB0KnHLcq90upQrUj5UQRZYon06TTQ1OGZIAtcmOek +JqGH8R1l5Y8WBtrvPOJw4eAFw98E8sjc2rZtp9JouHlXvL9s6EoN/+AdJ6Yj +BV9CGEqm6WWaD0D75fceYwQUMH/YDNieszNDS6ZkpnIaTOok7ia1yTt1nKSa +RutbznfckPdImDUjRHmCB4gewoQdAQh3Nw5j5buQCOLsjTIBkv1GmgLuUvxf +1T3iOFaENKEyxwAK3MUTPXSMglcDvQl04TJVY7ykn6dZmdCVWsogVifmjYNE +dy9jlPI6gd6WhUGn4g14I2uEvrDDEArKVyGgKmafBp2ucVDYBwHgxbk1amZM ++nM9VhhodTxoeLVxBKtuhCx2JbLobgyCKmmgybdBSAhllT7KpR6Z1rr2ul5m +zjtWVyB0J/lREPr4VBHQTvVVggmJiuTzgceyASs1bz/sGnE1edJymdLKF+BQ +tioMMBUGcK5JToMwaMkKJMr+IG9YtzCkQRfXfle3YAInB1BQkuDRgth9frww +yJRsj37zkK/PpLs5ATVlhcDjFJxJgyy+BK2asVXsNvx6qm5hg7mcr0Cw1HQP +NouzFoSheJBYrVwNcsksaazH9JI7U8a4JMFjcUsCktNInygMErXV4K4uAsaU +QbptVO6G9BfCr2lAyOPMpSNkGvCpQFwo3EOaCLdPAoXTEZVG0d2n6nIE0yBY +Vdhsin4QVEHmgnlH+cqawLJ09GCfipnNflGHVhR0DC7Af/21CcqLoHe1Ow1l +zrEiDJQhgNTKH46CDsAcaDrEWtW+G+oCm+RsNq846nQ7E8MSd2JKCr5JjjnS +Tyk/xqCBc/bFlGd5TGJpIcQQlY7MjvCzKacQw2ofzKb+5NwAw7B+NoWzFcpD +xu+D2c5On00hY1LDG/m7s/bBbOekz6aLhJAFToHaV7M13Gs2bDxHJgqK4omG +XTk1UmH+isymWzvI6odKkNzuHChGmNQ298Fs0rxVNOkUrBCOVAQY59Q+mEoq +K1fAMixev+8nvsMlw4HfZ1PFUWEqtn3ajmJXSGKnxNunfTCblEu4F20T2LWB +A2bLlQ4Q8j7cXcRs9suFfg7E9p3NBigbXRcFKUzOZelpc5SLC0ul2ivzXJ5Z +NA6sWjhkMetIVZG+1h5M/hp6UGCUYaXeU/HZLvazUXKFmo4dt2zZRn/ZRqgN +ps/4PpitkZ+NlofqnOVMD3kq8COgmmBx31vx2aQ7YdiDRUJiTiOQbY8XTRVG ++2C2S/1sdEZBYaQ8ym3WN/xsaMbYkJzkfTDbZX62qVNW2Now/Fat2ixTl2QW +9Ru7r7DZ9n8WRW4vkdhyqRJ17NgxatCggQVomjRpYkHVtIDM5R4z1OGhxIN0 +p7z7Ii2z34n7U8lUJGb2XzZEbtsPBcJmzJhhWNm9e7fM4xzwr/AYIUOLBDJ6 +TDgCkZFPzgm2P72Q03qilAMj+yOLQQG6WbNmRQItbfVXevohTxQjEO5N1gKp +NLLYcX8QQIEdTJu2skAs7O/kg9Kcn9u0aVPVZx01btw4wJpWDHuV/T3YmD+9 +zOD0EAj2LwKV9C5sJfxW/MbVemklveXAzf4KhNfI+Xnbtm1Rw4YNoy1bthgp +iXbsKFgsOkZJdVs6mfFQBChRUBJH25IlG9IqzJaHQaofgGu39U6aNClq3rz5 +19e+11KaeLpCfcJpjxbs9JGHitv7AyOgr7PSsmVL2InWn7b8tKs40i4s2dfP +HQAx/MoeS1BOo0aNCKAe4FjaH7F6UeySJUui+vXrl3mO0u6sS7u6rbzP/V97 +90CH7wDIfpAa1Lt370w16H8Lyv+fFDNJ0WxFI4Rko6qYefHn8PJ+UXLQfwMR +m8xc\ +\>"]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Re", "[", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "4"}]], "/.", + RowBox[{ + RowBox[{"NSolve", "[", + RowBox[{ + RowBox[{"eqs", "/.", "params"}], ",", + RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", + RowBox[{"Im", "[", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"1", ",", "4"}]], "/.", + RowBox[{ + RowBox[{"NSolve", "[", + RowBox[{ + RowBox[{"eqs", "/.", "params"}], ",", + RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"d", ",", + RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", + RowBox[{"Frame", "\[Rule]", "True"}], ",", + RowBox[{"PlotPoints", "\[Rule]", " ", "50"}], ",", + RowBox[{"MaxRecursion", "\[Rule]", "1"}], ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "60"}], ",", "60"}], "}"}], ",", "All"}], "}"}]}]}], + "]"}]], "Input", + CellChangeTimes->{{3.522542762323259*^9, 3.522542764447953*^9}, + 3.522546267445561*^9, 3.522546298673073*^9}], + +Cell[BoxData[ + GraphicsBox[{{}, {}, + {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" +1:eJwtlXtU02UDgEFHAg7lNvhxGTE253AyNrYxA937wmSwDQo+QpSUAJG4JF5A +kWOhXCYjChMEDC8YwhwLEQ35KJP3VawcyhKUo+JYoOAngspFFPi4VOf0x3Oe +/59/HlrCrv/sWGJiYpLwN//Y/3HmyOJiGK7/Zd5dW/seMDZa74EpYZjEz8+7 +VrQM5OY1vD3cHYp/bOEWmuaaA7PO5fF23qE4m9UabV1rAYoc027XFSvwSzEr +eeUTS3D/pey/5Ek5bnLVjxxgkoHbTda5jBg5zq9gjjxXWYGSzBDDw5syfK/5 ++m9bzFaCeUYyRewtw37vT25PiLQGH4Yq+FNfh2BiIHHuVJgNOJPBiWh4EYwX +kjbclifaghbmsTFRZDDWP2i88VRpBzofTR5tvyrFWQNXPuHesge/LXW2/95R +ilm/j4/1fOQA2rzgiZyMIGzsrJSYWhLAwDufEtO9EdckUZbMTTqBGeEKf1/e +RpxztWsizsUV9P365ptnVRKcO0bG7pvdwPWox/0VJAkmdhk+k+xwB0e2Konv +4gNxl0A7R+hpQLHdO/xkWwDeX/u0jeDRwYOpzRZ7mQF4bneFWZofA2xX5d0I +KYGYNbotn6VkANaLR8f8JwB+tlBIZDLpoKi98czQ72I8ba84XsqigoavLPfx +Czbg6betjrGpi+K7EUmKXLgeSwX3vC72EiiXe51xwNYf+5BGUckLNvJZ6bqQ +PvgB/slzIGHBlo/qHs+ftTi9DmcqeKHr2UJEaP6U1EaJcBXFUKCyFKIeliTX +394XV44fstvxngCV1qvbursFOG7w/6OaDh9kCLBYtD3Px6JiecXRJh5a3ZsG +Ig/6YKVxvLa+hYsEcVEykS8Pv2pwydOe9UaH73yp9n3ijUt273m73IODmpd9 +hMPzvXB8/EW3xndr0XCge28qg421nCOXfppmo5oti0fulLIwublaG0xio092 +G/kcUyaOFYbpU13WIM1rTCk6SMctTtOj91Z7ojfp5949nXLHgxSX9DoSC7X6 +mSOaiIrrd0YMOaqZqLBSV3Iwj8Cp1KbVs90MFPuDuiAx2Q6XpZeXmjE8UFrO +sqmqU2S84viaGpULFRUm/DzdTFmKqbqXl/b+YI+k3/ROn6ZOIv1YtkPiUTNk +vYWuSRJPAPNVGcuFVSSwotWJ6xCwFMrVSlp6jz0oa6eRZxKs4Lnwn6V7Wqkg +qoh4rkuzg17Hd7U5Mj3AANdd7sgk4O2lDVbu9QyQRCMf6QmiwqxYJXdeywRT +5nP9Oh8a3KxS6Lh0Fjh34pXuYgsdPgwKN5QCTxDBGrhc7seE9Zf7yl96rwGD +qp5yzzIW3EfEG5NJbLB/WHfg2sgamDobx61+wgbK9KZbFlleMKsi9zv6xFrQ +ka0gs025sJjPf/9DPgfcrAU8Fo8H1RaSXxhV3qDtD/6mVfE+0KRPiEpquCBd +qu5fVcyHZ8TjlrpKHnC7RqQxrwjgg2TvEM0FH0CWktbmTwuhqyzKxDjCB7P6 +16N/+otgtfO86P6sAMRAg7YsZR3UKKoWtgQIwdVLt5KDKz+AOo3RrrOXD2KE +nG3RRj/YUGAbZs3kgOnWsojPVq2H/XstVXe7XP7uPBuo37QB7u4c9bFSvWpz +OhYnEKrEMC5DPLN2iTPqDwkqrv4RwMLjDX1WSg8UaUIZL9gF4cK3RaeHUhgo +aqhd9NwmAF65MWxdEslA0R17cxTNAfCEaH6CIqWjUnqNpFcRCDXLkytvLNCQ +/osu85SngTDWNNew54I7Yn26YbiuUAJlXQ99lXVuKD+gXveEvRF2fT5Db+a4 +olbZ/a20zo2Q6oQ+7iM5o1cRi68/TQ+CldX9qosEgbbqtaYdJCm8rLb9avCQ +A7ot32QnOCmF0TmMGq4tBW0OF8NQcTB8FBY7trXJDj2LYu5MHAiGpzzFEq99 +tujCHyWEJjsEGofMrbg7bVCm7F37iI0M9smKYrQ51shh2M2Dd14G37DOHjKN +WolaVdLD+9fLYcHQtZrPu61Q9iXtTIpRDg3/u37n24/JyK93Rca2wwpYZTlT +TsxYIkHWZOoXjqGwyTThwbq7Fohj/zDhZGMovKW2+bWjzRw1ZzHPh0WHwZb7 +Ts5c9TL07w/gvz9AfwG21tEN + "]]}, + {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" +1:eJw1lGk41HkAgAk5k4wZ4zY004gwY5wzzf83jmHMaB07EkWOtUlRsaUlOVqy +SqVLh47JzVakIvX//VrUDqGsDkeiQkOhpKiw7fPsfnif9/v74aVExPv/tEhO +Tm7jd/41uzdxbGHBB3Xk7hu5Xz2E91/W2g5ifFBF6Ejm8cARPD2j6lNapwi1 +BZm7NljJcKU29XCCjQj567trh8aO4Tm6sa3FuUJUe+JsfsbsO7zrneCmxpQ3 +suttra4ImsSNm+iXEoK9kT2z1ilk6D2el+jV96xJgFYH1ydekEzhc8s3Ebk2 +AmQyr5dYL5nG14iEdtMHvJDbp1DNJxYz+LkEa7+qUU8UGfbex4n2Fb9BOzLp +GOCJAqvweGLCPN7WPXWosYGPVhw7vynARh7eU9DXuajLRztuj0dLkALEV4GC +1AQPtFCkfiBrdDHsY5TGBHe6I991t65xpWpw1l6T7cBwR3k1kni1yqXwefPH +g8On3VABRxxdWa8N74p7B04ouqEI/4en38aSYNb638inwl1R3jXRmrgrBlAY +aeN7BuchCelJrHcUBT6dDlLdQeOhN8wI24t9VBi5P+NPrzyATpB78zl/W0L6 +aPcR9gcMFR+JDD9QzYA5jZfPDd3nolt7gfw5SwdY9bvaL3b7ViOu1m1Dk+su +8KFftDAdcFD2nqMT0XEcmG57d3mSNhtFeLYviux2hsylhvNxr53RB6PCJUu3 +smBx79wF1UIn9MCSRQG+VpBc9sKtSOyI/Cer0jeuMoOP6W7pbB0HFO+pl0Ls +IsL88hK8s5OF/MupXNWG7314qgvapXbotW52mn7IJL6iJxYLSGaitPhvdwbJ +PVzWRrHA0YGBQKVZ85bJL9y0B3tKHF7aoCSR2DEoZDEmczXt2bzcErXISPWa +3dqYZN1C1oN8OlJV0au9qK+LhWzrt7OWpyHxr6JgYqUBVjaBiDnJ5qh5m0Wz +jtAU+xh36fOraVO0t/eY5aCCOVbnogIpjkZIN9PwJamNimWflOYlZ5DRYUua ++l4pHQutLNkXtYmACr/sHEUmVlhsqvL06bMaqO/x8VZTXxssO+LWTC1RAekZ +OZQXyGwx/sGemUKjKciz1le/0cjAUNYwaXT4DBwUUxSylzExrXXmZdHcD9jL +S+NBB1oYmGadni2JpwAmTbfvLnltix1tpGjMRiwBOxmSuWSiDSbOIb+RxhLA +TL3BjVwjK2zQ1tRbl0YGxTqzWwuULLBoikbWYw8jUP5MclCtiYpNq3wbkDIp +gDQfY2wCzbBLBePSKzfMgZ/A436DpinmRx+sOe5CA1uuOy2ZBgbYTpk06c7Y +SkA837FnnEXAWnYLNSzlbYE1dUmxbEIJayrCGHQGA6TkX5/1ZX/l4h12gdRw +JqDLEVomCge4cfySAWquHZg8xMmJlH+LG98hx9Kus0Dqqcz9KoZKUIOvaJU5 +Yw98nheLt0h14Jf2ibcv2I5Ak/BjUlMaBQaDvoqjMU7g5vPuu5TslbCh+q9N +niedgbLyhpi4ISYMtrfesLbfBUT1Tj2tVXeGM3VH/X6mckBLalsIJ5QDVahf +XNsDV4PhJDK2x4YN9Y5sZNnv5wL2ibBDZjRHOODlkXv+GgbkQm7P8U4yYYAc +8f2+eACKCqOBDncVFA81Or5ZxgOdxm01vHwaXNuyI1VYywMmRvfab5dSYL65 +xK1H6AqinM6aGWQawvaURyoxr1xBJxi+dzhMF9LDVsuKs93AIEmnZDGNADN5 +5dKXlu5A2T/uHN69FNYJutZT2txB6ByvjP9ODY77LUyExXkAbZ/wq7cWK8P1 +7RXyLYp8oNT5yl+LqAhbvQMJrDN8sGzlD05bS+VhkC8XiLieYFaxxihxah4f +FtO2Rg16AlG+fJV64Ff8j448ctluL5DiU26nnzqDJwo+N44tEwB0UKlLXesT +TpIZmzFKBUA6Yuodv+gjXrefn7aT4w3keIS0R84f8N3VFbMx/d5gpl2/yiN3 +Enfp0UzYkCYE5JTmls8W4zhr19TmFF0RIF/d0p/XNIZb6zyLOHNZBDqY3MLW +Ihleu4tW6rPWB2wzUJvqyh3B//s9+P/3/wBZ5dLn + "]]}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->True, + AxesOrigin->{0, 0}, + Frame->True, + PlotRange->{{-60, 60}, All}, + PlotRangeClipping->True, + PlotRangePadding->{Automatic, Automatic}]], "Output", + CellChangeTimes->{ + 3.522542775492355*^9, 3.522542960547408*^9, 3.522542995770412*^9, + 3.522543035134631*^9, {3.522543296264867*^9, 3.522543319510829*^9}, + 3.522543384500983*^9, 3.522543455525264*^9, 3.522543514229852*^9, + 3.522543626701997*^9, 3.522543667475726*^9, 3.522543726018032*^9, + 3.522544871173848*^9, 3.522545966092067*^9, 3.522546271481462*^9, + 3.522546301931841*^9}] +}, Open ]] +}, Open ]] +}, +WindowSize->{960, 1029}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +ShowSelection->True, +Magnification->1.5, +FrontEndVersion->"8.0 for Linux x86 (32-bit) (February 23, 2011)", +StyleDefinitions->"Default.nb" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[CellGroupData[{ +Cell[567, 22, 32, 0, 109, "Section"], +Cell[602, 24, 66, 1, 63, "MathCaption", + CellID->836781195], +Cell[671, 27, 151, 3, 43, "Input", + CellID->2058623809], +Cell[825, 32, 1762, 59, 121, "Text", + CellID->525777075], +Cell[2590, 93, 68, 1, 63, "MathCaption", + CellID->429217524], +Cell[2661, 96, 1155, 29, 179, "Input", + CellID->433132487], +Cell[3819, 127, 689, 25, 63, "MathCaption", + CellID->133602844], +Cell[CellGroupData[{ +Cell[4533, 156, 1586, 45, 125, "Input", + CellID->534530029], +Cell[6122, 203, 2005, 57, 124, "Output"] +}, Open ]], +Cell[8142, 263, 217, 5, 86, "MathCaption", + CellID->462076121], +Cell[CellGroupData[{ +Cell[8384, 272, 528, 16, 98, "Input", + CellID->494599775], +Cell[8915, 290, 2450, 67, 124, "Output"] +}, Open ]], +Cell[11380, 360, 76, 1, 63, "MathCaption", + CellID->358620443], +Cell[CellGroupData[{ +Cell[11481, 365, 464, 15, 71, "Input", + CellID->167259034], +Cell[11948, 382, 1077, 18, 177, "Output"] +}, Open ]], +Cell[13040, 403, 102, 2, 63, "MathCaption", + CellID->577766068], +Cell[CellGroupData[{ +Cell[13167, 409, 2629, 57, 233, "Input"], +Cell[15799, 468, 3242, 90, 172, "Output"] +}, Open ]], +Cell[19056, 561, 724, 27, 42, "Text"], +Cell[CellGroupData[{ +Cell[19805, 592, 247, 5, 43, "Input"], +Cell[20055, 599, 2272, 66, 106, "Output"] +}, Open ]], +Cell[22342, 668, 384, 12, 64, "MathCaption", + CellID->610306692], +Cell[CellGroupData[{ +Cell[22751, 684, 272, 7, 71, "Input", + CellID->645617687], +Cell[23026, 693, 1053, 27, 120, "Output"] +}, Open ]], +Cell[24094, 723, 92, 1, 43, "Input"] +}, Open ]], +Cell[CellGroupData[{ +Cell[24223, 729, 53, 0, 109, "Section"], +Cell[24279, 731, 98, 1, 63, "MathCaption", + CellID->690131918], +Cell[CellGroupData[{ +Cell[24402, 736, 230, 5, 71, "Input", + CellID->718931880], +Cell[24635, 743, 672, 14, 71, "Output"] +}, Open ]], +Cell[25322, 760, 390, 12, 64, "MathCaption", + CellID->854192725], +Cell[CellGroupData[{ +Cell[25737, 776, 459, 13, 98, "Input", + CellID->465762594], +Cell[26199, 791, 1836, 51, 146, "Output"] +}, Open ]], +Cell[28050, 845, 76, 1, 63, "MathCaption", + CellID->314466782], +Cell[CellGroupData[{ +Cell[28151, 850, 424, 13, 71, "Input", + CellID->298399236], +Cell[28578, 865, 32297, 840, 580, "Output"] +}, Open ]], +Cell[60890, 1708, 38, 0, 42, "Text"], +Cell[60931, 1710, 117, 2, 43, "Input"], +Cell[61051, 1714, 2257, 48, 98, "Input"], +Cell[CellGroupData[{ +Cell[63333, 1766, 1777, 45, 125, "Input"], +Cell[65113, 1813, 28311, 470, 339, 4676, 83, "CachedBoxData", "BoxData", \ +"Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[93461, 2288, 1347, 39, 125, "Input"], +Cell[94811, 2329, 5076, 90, 336, "Output"] +}, Open ]] +}, Open ]] +} +] +*) + +(* End of internal cache information *) -- cgit v1.2.3