From a6dad51ad585a235dc7bfe89ba1b488037642b9a Mon Sep 17 00:00:00 2001 From: Simon Rochester Date: Sun, 21 Aug 2011 17:33:33 -0700 Subject: xmds2 model of Gena's 4-level system. GenerateGenasSystem.nb: generate evolution equations GenasSystemPlots: code for reading output data, converting complex field amplitudes to rotation angle/ellipticity, and plotting --- xmds2/Genas_system/GenasSystemPlots.nb | 458 +++++ xmds2/Genas_system/Genas_system.xmds | 218 +++ xmds2/Genas_system/GenerateGenasSystem.nb | 2722 +++++++++++++++++++++++++++++ xmds2/Genas_system/Makefile | 37 + 4 files changed, 3435 insertions(+) create mode 100755 xmds2/Genas_system/GenasSystemPlots.nb create mode 100755 xmds2/Genas_system/Genas_system.xmds create mode 100755 xmds2/Genas_system/GenerateGenasSystem.nb create mode 100755 xmds2/Genas_system/Makefile diff --git a/xmds2/Genas_system/GenasSystemPlots.nb b/xmds2/Genas_system/GenasSystemPlots.nb new file mode 100755 index 0000000..c347101 --- /dev/null +++ b/xmds2/Genas_system/GenasSystemPlots.nb @@ -0,0 +1,458 @@ +(* Content-type: application/mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 7.0' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 145, 7] +NotebookDataLength[ 15335, 449] +NotebookOptionsPosition[ 14375, 415] +NotebookOutlinePosition[ 14740, 431] +CellTagsIndexPosition[ 14697, 428] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ + +Cell[CellGroupData[{ +Cell["Functions for field parameterization conversion", "Section"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"Ax", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", "ComplexAmplitude"}], "]"}], "=", + "0"}], ";"}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Ax", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ex_", ",", "Ey_"}], "}"}], ",", "ComplexAmplitude"}], "]"}], ":=", + FractionBox[ + RowBox[{"Abs", "[", "Ex", "]"}], + SqrtBox[ + RowBox[{ + SuperscriptBox[ + RowBox[{"Abs", "[", "Ex", "]"}], "2"], "+", + SuperscriptBox[ + RowBox[{"Abs", "[", "Ey", "]"}], "2"]}]]]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"Ay", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", "ComplexAmplitude"}], "]"}], "=", + "0"}], ";"}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Ay", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ex_", ",", "Ey_"}], "}"}], ",", "ComplexAmplitude"}], "]"}], ":=", + FractionBox[ + RowBox[{"Abs", "[", "Ey", "]"}], + SqrtBox[ + RowBox[{ + SuperscriptBox[ + RowBox[{"Abs", "[", "Ex", "]"}], "2"], "+", + SuperscriptBox[ + RowBox[{"Abs", "[", "Ey", "]"}], "2"]}]]]}]], "Input"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"\[Phi]", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "Ey_"}], "}"}], ",", "ComplexAmplitude"}], "]"}], "=", + "0"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[Phi]", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ex_", ",", "0"}], "}"}], ",", "ComplexAmplitude"}], "]"}], "=", + "0"}], ";"}]}], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[Phi]", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ex_", ",", "Ey_"}], "}"}], ",", "ComplexAmplitude"}], "]"}], ":=", + RowBox[{"Arg", "[", + RowBox[{ + FractionBox["Ey", + RowBox[{"Abs", "[", "Ey", "]"}]], + FractionBox[ + RowBox[{"Abs", "[", "Ex", "]"}], "Ex"]}], "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"AmplitudePhase", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ex_", ",", "Ey_"}], "}"}], ",", "ComplexAmplitude"}], "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Ax", "[", + RowBox[{"#1", ",", "#2"}], "]"}], ",", + RowBox[{"Ay", "[", + RowBox[{"#1", ",", "#2"}], "]"}], ",", + RowBox[{"\[Phi]", "[", + RowBox[{"#1", ",", "#2"}], "]"}]}], "}"}], "&"}], "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ex", ",", "Ey"}], "}"}], ",", "ComplexAmplitude"}], + "]"}]}]], "Input"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"S1", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ax_", ",", "Ay_", ",", "\[Phi]_"}], "}"}], ",", + "AmplitudePhase"}], "]"}], ":=", + RowBox[{ + SuperscriptBox["Ax", "2"], "-", + SuperscriptBox["Ay", "2"]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"S2", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ax_", ",", "Ay_", ",", "\[Phi]_"}], "}"}], ",", + "AmplitudePhase"}], "]"}], ":=", + RowBox[{"2", "Ax", " ", "Ay", " ", + RowBox[{"Cos", "[", "\[Phi]", "]"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"S3", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ax_", ",", "Ay_", ",", "\[Phi]_"}], "}"}], ",", + "AmplitudePhase"}], "]"}], ":=", + RowBox[{"2", "Ax", " ", "Ay", " ", + RowBox[{"Sin", "[", "\[Phi]", "]"}]}]}]}], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Stokes", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ax_", ",", "Ay_", ",", "\[Phi]_"}], "}"}], ",", + "AmplitudePhase"}], "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"S1", "[", + RowBox[{"#1", ",", "#2"}], "]"}], ",", + RowBox[{"S2", "[", + RowBox[{"#1", ",", "#2"}], "]"}], ",", + RowBox[{"S3", "[", + RowBox[{"#1", ",", "#2"}], "]"}]}], "}"}], "&"}], "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ax", ",", "Ay", ",", "\[Phi]"}], "}"}], ",", "AmplitudePhase"}], + "]"}]}]], "Input"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Alpha]", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"S1_", ",", "S2_", ",", "S3_"}], "}"}], ",", "Stokes"}], "]"}], ":=", + RowBox[{ + FractionBox["1", "2"], + RowBox[{"ArcTan", "[", + RowBox[{"S1", ",", "S2"}], "]"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Epsilon]", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"S1_", ",", "S2_", ",", "S3_"}], "}"}], ",", "Stokes"}], "]"}], ":=", + RowBox[{ + FractionBox["1", "2"], + RowBox[{"ArcSin", "[", "S3", "]"}]}]}]}], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"AngleEllipticity", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"S1_", ",", "S2_", ",", "S3_"}], "}"}], ",", "Stokes"}], "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"\[Alpha]", "[", + RowBox[{"#1", ",", "#2"}], "]"}], ",", + RowBox[{"\[Epsilon]", "[", + RowBox[{"#1", ",", "#2"}], "]"}]}], "}"}], "&"}], "[", + RowBox[{ + RowBox[{"{", + RowBox[{"S1", ",", "S2", ",", "S3"}], "}"}], ",", "Stokes"}], + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"AngleEllipticity", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ax_", ",", "Ay_", ",", "\[Phi]_"}], "}"}], ",", + "AmplitudePhase"}], "]"}], ":=", + RowBox[{"AngleEllipticity", "[", + RowBox[{ + RowBox[{"Stokes", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ax", ",", "Ay", ",", "\[Phi]"}], "}"}], ",", + "AmplitudePhase"}], "]"}], ",", "Stokes"}], "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"AngleEllipticity", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ex_", ",", "Ey_"}], "}"}], ",", "ComplexAmplitude"}], "]"}], ":=", + RowBox[{"AngleEllipticity", "[", + RowBox[{ + RowBox[{"AmplitudePhase", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Ex", ",", "Ey"}], "}"}], ",", "ComplexAmplitude"}], "]"}], + ",", "AmplitudePhase"}], "]"}]}]], "Input"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Read and plot data", "Section"], + +Cell["\<\ +SetDirectory[NotebookDirectory[]]; +fpDat = OpenRead[\"Genas_system_mg0.dat\",BinaryFormat -> True]; +z1Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +z1 = Flatten[BinaryReadList[fpDat, {\"Real64\"}, z1Len, ByteOrdering->-1]]; +t1Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +t1 = Flatten[BinaryReadList[fpDat, {\"Real64\"}, t1Len, ByteOrdering->-1]]; +Exreout1Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +Exreout1 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t1Len, \ +ByteOrdering->-1],{j1,1,z1Len}],{{1},{2,3}}]; +Eximout1Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +Eximout1 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t1Len, \ +ByteOrdering->-1],{j1,1,z1Len}],{{1},{2,3}}]; +Eyreout1Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +Eyreout1 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t1Len, \ +ByteOrdering->-1],{j1,1,z1Len}],{{1},{2,3}}]; +Eyimout1Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +Eyimout1 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t1Len, \ +ByteOrdering->-1],{j1,1,z1Len}],{{1},{2,3}}]; +Close[fpDat]; +ResetDirectory[]; +SetDirectory[NotebookDirectory[]]; +fpDat = OpenRead[\"Genas_system_mg1.dat\",BinaryFormat -> True]; +z2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +z2 = Flatten[BinaryReadList[fpDat, {\"Real64\"}, z2Len, ByteOrdering->-1]]; +t2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +t2 = Flatten[BinaryReadList[fpDat, {\"Real64\"}, t2Len, ByteOrdering->-1]]; +r11out2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r11out2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r22out2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r22out2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r33out2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r33out2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r44out2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r44out2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r12reout2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r12reout2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r12imout2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r12imout2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r13reout2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r13reout2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r13imout2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r13imout2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r14reout2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r14reout2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r14imout2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r14imout2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r23reout2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r23reout2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r23imout2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r23imout2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r24reout2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r24reout2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r24imout2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r24imout2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r34reout2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r34reout2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +r34imout2Len = BinaryRead[fpDat, \"UnsignedInteger32\", ByteOrdering->-1]; +r34imout2 = Flatten[Table[BinaryReadList[fpDat, {\"Real64\"}, t2Len, \ +ByteOrdering->-1],{j1,1,z2Len}],{{1},{2,3}}]; +Close[fpDat]; +ResetDirectory[]; + +declaredVariables={\"z1\", \"t1\", \"Exreout1\", \"Eximout1\", \"Eyreout1\", \ +\"Eyimout1\", \"z2\", \"t2\", \"r11out2\", \"r22out2\", \"r33out2\", \ +\"r44out2\", \"r12reout2\", \"r12imout2\", \"r13reout2\", \"r13imout2\", \ +\"r14reout2\", \"r14imout2\", \"r23reout2\", \"r23imout2\", \"r24reout2\", \ +\"r24imout2\", \"r34reout2\", \"r34imout2\"} +\ +\>", "Input"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"Exout1", "=", + RowBox[{"Exreout1", "+", + RowBox[{"\[ImaginaryI]", " ", "Eximout1"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Eyout1", "=", + RowBox[{"Eyreout1", "+", + RowBox[{"\[ImaginaryI]", " ", "Eyimout1"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"ListAnimate", "@", + RowBox[{"Table", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"intens", "=", + RowBox[{ + RowBox[{ + RowBox[{".5", " ", + SuperscriptBox["10", + RowBox[{"-", "7"}]], + RowBox[{"Abs", "[", "#", "]"}]}], "&"}], "/@", + RowBox[{"Transpose", "@", + RowBox[{"{", + RowBox[{ + RowBox[{"Exout1", "[", + RowBox[{"[", + RowBox[{"All", ",", "i"}], "]"}], "]"}], ",", + RowBox[{"Eyout1", "[", + RowBox[{"[", + RowBox[{"All", ",", "i"}], "]"}], "]"}]}], "}"}]}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"mask", "=", + RowBox[{ + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"#", "<", ".1"}], ",", "Null", ",", "1"}], "]"}], "&"}], "/@", + RowBox[{"intens", "[", + RowBox[{"[", + RowBox[{"All", ",", "1"}], "]"}], "]"}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"alep", "=", + RowBox[{ + RowBox[{ + RowBox[{"AngleEllipticity", "[", + RowBox[{"#", ",", "ComplexAmplitude"}], "]"}], "&"}], "/@", + RowBox[{"Transpose", "@", + RowBox[{"{", + RowBox[{ + RowBox[{"Exout1", "[", + RowBox[{"[", + RowBox[{"All", ",", "i"}], "]"}], "]"}], ",", + RowBox[{"Eyout1", "[", + RowBox[{"[", + RowBox[{"All", ",", "i"}], "]"}], "]"}]}], "}"}]}]}]}], ";", + RowBox[{"ListLinePlot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Transpose", "[", + RowBox[{"{", + RowBox[{"z1", ",", + RowBox[{"mask", " ", + RowBox[{"alep", "[", + RowBox[{"[", + RowBox[{"All", ",", "1"}], "]"}], "]"}]}]}], "}"}], "]"}], ",", + RowBox[{"Transpose", "[", + RowBox[{"{", + RowBox[{"z1", ",", + RowBox[{"intens", "[", + RowBox[{"[", + RowBox[{"All", ",", "1"}], "]"}], "]"}]}], "}"}], "]"}]}], + "}"}], ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[Pi]"}], "/", "2"}], ",", + RowBox[{"\[Pi]", "/", "2"}]}], "}"}]}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", + RowBox[{"Length", "[", "t1", "]"}], ",", "1"}], "}"}]}], + "]"}]}]}], "Input"] +}, Open ]] +}, +WindowSize->{844, 920}, +WindowMargins->{{-4, Automatic}, {2, Automatic}}, +ShowSelection->True, +FrontEndVersion->"7.0 for Microsoft Windows (64-bit) (February 18, 2009)", +StyleDefinitions->"Default.nb" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[CellGroupData[{ +Cell[567, 22, 66, 0, 71, "Section"], +Cell[636, 24, 194, 7, 31, "Input"], +Cell[833, 33, 388, 13, 57, "Input"], +Cell[1224, 48, 194, 7, 31, "Input"], +Cell[1421, 57, 388, 13, 57, "Input"], +Cell[1812, 72, 403, 14, 52, "Input"], +Cell[2218, 88, 342, 11, 49, "Input"], +Cell[2563, 101, 582, 19, 52, "Input"], +Cell[3148, 122, 807, 25, 72, "Input"], +Cell[3958, 149, 602, 20, 52, "Input"], +Cell[4563, 171, 543, 17, 83, "Input"], +Cell[5109, 190, 524, 17, 31, "Input"], +Cell[5636, 209, 431, 13, 52, "Input"], +Cell[6070, 224, 413, 12, 52, "Input"] +}, Open ]], +Cell[CellGroupData[{ +Cell[6520, 241, 37, 0, 71, "Section"], +Cell[6560, 243, 5029, 84, 1017, "Input"], +Cell[11592, 329, 2767, 83, 177, "Input"] +}, Open ]] +} +] +*) + +(* End of internal cache information *) diff --git a/xmds2/Genas_system/Genas_system.xmds b/xmds2/Genas_system/Genas_system.xmds new file mode 100755 index 0000000..e855e4f --- /dev/null +++ b/xmds2/Genas_system/Genas_system.xmds @@ -0,0 +1,218 @@ + + + + Genas_system + + Eugeniy Mikhailov and Simon Rochester + + License GPL. + + Solving 4 level atom in 0->1 configuration, + with field propagation along spatial axis Z + no Doppler broadening + + We are solving + dE/dz+(1/c)*dE/dt=i*eta*rho_ij, where j level is higher then i. + Note that E is actually a Rabi frequency of electromagnetic field not the EM field + in xmds terms it looks like + dE_dz = i*eta*rhoij - 1/c*L[E], here we moved t dependence to Fourier space + + VERY IMPORTANT: all Rabi frequency should be given in [1/s], if you want to + normalize it to something else look drho/dt equation. + No need to renormalizes eta as long as its express through i + the upper level decay rate in the same units as Rabi frequency. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + z + + + + + + + + Ex Ey + + + + + + + r11 r22 r33 r12 r13 r14 r23 r24 r34 r44 + + + + + + + rf + + + + + + + + 200 200 + + + density_matrix + E_field rfField + + + + + + + Lt + + + E_field + density_matrix + + + + + + + + + + E_field + Ex_re_out Ex_im_out Ey_re_out Ey_im_out + + + + + + + density_matrix + + r11_out r22_out r33_out r44_out + r12_re_out r12_im_out r13_re_out r13_im_out r14_re_out r14_im_out + r23_re_out r23_im_out r24_re_out r24_im_out + r34_re_out r34_im_out + + + + + + + + diff --git a/xmds2/Genas_system/GenerateGenasSystem.nb b/xmds2/Genas_system/GenerateGenasSystem.nb new file mode 100755 index 0000000..ab9069b --- /dev/null +++ b/xmds2/Genas_system/GenerateGenasSystem.nb @@ -0,0 +1,2722 @@ +(* Content-type: application/mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 7.0' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 145, 7] +NotebookDataLength[ 92628, 2713] +NotebookOptionsPosition[ 89973, 2618] +NotebookOutlinePosition[ 90340, 2634] +CellTagsIndexPosition[ 90297, 2631] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ + +Cell[CellGroupData[{ +Cell["setup the system", "Section"], + +Cell["This loads the package.", "MathCaption", + CellID->836781195], + +Cell[BoxData[ + RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input", + CellID->2058623809], + +Cell[TextData[{ + "We define an atomic system consisting of two even-parity lower states and \ +two odd-parity upper states. We apply a light field with components at \ +frequencies ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], + " (near resonant with the ", + Cell[BoxData[ + StyleBox[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]", + RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], + " transition), ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], + " (near resonant with the ", + Cell[BoxData[ + StyleBox[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", + RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], + " transition), and ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "c"], "InlineMath"], TraditionalForm]]], + " (near resonant with the ", + Cell[BoxData[ + StyleBox[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]", + RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]], + " transition)." +}], "Text", + CellID->525777075], + +Cell["Define the atomic system.", "MathCaption", + CellID->429217524], + +Cell[BoxData[ + RowBox[{ + RowBox[{"system", "=", + RowBox[{"Sublevels", "[", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"AtomicState", "[", + RowBox[{"1", ",", + RowBox[{"J", "\[Rule]", "0"}], ",", + RowBox[{"L", "\[Rule]", "0"}], ",", + RowBox[{"S", "\[Rule]", "0"}], ",", + RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", + RowBox[{"Energy", "\[Rule]", "0"}], ",", + RowBox[{ + RowBox[{"Polarizability", "[", "0", "]"}], "\[Rule]", "0"}]}], "]"}], + ",", "\[IndentingNewLine]", + RowBox[{"AtomicState", "[", + RowBox[{"2", ",", + RowBox[{"J", "\[Rule]", "1"}], ",", + RowBox[{"L", "\[Rule]", "1"}], ",", + RowBox[{"S", "\[Rule]", "0"}], ",", + RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]"}], ",", + RowBox[{"Energy", "\[Rule]", "\[Omega]0"}], ",", + RowBox[{ + RowBox[{"Polarizability", "[", "0", "]"}], "\[Rule]", + RowBox[{ + RowBox[{"-", "2"}], "/", "3"}]}], ",", + RowBox[{ + RowBox[{"Polarizability", "[", "2", "]"}], "\[Rule]", + RowBox[{"2", "/", "3"}]}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}]}], + "]"}]}], "\[IndentingNewLine]", "}"}], "]"}]}], ";"}]], "Input", + CellID->433132487], + +Cell["Define the optical field ", "MathCaption", + CellID->133602844], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"field", "=", + RowBox[{ + FractionBox[ + RowBox[{"2", + SqrtBox["6"]}], + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]], + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"\[Phi]x", "-", + RowBox[{"t", " ", "\[Omega]"}]}], ")"}]}]], " ", + "\[CapitalOmega]Rx"}], " ", ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"\[Phi]y", "-", + RowBox[{"t", " ", "\[Omega]"}]}], ")"}]}]], " ", + "\[CapitalOmega]Ry"}], " ", ",", "0"}], "}"}]}]}]], "Input", + CellID->26742303], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + FractionBox[ + RowBox[{"2", " ", + SqrtBox["6"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"\[Phi]x", "-", + RowBox[{"t", " ", "\[Omega]"}]}], ")"}]}]], " ", + "\[CapitalOmega]Rx"}], + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]], ",", + FractionBox[ + RowBox[{"2", " ", + SqrtBox["6"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{"\[Phi]y", "-", + RowBox[{"t", " ", "\[Omega]"}]}], ")"}]}]], " ", + "\[CapitalOmega]Ry"}], + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]], ",", "0"}], + "}"}]], "Output"] +}, Open ]], + +Cell["\<\ +The Hamiltonian for the system subject to the optical field.\ +\>", "MathCaption", + CellID->462076121], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"H", "=", + RowBox[{ + RowBox[{ + RowBox[{"Expand", "@", + RowBox[{"Hamiltonian", "[", + RowBox[{"system", ",", + RowBox[{"ElectricField", "\[Rule]", "field"}], ",", + RowBox[{"MagneticField", "\[Rule]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{"\[CapitalOmega]L", "+", + RowBox[{"\[CapitalOmega]rf", " ", + RowBox[{"Sin", "[", + RowBox[{"\[Omega]rf", " ", "t"}], "]"}]}]}]}], "}"}], "/", + "BohrMagneton"}]}]}], "]"}]}], "+", + RowBox[{"Hamiltonian", "[", + RowBox[{"system", ",", + RowBox[{"ElectricField", "\[Rule]", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + SqrtBox["\[CapitalDelta]0"]}], "}"}]}], ",", + RowBox[{"Interaction", "\[Rule]", + RowBox[{"{", "Polarizability", "}"}]}]}], "]"}]}], "//", + "FullSimplify"}]}], "]"}]], "Input", + CellID->494599775], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"0", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"\[CapitalOmega]Rx", " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]x", "-", + RowBox[{"t", " ", "\[Omega]"}]}], "]"}]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalOmega]Ry", " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]y", "-", + RowBox[{"t", " ", "\[Omega]"}]}], "]"}]}]}], ")"}]}], "0", + RowBox[{ + RowBox[{"2", " ", "\[CapitalOmega]Rx", " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]x", "-", + RowBox[{"t", " ", "\[Omega]"}]}], "]"}]}], "-", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "\[CapitalOmega]Ry", " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]y", "-", + RowBox[{"t", " ", "\[Omega]"}]}], "]"}]}]}]}, + { + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", "\[CapitalOmega]Rx", " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]x", "-", + RowBox[{"t", " ", "\[Omega]"}]}], "]"}]}], "+", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "\[CapitalOmega]Ry", " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]y", "-", + RowBox[{"t", " ", "\[Omega]"}]}], "]"}]}]}], + RowBox[{"\[Omega]0", "+", "\[CapitalOmega]L", "+", + RowBox[{"\[CapitalOmega]rf", " ", + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]rf"}], "]"}]}]}], "0", "0"}, + {"0", "0", + RowBox[{"\[CapitalDelta]0", "+", "\[Omega]0"}], "0"}, + { + RowBox[{ + RowBox[{"2", " ", "\[CapitalOmega]Rx", " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]x", "-", + RowBox[{"t", " ", "\[Omega]"}]}], "]"}]}], "+", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "\[CapitalOmega]Ry", " ", + RowBox[{"Cos", "[", + RowBox[{"\[Phi]y", "-", + RowBox[{"t", " ", "\[Omega]"}]}], "]"}]}]}], "0", "0", + RowBox[{"\[Omega]0", "-", "\[CapitalOmega]L", "-", + RowBox[{"\[CapitalOmega]rf", " ", + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]rf"}], "]"}]}]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell["The level diagram for the system.", "MathCaption", + CellID->358620443], + +Cell[BoxData[ + RowBox[{"LevelDiagram", "[", + RowBox[{"system", ",", + RowBox[{"H", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Omega]0", "\[Rule]", "1"}], ",", + RowBox[{"\[CapitalOmega]rf", "\[Rule]", "0"}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", ".3"}], ",", + RowBox[{"\[CapitalDelta]0", "\[Rule]", ".2"}]}], "}"}]}]}], + "]"}]], "Input", + CellID->167259034], + +Cell["Apply the rotating-wave approximation to the Hamiltonian.", \ +"MathCaption", + CellID->577766068], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(", + RowBox[{"Hrwa", "=", + RowBox[{ + RowBox[{"RotatingWaveApproximation", "[", + RowBox[{"system", ",", "H", ",", "\[Omega]"}], "]"}], "/.", + RowBox[{"\[Omega]", "\[Rule]", + RowBox[{"\[Omega]0", "+", "\[CapitalDelta]"}]}]}]}], ")"}], "//", + "MatrixForm"}]], "Input"], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"0", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]]}], " ", + "\[CapitalOmega]Rx"}], "-", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry"}]}], "0", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx"}], "-", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry"}]}]}, + { + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]]}], " ", + "\[CapitalOmega]Rx"}], "+", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry"}]}], + RowBox[{ + RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalOmega]L", "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf"}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf"}]}], "0", "0"}, + {"0", "0", + RowBox[{ + RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalDelta]0"}], "0"}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx"}], "+", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry"}]}], "0", "0", + RowBox[{ + RowBox[{"-", "\[CapitalDelta]"}], "-", "\[CapitalOmega]L", "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf"}], "+", + RowBox[{ + FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf"}]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell[TextData[{ + Cell[BoxData[ + ButtonBox["IntrinsicRelaxation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]], + " and ", + Cell[BoxData[ + ButtonBox["TransitRelaxation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]], + " supply the relaxation matrices." +}], "MathCaption", + CellID->610306692], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"relax", "=", + RowBox[{ + RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", + RowBox[{"TransitRelaxation", "[", + RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", + CellID->645617687], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"\[Gamma]t", "0", "0", "0"}, + {"0", + RowBox[{"\[CapitalGamma]", "+", "\[Gamma]t"}], "0", "0"}, + {"0", "0", + RowBox[{"\[CapitalGamma]", "+", "\[Gamma]t"}], "0"}, + {"0", "0", "0", + RowBox[{"\[CapitalGamma]", "+", "\[Gamma]t"}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell["Remove explict time dependence from the density matrix.", "MathCaption", + CellID->690131918], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"SetOptions", "[", + RowBox[{"DensityMatrix", ",", + RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", + RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}]}], "]"}]], "Input", + CellID->718931880], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"TimeDependence", "\[Rule]", "False"}], ",", + RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",", + RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",", + RowBox[{"Label", "\[Rule]", "None"}], ",", + RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",", + RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output", + ImageSize->{432, 33}, + ImageMargins->{{0, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}] +}, Open ]], + +Cell[TextData[{ + Cell[BoxData[ + ButtonBox["OpticalRepopulation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], + " and ", + Cell[BoxData[ + ButtonBox["TransitRepopulation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], + " supply the repopulation matrices." +}], "MathCaption", + CellID->854192725], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"repop", "=", + RowBox[{ + RowBox[{ + RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", + RowBox[{"TransitRepopulation", "[", + RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.", + RowBox[{ + RowBox[{"BranchingRatio", "[", + RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]", + SubscriptBox["R", + RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input", + CellID->465762594], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + { + RowBox[{"\[Gamma]t", "+", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "+", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}]}], "0", "0", "0"}, + {"0", "0", "0", "0"}, + {"0", "0", "0", "0"}, + {"0", "0", "0", "0"} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell["Here are the evolution equations.", "MathCaption", + CellID->314466782], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"TableForm", "[", + RowBox[{ + RowBox[{"eqs", "=", + RowBox[{ + RowBox[{"LiouvilleEquation", "[", + RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//", + "Expand"}]}], ",", + RowBox[{"TableHeadings", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}], + "]"}]], "Input", + CellID->298399236], + +Cell[BoxData[ + TagBox[ + TagBox[GridBox[{ + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{"\[Gamma]t", "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "+", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalDelta]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalOmega]L", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]rf"}]], + " ", "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalDelta]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalDelta]0", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalDelta]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalOmega]L", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]rf"}]], + " ", "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalDelta]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalOmega]L", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]rf"}]], + " ", "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalDelta]0", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalOmega]L", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]rf"}]], + " ", "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "\[CapitalOmega]L", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]rf"}]], + " ", "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalDelta]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalDelta]0", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalDelta]0", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalOmega]L", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]rf"}]], + " ", "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[CapitalGamma]"}], " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalDelta]0", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalOmega]L", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]rf"}]], + " ", "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalDelta]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalOmega]L", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]rf"}]], + " ", "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "+", + RowBox[{"2", " ", "\[ImaginaryI]", " ", "\[CapitalOmega]L", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]rf"}]], + " ", "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalDelta]0", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", "\[CapitalOmega]L", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]rf"}]], + " ", "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]rf"}]], " ", + "\[CapitalOmega]rf", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "0"}], "}"}]}]]}]}]}]}, + { + TagBox[ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], + HoldForm], + RowBox[{"0", "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "+", + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[CapitalOmega]Rx", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[CapitalOmega]Ry", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], "-", + RowBox[{"\[CapitalGamma]", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}], "-", + RowBox[{"\[Gamma]t", " ", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]]}]}]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxDividers->{ + "Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {}, + "Rows" -> {{False}}, "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.5599999999999999]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + OutputFormsDump`HeadedColumn], + Function[BoxForm`e$, + TableForm[BoxForm`e$, TableHeadings -> {{ + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {1, 0}, {1, 0}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {1, 0}, {2, 1}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {1, 0}, {2, 0}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {1, 0}, {2, -1}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {2, 1}, {1, 0}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {2, 1}, {2, 1}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {2, 1}, {2, 0}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {2, 1}, {2, -1}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {2, 0}, {1, 0}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {2, 0}, {2, 1}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {2, 0}, {2, 0}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {2, 0}, {2, -1}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {2, -1}, {1, 0}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {2, -1}, {2, 1}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {2, -1}, {2, 0}], + Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], {2, -1}, {2, -1}]}, + None}]]]], "Output"] +}, Open ]], + +Cell["Convert to c form.", "Text"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"MapThread", "[", + RowBox[{"Equal", ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"DMVariables", "[", "system", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", "dr"}]}], ",", + RowBox[{"Collect", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"eqs", "[", + RowBox[{"[", + RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]x"}]], " ", "\[Rule]", + RowBox[{"Ex", "/", "\[CapitalOmega]Rx"}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]x"}]], " ", + "\[Rule]", + RowBox[{"Exc", "/", "\[CapitalOmega]Rx"}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "\[Phi]y"}]], " ", "\[Rule]", + RowBox[{"Ey", "/", "\[CapitalOmega]Ry"}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]y"}]], " ", + "\[Rule]", + RowBox[{"Eyc", "/", "\[CapitalOmega]Ry"}]}], ",", " ", + RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",", + RowBox[{"\[CapitalGamma]", "\[Rule]", "g0"}], ",", + RowBox[{"\[CapitalDelta]0", "\[Rule]", "delta0"}], ",", + RowBox[{"\[CapitalDelta]", "\[Rule]", "delta"}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", "OL"}], ",", + RowBox[{"\[CapitalOmega]rf", "\[Rule]", "Orf"}], ",", + RowBox[{"\[Omega]rf", "\[Rule]", "orf"}]}], "}"}]}], "/.", + RowBox[{"\[Rho]", "\[Rule]", "r"}]}], ",", + RowBox[{"DMElementPattern", "[", "]"}], ",", "FullSimplify"}], + "]"}]}], "}"}]}], "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"%", "/.", " ", + RowBox[{ + RowBox[{"Orf", " ", + RowBox[{"Sin", "[", + RowBox[{"orf", " ", "t"}], "]"}]}], "\[Rule]", "rf"}]}], "/.", + RowBox[{ + RowBox[{"Complex", "[", + RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]", + RowBox[{"a", " ", "i"}]}]}], "/.", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Label", "[", + RowBox[{"system", "[", + RowBox[{"[", "i", "]"}], "]"}], "]"}], ",", + RowBox[{"M", "[", + RowBox[{"system", "[", + RowBox[{"[", "i", "]"}], "]"}], "]"}]}], "}"}], "\[Rule]", "i"}], + ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "[", "system", "]"}]}], "}"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"DeleteCases", "[", + RowBox[{"%", ",", + RowBox[{ + RowBox[{ + SubscriptBox["dr", + RowBox[{"a_", ",", "b_"}]], "\[Equal]", "_"}], "/;", + RowBox[{"b", "<", "a"}]}]}], "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{"StringJoin", "[", + RowBox[{ + RowBox[{ + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{ + RowBox[{"ToString", "@", + RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",", + RowBox[{ + RowBox[{ + "\"\\"", "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", + "~~", "\"\<)\>\""}], ":>", + RowBox[{"\"\\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}], + ",", + RowBox[{ + RowBox[{ + "\"\\"", "~~", "r_", "~~", "\"\<,\>\"", "~~", "a_", + "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"r", "<>", "a", "<>", "b"}]}]}], "}"}]}], "]"}], "&"}], "/@", + "%"}], "]"}], "\[IndentingNewLine]", + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"ToFileName", "[", + RowBox[{ + RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\\""}], + "]"}], ",", "%"}], "]"}]}], "Input"], + +Cell[BoxData["\<\"dr11_dt = gt - gt*r11 + (-Ey - Ex*i)*r12 + i*(Ex + \ +Ey*i)*r14 + i*(Exc + Eyc*i)*r21 + (-Eyc - Exc*i)*r41 + g0*(r22 + r33 + \ +r44);\\ndr12_dt = (2*(Eyc - Exc*i)*r11 - i*((2*delta - (g0 + 2*gt)*i - 2*OL - \ +2*rf)*r12 - 2*(Exc + Eyc*i)*r22 + 2*(Exc - Eyc*i)*r42))/2.;\\ndr13_dt = \ +(-g0/2. - gt - delta*i + delta0*i)*r13 + i*(Exc + Eyc*i)*r23 + (-Eyc - \ +Exc*i)*r43;\\ndr14_dt = -(i*((2*delta - (g0 + 2*gt)*i + 2*OL + 2*rf)*r14 - \ +2*(Exc + Eyc*i)*r24 - 2*(Exc - Eyc*i)*(r11 - r44)))/2.;\\ndr22_dt = (Ey + \ +Ex*i)*r12 + (Eyc - Exc*i)*r21 - (g0 + gt)*r22;\\ndr23_dt = (Ey + Ex*i)*r13 + \ +i*(delta0 + i*(g0 + gt + i*OL) - rf)*r23;\\ndr24_dt = (Ey + Ex*i)*r14 + (Eyc \ ++ Exc*i)*r21 - (g0 + gt + 2*i*OL + 2*i*rf)*r24;\\ndr33_dt = -((g0 + gt)*r33);\ +\\ndr34_dt = (Eyc + Exc*i)*r31 - i*(delta0 - (g0 + gt)*i + OL + \ +rf)*r34;\\ndr44_dt = (Ey - Ex*i)*r14 + (Eyc + Exc*i)*r41 - (g0 + \ +gt)*r44;\\n\"\>"], "Output"], + +Cell[BoxData["\<\"C:\\\\cygwin\\\\home\\\\Simon\\\\Nresonances\\\\xmds2\\\\\ +Gena_system\\\\code.txt\"\>"], "Output"] +}, Open ]], + +Cell["Find medium polarization", "Text"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"TensorForm", "[", + RowBox[{"dcart", "=", + RowBox[{"Most", "@", + RowBox[{"ToCartesian", "@", + RowBox[{"WignerEckart", "[", + RowBox[{"system", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}]}], "]"}]}]}]}], "]"}]], "Input"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"0", + FractionBox[ + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], + SqrtBox["6"]], "0", + RowBox[{"-", + FractionBox[ + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], + SqrtBox["6"]]}]}, + { + FractionBox[ + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], + SqrtBox["6"]], "0", "0", "0"}, + {"0", "0", "0", "0"}, + { + RowBox[{"-", + FractionBox[ + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], + SqrtBox["6"]]}], "0", "0", "0"} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, + "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]], ",", + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"0", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}], + SqrtBox["6"]], "0", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}], + SqrtBox["6"]]}, + { + RowBox[{"-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}], + SqrtBox["6"]]}], "0", "0", "0"}, + {"0", "0", "0", "0"}, + { + RowBox[{"-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}], + SqrtBox["6"]]}], "0", "0", "0"} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, + "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]}], "}"}]], "Output"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + "4", "\[Pi]", " ", "\[ImaginaryI]", " ", "\[Omega]0", " ", "n", " ", + FractionBox[ + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], + RowBox[{"2", + SqrtBox["6"]}]], " ", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"DensityMatrix", "[", "system", "]"}], "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], + RowBox[{"#", "[", + RowBox[{"[", + RowBox[{"j", ",", "i"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "[", "system", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i"}], "}"}]}], "]"}]}], "&"}], "/@", "dcart"}], "//", + "Simplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"ExpandDipoleRME", "[", + RowBox[{"system", ",", "%"}], " ", "]"}], "/.", + RowBox[{"\[Omega]0", "\[Rule]", + RowBox[{"2", + RowBox[{"\[Pi]", "/", "\[Lambda]"}]}]}]}], "//", + "Simplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"%", " ", + RowBox[{"eta", "/", + RowBox[{"(", + FractionBox[ + RowBox[{"3", " ", "n", " ", "\[CapitalGamma]", " ", + SuperscriptBox["\[Lambda]", "2"], " "}], + RowBox[{"16", " ", "\[Pi]"}]], ")"}]}]}], "/.", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Label", "[", + RowBox[{"system", "[", + RowBox[{"[", "i", "]"}], "]"}], "]"}], ",", + RowBox[{"M", "[", + RowBox[{"system", "[", + RowBox[{"[", "i", "]"}], "]"}], "]"}]}], "}"}], "\[Rule]", "i"}], + ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "[", "system", "]"}]}], "}"}]}], "]"}]}], "/.", + RowBox[{"\[Rho]", "\[Rule]", "r"}]}]}], "Input"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "3"]}], " ", "\[ImaginaryI]", " ", "n", " ", "\[Pi]", + " ", "\[Omega]0", " ", + SuperscriptBox[ + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], "2"], " ", + RowBox[{"(", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]], "-", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], ")"}]}], ",", + RowBox[{ + RowBox[{"-", + FractionBox["1", "3"]}], " ", "n", " ", "\[Pi]", " ", "\[Omega]0", " ", + SuperscriptBox[ + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], "2"], " ", + RowBox[{"(", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]], "+", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], ")"}]}]}], "}"}]], "Output"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"3", " ", "\[ImaginaryI]", " ", "n", " ", "\[CapitalGamma]", " ", + SuperscriptBox["\[Lambda]", "2"], " ", + RowBox[{"(", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]], "-", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], ")"}]}], + RowBox[{"16", " ", "\[Pi]"}]]}], ",", + RowBox[{"-", + FractionBox[ + RowBox[{"3", " ", "n", " ", "\[CapitalGamma]", " ", + SuperscriptBox["\[Lambda]", "2"], " ", + RowBox[{"(", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]], "+", + SubscriptBox["\[Rho]", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}]}]]}], ")"}]}], + RowBox[{"16", " ", "\[Pi]"}]]}]}], "}"}]], "Output"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "eta", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SubscriptBox["r", + RowBox[{"2", ",", "1"}]]}], "+", + SubscriptBox["r", + RowBox[{"4", ",", "1"}]]}], ")"}]}], ",", + RowBox[{ + RowBox[{"-", "eta"}], " ", + RowBox[{"(", + RowBox[{ + SubscriptBox["r", + RowBox[{"2", ",", "1"}]], "+", + SubscriptBox["r", + RowBox[{"4", ",", "1"}]]}], ")"}]}]}], "}"}]], "Output"] +}, Open ]] +}, Open ]] +}, +WindowSize->{871, 917}, +WindowMargins->{{67, Automatic}, {Automatic, -11}}, +ShowSelection->True, +FrontEndVersion->"7.0 for Microsoft Windows (64-bit) (February 18, 2009)", +StyleDefinitions->"Default.nb" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[CellGroupData[{ +Cell[567, 22, 35, 0, 71, "Section"], +Cell[605, 24, 66, 1, 43, "MathCaption", + CellID->836781195], +Cell[674, 27, 85, 2, 31, "Input", + CellID->2058623809], +Cell[762, 31, 1290, 44, 65, "Text", + CellID->525777075], +Cell[2055, 77, 68, 1, 43, "MathCaption", + CellID->429217524], +Cell[2126, 80, 1346, 33, 112, "Input", + CellID->433132487], +Cell[3475, 115, 68, 1, 43, "MathCaption", + CellID->133602844], +Cell[CellGroupData[{ +Cell[3568, 120, 818, 26, 53, "Input", + CellID->26742303], +Cell[4389, 148, 922, 29, 52, "Output"] +}, Open ]], +Cell[5326, 180, 111, 3, 43, "MathCaption", + CellID->462076121], +Cell[CellGroupData[{ +Cell[5462, 187, 1015, 27, 126, "Input", + CellID->494599775], +Cell[6480, 216, 2675, 68, 72, "Output"] +}, Open ]], +Cell[9170, 287, 76, 1, 43, "MathCaption", + CellID->358620443], +Cell[9249, 290, 400, 11, 31, "Input", + CellID->167259034], +Cell[9652, 303, 102, 2, 43, "MathCaption", + CellID->577766068], +Cell[CellGroupData[{ +Cell[9779, 309, 330, 9, 31, "Input"], +Cell[10112, 320, 3369, 89, 96, "Output"] +}, Open ]], +Cell[13496, 412, 384, 12, 43, "MathCaption", + CellID->610306692], +Cell[CellGroupData[{ +Cell[13905, 428, 272, 7, 31, "Input", + CellID->645617687], +Cell[14180, 437, 814, 22, 72, "Output"] +}, Open ]], +Cell[15009, 462, 98, 1, 43, "MathCaption", + CellID->690131918], +Cell[CellGroupData[{ +Cell[15132, 467, 230, 5, 31, "Input", + CellID->718931880], +Cell[15365, 474, 471, 11, 50, "Output"] +}, Open ]], +Cell[15851, 488, 390, 12, 43, "MathCaption", + CellID->854192725], +Cell[CellGroupData[{ +Cell[16266, 504, 459, 13, 52, "Input", + CellID->465762594], +Cell[16728, 519, 1463, 43, 74, "Output"] +}, Open ]], +Cell[18206, 565, 76, 1, 43, "MathCaption", + CellID->314466782], +Cell[CellGroupData[{ +Cell[18307, 570, 424, 13, 52, "Input", + CellID->298399236], +Cell[18734, 585, 56724, 1597, 384, "Output"] +}, Open ]], +Cell[75473, 2185, 34, 0, 29, "Text"], +Cell[CellGroupData[{ +Cell[75532, 2189, 4224, 113, 310, "Input"], +Cell[79759, 2304, 922, 12, 278, "Output"], +Cell[80684, 2318, 117, 1, 30, "Output"] +}, Open ]], +Cell[80816, 2322, 40, 0, 29, "Text"], +Cell[CellGroupData[{ +Cell[80881, 2326, 288, 8, 31, "Input"], +Cell[81172, 2336, 3317, 96, 260, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[84526, 2437, 1976, 61, 161, "Input"], +Cell[86505, 2500, 1530, 49, 83, "Output"], +Cell[88038, 2551, 1375, 42, 51, "Output"], +Cell[89416, 2595, 529, 19, 30, "Output"] +}, Open ]] +}, Open ]] +} +] +*) + +(* End of internal cache information *) diff --git a/xmds2/Genas_system/Makefile b/xmds2/Genas_system/Makefile new file mode 100755 index 0000000..0e82991 --- /dev/null +++ b/xmds2/Genas_system/Makefile @@ -0,0 +1,37 @@ +### -*- make -*- +### This file is part of the Debian xmds package +### Copyright (C) 2006 Rafael Laboissiere +### This file is relased under the GNU General Public License +### NO WARRANTIES! + +### This makefile can be used to build and run the XMDS examples + +XMDS_FILES = $(shell ls *.xmds) +RUN_FILES = $(patsubst %.xmds,%.run,$(XMDS_FILES)) +CC_FILES = $(patsubst %.xmds,%.cc,$(XMDS_FILES)) +XSIL_FILES = $(patsubst %.xmds,%.xsil,$(XMDS_FILES)) +M_FILES = $(patsubst %.xmds,%.m,$(XMDS_FILES)) + +XMDS = xmds2 +XSIL2GRAPHICS = xsil2graphics2 + +all: $(M_FILES) + +%.run: %.xmds + $(XMDS) $< + mv $(patsubst %.xmds,%,$<) $@ + +%.xsil: %.run + ./$< + +%.m: %.xsil + $(XSIL2GRAPHICS) -e $< + +plot: $(M_FILES) + octave pp.m + +clean: + rm -f $(CC_FILES) $(RUN_FILES) $(M_FILES) $(XSIL_FILES) *.wisdom.fftw3 *.dat octave-core *.wisdom *.pdf + +.PRECIOUS: %.run %.xsil %.m +.PHONY: all clean -- cgit v1.2.3