From b027ce08ccb77aebe4453f8e8395edea6b83258d Mon Sep 17 00:00:00 2001 From: Simon Rochester Date: Thu, 16 Feb 2012 19:40:12 -0800 Subject: Ajusted parameters in DoubleFanoResonance.nb to show the effect better. --- mathemathica_fwm/DoubleFanoResonance.nb | 9320 ++++++++++++++++--------------- 1 file changed, 4755 insertions(+), 4565 deletions(-) mode change 100644 => 100755 mathemathica_fwm/DoubleFanoResonance.nb diff --git a/mathemathica_fwm/DoubleFanoResonance.nb b/mathemathica_fwm/DoubleFanoResonance.nb old mode 100644 new mode 100755 index 95cef4b..726fec1 --- a/mathemathica_fwm/DoubleFanoResonance.nb +++ b/mathemathica_fwm/DoubleFanoResonance.nb @@ -1,4565 +1,4755 @@ -(* Content-type: application/mathematica *) - -(*** Wolfram Notebook File ***) -(* http://www.wolfram.com/nb *) - -(* CreatedBy='Mathematica 7.0' *) - -(*CacheID: 234*) -(* Internal cache information: -NotebookFileLineBreakTest -NotebookFileLineBreakTest -NotebookDataPosition[ 145, 7] -NotebookDataLength[ 154877, 4556] -NotebookOptionsPosition[ 148441, 4362] -NotebookOutlinePosition[ 148836, 4379] -CellTagsIndexPosition[ 148793, 4376] -WindowFrame->Normal*) - -(* Beginning of Notebook Content *) -Notebook[{ - -Cell[CellGroupData[{ -Cell["General setup", "Section"], - -Cell[TextData[{ - StyleBox["Mathematica", - FontSlant->"Italic"], - " 8 defines WignerD, so we need to unprotect it." -}], "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->94096541], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Unprotect", "[", "WignerD", "]"}]], "Input"], - -Cell[BoxData[ - RowBox[{"{", "\<\"WignerD\"\>", "}"}]], "Output"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell["Load the package.", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->123059143], - -Cell[BoxData[ - RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9}, - 3.522586258751662*^9}, - CellID->2058623809], - -Cell["Set options.", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->184495045] -}, Open ]], - -Cell[BoxData[ - RowBox[{ - RowBox[{"SetOptions", "[", - RowBox[{"DensityMatrix", ",", - RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}], ",", - RowBox[{"TimeDependence", "\[Rule]", "True"}]}], "]"}], ";"}]], "Input", - CellChangeTimes->{{3.534553583703125*^9, 3.534553592359375*^9}, { - 3.534554968828125*^9, 3.534554970171875*^9}}], - -Cell[BoxData[{ - RowBox[{ - RowBox[{"SetOptions", "[", - RowBox[{"Plot", ",", - RowBox[{"PlotRange", "\[Rule]", "All"}], ",", - RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"SetOptions", "[", - RowBox[{"ListLinePlot", ",", - RowBox[{"PlotRange", "\[Rule]", "All"}], ",", - RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"SetOptions", "[", - RowBox[{"ListDensityPlot", ",", - RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ";"}]}], "Input"], - -Cell[BoxData[ - RowBox[{ - RowBox[{"SetOptions", "[", - RowBox[{"NDSolve", ",", - RowBox[{"PrecisionGoal", "\[Rule]", "3"}], ",", - RowBox[{"AccuracyGoal", "\[Rule]", "3"}], ",", - RowBox[{"MaxSteps", "\[Rule]", - SuperscriptBox["10", "6"]}]}], "]"}], ";"}]], "Input"], - -Cell[BoxData[ - RowBox[{ - RowBox[{"SetOptions", "[", - RowBox[{"LevelDiagram", ",", - RowBox[{"JLabel", "\[Rule]", "True"}], ",", - RowBox[{"MLabel", "\[Rule]", "True"}], ",", - RowBox[{"Arrowheads", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"-", ".07"}], ",", ".07"}], "}"}]}], ",", - RowBox[{"MLabelPosition", "\[Rule]", - RowBox[{"{", "Top", "}"}]}]}], "]"}], ";"}]], "Input"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell["Atomic system setup", "Section"], - -Cell["Define the atomic system.", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellChangeTimes->{3.522586258751924*^9}, - CellID->188360977], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{"system", "=", - RowBox[{"Sublevels", "[", - RowBox[{"{", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"AtomicState", "[", - RowBox[{"1", ",", - RowBox[{"J", "\[Rule]", "0"}], ",", - RowBox[{"L", "\[Rule]", "0"}], ",", - RowBox[{"S", "\[Rule]", "0"}], ",", - RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", - RowBox[{"Energy", "\[Rule]", "0"}], ",", - RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",", - "\[IndentingNewLine]", - RowBox[{"AtomicState", "[", - RowBox[{"2", ",", - RowBox[{"J", "\[Rule]", "1"}], ",", - RowBox[{"L", "\[Rule]", "1"}], ",", - RowBox[{"S", "\[Rule]", "0"}], ",", - RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",", - RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",", - RowBox[{ - RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",", - RowBox[{ - RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",", - RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", - "\[IndentingNewLine]", - RowBox[{"AtomicState", "[", - RowBox[{"3", ",", - RowBox[{"J", "\[Rule]", "0"}], ",", - RowBox[{"L", "\[Rule]", "0"}], ",", - RowBox[{"S", "\[Rule]", "0"}], ",", - RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",", - RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",", - RowBox[{ - RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",", - RowBox[{ - RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",", - RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], - "\[IndentingNewLine]", "}"}], "]"}]}], ";"}], "\[IndentingNewLine]", - RowBox[{"TableForm", "[", - RowBox[{"system", "=", - RowBox[{"DeleteStates", "[", - RowBox[{"system", ",", - RowBox[{"Label", "\[Rule]", "2"}], ",", - RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}], "]"}]}], "Input", - CellChangeTimes->{{3.53455248065625*^9, 3.534552600640625*^9}, { - 3.534552682078125*^9, 3.534552741734375*^9}, {3.53455363609375*^9, - 3.534553678203125*^9}, {3.5345537420625*^9, 3.5345537629375*^9}, { - 3.534555252625*^9, 3.534555255046875*^9}}], - -Cell[BoxData[ - TagBox[ - TagBox[GridBox[{ - { - RowBox[{"AtomicState", "[", - RowBox[{"1", ",", - RowBox[{"J", "\[Rule]", "0"}], ",", - RowBox[{"L", "\[Rule]", "0"}], ",", - RowBox[{"S", "\[Rule]", "0"}], ",", - RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", - RowBox[{"Energy", "\[Rule]", "0"}], ",", - RowBox[{"Parity", "\[Rule]", "Odd"}], ",", - RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}, - { - RowBox[{"AtomicState", "[", - RowBox[{"2", ",", - RowBox[{"J", "\[Rule]", "1"}], ",", - RowBox[{"L", "\[Rule]", "1"}], ",", - RowBox[{"S", "\[Rule]", "0"}], ",", - RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",", - RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",", - RowBox[{ - RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",", - RowBox[{ - RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",", - RowBox[{"Parity", "\[Rule]", "Even"}], ",", - RowBox[{"M", "\[Rule]", "1"}]}], "]"}]}, - { - RowBox[{"AtomicState", "[", - RowBox[{"2", ",", - RowBox[{"J", "\[Rule]", "1"}], ",", - RowBox[{"L", "\[Rule]", "1"}], ",", - RowBox[{"S", "\[Rule]", "0"}], ",", - RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",", - RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",", - RowBox[{ - RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",", - RowBox[{ - RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",", - RowBox[{"Parity", "\[Rule]", "Even"}], ",", - RowBox[{"M", "\[Rule]", - RowBox[{"-", "1"}]}]}], "]"}]}, - { - RowBox[{"AtomicState", "[", - RowBox[{"3", ",", - RowBox[{"J", "\[Rule]", "0"}], ",", - RowBox[{"L", "\[Rule]", "0"}], ",", - RowBox[{"S", "\[Rule]", "0"}], ",", - RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",", - RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",", - RowBox[{ - RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",", - RowBox[{ - RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",", - RowBox[{"Parity", "\[Rule]", "Odd"}], ",", - RowBox[{"M", "\[Rule]", "0"}]}], "]"}]} - }, - GridBoxAlignment->{ - "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, - "RowsIndexed" -> {}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.5599999999999999]}, - Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { - Offset[0.2], { - Offset[0.4]}, - Offset[0.2]}, "RowsIndexed" -> {}}], - Column], - Function[BoxForm`e$, - TableForm[BoxForm`e$]]]], "Output"] -}, Open ]], - -Cell["Define the optical field.", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->13161682], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"field", "=", - RowBox[{ - RowBox[{"ToCartesian", "[", - RowBox[{"Transpose", "@", - RowBox[{"{", - RowBox[{"{", - RowBox[{ - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ", - RowBox[{"(", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]], "+", - RowBox[{"\[ImaginaryI]", " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}]}], ")"}]}], - RowBox[{"ReducedME", "[", - RowBox[{"1", ",", - RowBox[{"{", - RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]], ",", "0", - ",", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ", - RowBox[{"(", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]], "+", - RowBox[{"\[ImaginaryI]", " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}]}], ")"}]}], - RowBox[{"ReducedME", "[", - RowBox[{"1", ",", - RowBox[{"{", - RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]]}], "}"}], - "}"}]}], "]"}], "//", "FullSimplify"}]}]], "Input"], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{ - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], "-", - RowBox[{"\[ImaginaryI]", " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], "+", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]], "-", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], ")"}]}], - RowBox[{ - SqrtBox["2"], " ", - RowBox[{"ReducedME", "[", - RowBox[{"1", ",", - RowBox[{"{", - RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", - RowBox[{"(", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]], "+", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]], "-", - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"(", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]], "+", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], ")"}]}]}], ")"}]}], - RowBox[{ - SqrtBox["2"], " ", - RowBox[{"ReducedME", "[", - RowBox[{"1", ",", - RowBox[{"{", - RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",", "0"}], - "}"}]], "Output"] -}, Open ]], - -Cell["\<\ -The Hamiltonian for the system subject to the optical field.\ -\>", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->337337829], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"MatrixForm", "[", - RowBox[{"Ho", "=", - RowBox[{ - RowBox[{"Expand", "@", - RowBox[{"Hamiltonian", "[", - RowBox[{"system", ",", - RowBox[{"ElectricField", "\[Rule]", "field"}], ",", - RowBox[{"MagneticField", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "0", ",", - RowBox[{"\[CapitalOmega]L", "/", "BohrMagneton"}]}], "}"}]}]}], - "]"}]}], "/.", " ", - RowBox[{ - RowBox[{"ReducedME", "[", - RowBox[{"2", ",", - RowBox[{"{", - RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}], "\[Rule]", - "0"}]}]}], "]"}]], "Input"], - -Cell[BoxData[ - TagBox[ - RowBox[{"(", "\[NoBreak]", GridBox[{ - {"0", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}], "-", - FractionBox[ - RowBox[{ - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}], - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}], "+", - FractionBox[ - RowBox[{ - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}], "0"}, - { - RowBox[{ - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}], - RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "0"}, - { - RowBox[{ - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{"Cos", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - RowBox[{"Sin", "[", - RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}], "0", - RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}], "0"}, - {"0", "0", "0", "\[Omega]3"} - }, - GridBoxAlignment->{ - "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, - "RowsIndexed" -> {}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.7]}, - Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { - Offset[0.2], { - Offset[0.4]}, - Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], - Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output"] -}, Open ]], - -Cell["\<\ -The Hamiltonian for the system subject to the coupling field\ -\>", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->327463138], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"MatrixForm", "[", - RowBox[{"HE", "=", - RowBox[{ - RowBox[{"Expand", "@", - RowBox[{"Hamiltonian", "[", - RowBox[{"system", ",", - RowBox[{"ElectricField", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"Ec", - RowBox[{ - SqrtBox["6"], "/", - RowBox[{"ReducedME", "[", - RowBox[{"2", ",", - RowBox[{"{", - RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}]}], - ",", "0", ",", "0"}], "}"}]}], ",", - RowBox[{"Interaction", "\[Rule]", - RowBox[{"{", "E1", "}"}]}]}], "]"}]}], "/.", " ", - RowBox[{ - RowBox[{"ReducedME", "[", - RowBox[{"1", ",", - RowBox[{"{", - RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], "\[Rule]", - "0"}]}]}], "]"}]], "Input", - CellChangeTimes->{{3.53455311584375*^9, 3.534553169015625*^9}, { - 3.534553199875*^9, 3.534553204765625*^9}, {3.5345532359375*^9, - 3.534553278921875*^9}, 3.534553331125*^9}], - -Cell[BoxData[ - TagBox[ - RowBox[{"(", "\[NoBreak]", GridBox[{ - {"0", "0", "0", "0"}, - {"0", "0", "0", "Ec"}, - {"0", "0", "0", - RowBox[{"-", "Ec"}]}, - {"0", "Ec", - RowBox[{"-", "Ec"}], "0"} - }, - GridBoxAlignment->{ - "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, - "RowsIndexed" -> {}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.7]}, - Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { - Offset[0.2], { - Offset[0.4]}, - Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], - Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output"] -}, Open ]], - -Cell["The total Hamiltonian", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->737742553], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"MatrixForm", "[", - RowBox[{"H", "=", - RowBox[{ - RowBox[{"Ho", "+", "HE"}], "//", "TrigToExp"}]}], "]"}]], "Input"], - -Cell[BoxData[ - TagBox[ - RowBox[{"(", "\[NoBreak]", GridBox[{ - {"0", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}], "-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}], - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}], "-", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}], "0"}, - { - RowBox[{ - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}], - RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "Ec"}, - { - RowBox[{ - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{"\[ImaginaryI]", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}], "0", - RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}], - RowBox[{"-", "Ec"}]}, - {"0", "Ec", - RowBox[{"-", "Ec"}], "\[Omega]3"} - }, - GridBoxAlignment->{ - "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, - "RowsIndexed" -> {}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.7]}, - Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { - Offset[0.2], { - Offset[0.4]}, - Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], - Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output"] -}, Open ]], - -Cell["\<\ -The level diagram showing field detunings.\ -\>", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->944896957], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"LevelDiagram", "[", - RowBox[{ - RowBox[{"system", "/.", - RowBox[{ - RowBox[{"(", - RowBox[{"Parity", "\[Rule]", "_"}], ")"}], "\[Rule]", - RowBox[{"Sequence", "[", "]"}]}]}], ",", - RowBox[{"H", "/.", - RowBox[{"{", - RowBox[{ - RowBox[{"\[Omega]2", "\[Rule]", "3"}], ",", - RowBox[{"\[Omega]3", "\[Rule]", "2."}], ",", - RowBox[{"\[CapitalOmega]L", "\[Rule]", ".2"}], ",", - RowBox[{"\[Omega]", "\[Rule]", "2.3"}]}], "}"}]}]}], "]"}]], "Input", - Evaluatable->False], - -Cell[BoxData[ - GraphicsBox[{{{{}, LineBox[{{-0.4, 0.}, {0.4, 0.}}]}, {{}, - LineBox[{{0.6, 3.2}, {1.4, 3.2}}]}, {{}, - LineBox[{{-1.4, 2.8}, {-0.6, 2.8}}]}, {{}, - LineBox[{{-0.4, 2.}, {0.4, 2.}}]}}, {{InsetBox[ - RowBox[{"M", "\[LongEqual]", - RowBox[{"-", "1"}]}], {-1., 3.2}, {0, -1.2}], InsetBox[ - RowBox[{"M", "\[LongEqual]", "0"}], {0., 3.2}, {0, -1.2}], InsetBox[ - RowBox[{"M", "\[LongEqual]", "1"}], {1., 3.2}, {0, -1.2}]}, {}, { - InsetBox[ - RowBox[{ - SubscriptBox["J", "1"], "\[LongEqual]", "0"}], - Offset[{-6.6000000000000005`, 0}, {-1.4, 0}], {1, 0}], InsetBox[ - RowBox[{ - SubscriptBox["J", "3"], "\[LongEqual]", "0"}], - Offset[{-6.6000000000000005`, 0}, {-1.4, 2.}], {1, 0}], InsetBox[ - RowBox[{ - SubscriptBox["J", "2"], "\[LongEqual]", "1"}], - Offset[{-6.6000000000000005`, 0}, {-1.4, 3.}], {1, 0}]}}, - {Arrowheads[{-0.07, 0.07}], - ArrowBox[{{0.04000000000000001, 0.}, {0.96, 2.3}}], - ArrowBox[{{0.04000000000000001, 0.}, {0.96, 2.3}}], - ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 2.3}}], - ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 2.3}}], - ArrowBox[{{-0.04000000000000001, 2.}, {-0.96, 2.8}}], - ArrowBox[{{0.04000000000000001, 2.}, {0.96, 3.2}}]}, - {PointSize[0.0225]}}, - ImagePadding->{{38.300000000000004`, 2}, {2., 13.700000000000001`}}, - ImageSize->180.3]], "Output"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell["Apply the rotating-wave approximation to the Hamiltonian.", \ -"MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellChangeTimes->{3.522586258753521*^9}, - CellID->471402495], - -Cell[BoxData[ - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"Hrwa", "=", "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"RotatingWaveApproximation", "[", - RowBox[{"system", ",", "H", ",", - RowBox[{"{", "\[Omega]", "}"}], ",", "\[IndentingNewLine]", - RowBox[{"TransformMatrix", "\[Rule]", - RowBox[{"MatrixExp", "[", - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", - RowBox[{"DiagonalMatrix", "[", - RowBox[{"{", - RowBox[{ - "0", ",", "\[Omega]", ",", "\[Omega]", ",", "\[Omega]"}], - "}"}], "]"}]}], "]"}]}]}], "]"}], "/.", - RowBox[{"\[Omega]", "\[Rule]", - RowBox[{"\[Omega]2", "+", "\[CapitalDelta]"}]}]}], "/.", - RowBox[{"\[Omega]3", "\[Rule]", - RowBox[{"\[Omega]2", "+", "\[CapitalDelta]23"}]}]}]}], ")"}], "//", - "MatrixForm"}], " ", "//", "Simplify"}], " ", - "\[IndentingNewLine]"}]], "Input", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellChangeTimes->{{3.534553435828125*^9, 3.534553480625*^9}, { - 3.534553524203125*^9, 3.53455353465625*^9}, {3.534553920421875*^9, - 3.534554035921875*^9}, {3.534555327859375*^9, 3.534555328671875*^9}}], - -Cell[BoxData[ - TagBox[ - RowBox[{"(", "\[NoBreak]", GridBox[{ - {"0", - FractionBox[ - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], "+", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], - FractionBox[ - RowBox[{ - RowBox[{ - RowBox[{"-", "\[ImaginaryI]"}], " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], "+", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "0"}, - { - FractionBox[ - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1"}]]}], "+", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1"}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], - RowBox[{ - RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalOmega]L"}], "0", "Ec"}, - { - FractionBox[ - RowBox[{ - RowBox[{"\[ImaginaryI]", " ", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}]}]]}], "+", - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}]}]]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "0", - RowBox[{ - RowBox[{"-", "\[CapitalDelta]"}], "-", "\[CapitalOmega]L"}], - RowBox[{"-", "Ec"}]}, - {"0", "Ec", - RowBox[{"-", "Ec"}], - RowBox[{ - RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalDelta]23"}]} - }, - GridBoxAlignment->{ - "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, - "RowsIndexed" -> {}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.7]}, - Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { - Offset[0.2], { - Offset[0.4]}, - Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], - Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output", - CellGroupingRules->{GroupTogetherGrouping, 10001.}], - -Cell[TextData[{ - Cell[BoxData[ - ButtonBox["IntrinsicRelaxation", - BaseStyle->"Link", - ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]], - " and ", - Cell[BoxData[ - ButtonBox["TransitRelaxation", - BaseStyle->"Link", - ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]], - " supply the relaxation matrices." -}], "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellChangeTimes->{3.52258625875446*^9}, - CellID->448215320], - -Cell[BoxData[ - RowBox[{"MatrixForm", "[", - RowBox[{"relax", "=", - RowBox[{ - RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", - RowBox[{"TransitRelaxation", "[", - RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellChangeTimes->{3.522586258754587*^9}, - CellID->150217419], - -Cell[BoxData[ - TagBox[ - RowBox[{"(", "\[NoBreak]", GridBox[{ - {"\[Gamma]t", "0", "0", "0"}, - {"0", - RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0", "0"}, - {"0", "0", - RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0"}, - {"0", "0", "0", - RowBox[{"\[CapitalGamma]3", "+", "\[Gamma]t"}]} - }, - GridBoxAlignment->{ - "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, - "RowsIndexed" -> {}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.7]}, - Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { - Offset[0.2], { - Offset[0.4]}, - Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], - Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output", - CellGroupingRules->{GroupTogetherGrouping, 10001.}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[TextData[{ - Cell[BoxData[ - ButtonBox["OpticalRepopulation", - BaseStyle->"Link", - ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], - " and ", - Cell[BoxData[ - ButtonBox["TransitRepopulation", - BaseStyle->"Link", - ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], - " supply the repopulation matrices." -}], "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellChangeTimes->{3.522586211804159*^9}, - CellID->78071612], - -Cell[BoxData[ - RowBox[{"MatrixForm", "[", - RowBox[{"repop", "=", - RowBox[{ - RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", - RowBox[{"TransitRepopulation", "[", - RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellChangeTimes->{3.522586211804293*^9, 3.53455357284375*^9}, - CellID->109972911], - -Cell[BoxData[ - TagBox[ - RowBox[{"(", "\[NoBreak]", GridBox[{ - { - RowBox[{"\[Gamma]t", "+", - RowBox[{"\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", - RowBox[{"\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}], "0", "0", - "0"}, - {"0", "0", "0", "0"}, - {"0", "0", "0", "0"}, - {"0", "0", "0", "0"} - }, - GridBoxAlignment->{ - "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, - "RowsIndexed" -> {}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.7]}, - Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { - Offset[0.2], { - Offset[0.4]}, - Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], - Function[BoxForm`e$, - MatrixForm[BoxForm`e$]]]], "Output", - CellGroupingRules->{GroupTogetherGrouping, 10000.}], - -Cell[TextData[{ - "Density-matrix and field variables at one point ", - Cell[BoxData[ - FormBox["i", TraditionalForm]], - FormatType->"TraditionalForm"] -}], "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->24518771] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"vars", "=", - RowBox[{ - RowBox[{"Join", "[", - RowBox[{ - RowBox[{ - RowBox[{"DMVariables", "[", "system", "]"}], "/.", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], - ",", - RowBox[{"Table", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "q", ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "q", ",", "i"}]], "[", "t", "]"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"q", ",", - RowBox[{"-", "1"}], ",", "1", ",", "2"}], "}"}]}], "]"}]}], "]"}], "//", - "Flatten"}]}]], "Input", - CellChangeTimes->{{3.5346077411875*^9, 3.534607771078125*^9}, { - 3.534636125296875*^9, 3.534636133625*^9}, {3.534637152109375*^9, - 3.53463715240625*^9}}], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[TextData[{ - "Density matrix evolution equations at one point ", - Cell[BoxData[ - FormBox["i", TraditionalForm]], - FormatType->"TraditionalForm"] -}], "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->112084045], - -Cell[BoxData[ - RowBox[{"TableForm", "[", - RowBox[{"eqs", "=", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"Expand", "@", - RowBox[{"LiouvilleEquation", "[", - RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}]}], - "/.", - RowBox[{"{", - RowBox[{ - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - SubscriptBox["\[Rho]", - RowBox[{"r_", ",", "a_", ",", "b_"}]], ")"}], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Rule]", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - SubscriptBox["\[Rho]", - RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], ")"}], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}]}], "}"}]}], "/.", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"a_", ",", "b_"}]], "\[Rule]", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.", - RowBox[{"\[CapitalDelta]23", "\[Rule]", - SubscriptBox["\[CapitalDelta]23", "i"]}]}]}], "]"}]], "Input", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellChangeTimes->{{3.53460253115625*^9, 3.53460255159375*^9}, { - 3.534607779234375*^9, 3.53460778478125*^9}, {3.53463614115625*^9, - 3.5346361436875*^9}, {3.53463617796875*^9, 3.53463618378125*^9}}, - CellID->26920765] -}, Open ]], - -Cell[BoxData[ - TagBox[ - TagBox[GridBox[{ - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{"\[Gamma]t", "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - SqrtBox["3"]], "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - SqrtBox["3"]], "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - SqrtBox["3"]], "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - SqrtBox["3"]], "+", - RowBox[{"\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", - "]"}]}]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - RowBox[{"\[CapitalDelta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[CapitalOmega]L", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{ - FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - RowBox[{ - RowBox[{"-", - FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{"\[CapitalDelta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"\[CapitalOmega]L", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - SqrtBox["3"]], "-", - RowBox[{"2", " ", "Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - SqrtBox["3"]], "-", - RowBox[{"\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", - "]"}]}]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - RowBox[{"\[CapitalDelta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"\[CapitalOmega]L", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{ - FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - RowBox[{ - RowBox[{"-", - FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{"\[CapitalDelta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[CapitalOmega]L", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"2", " ", "\[CapitalOmega]L", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{"\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{"\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"2", " ", "\[CapitalOmega]L", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", - "]"}]}]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - SqrtBox["3"]], "+", - RowBox[{"2", " ", "Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - SqrtBox["3"]], "-", - RowBox[{"\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"\[CapitalDelta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{ - SubscriptBox["\[CapitalDelta]23", "i"], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{ - FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - RowBox[{ - RowBox[{"-", - FractionBox["1", "2"]}], " ", "\[CapitalGamma]3", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[CapitalDelta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{ - SubscriptBox["\[CapitalDelta]23", "i"], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "+", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"\[CapitalOmega]L", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{ - SubscriptBox["\[CapitalDelta]23", "i"], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{ - FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{ - FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", - "]"}]}]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{ - FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{ - FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[CapitalOmega]L", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{ - SubscriptBox["\[CapitalDelta]23", "i"], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", - "]"}]}]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{"\[CapitalOmega]L", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{ - SubscriptBox["\[CapitalDelta]23", "i"], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{ - FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{ - FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", - "]"}]}]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{ - FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{ - FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - FractionBox[ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - RowBox[{"2", " ", - SqrtBox["3"]}]], "-", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"\[CapitalOmega]L", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{ - SubscriptBox["\[CapitalDelta]23", "i"], " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", - "]"}]}]}]}]}, - { - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - RowBox[{ - RowBox[{"-", "2"}], " ", "Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "+", - RowBox[{"2", " ", "Ec", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[CapitalGamma]3", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], - "-", - RowBox[{"\[Gamma]t", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", - "]"}]}]}]}]} - }, - GridBoxAlignment->{ - "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, - "RowsIndexed" -> {}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.5599999999999999]}, - Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { - Offset[0.2], { - Offset[0.4]}, - Offset[0.2]}, "RowsIndexed" -> {}}], - Column], - Function[BoxForm`e$, - TableForm[BoxForm`e$]]]], "Output"], - -Cell["Initial conditions for density matrix:", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->16777324], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"inits", "=", - RowBox[{ - RowBox[{"InitialConditions", "[", - RowBox[{"system", ",", - RowBox[{"TransitRepopulation", "[", - RowBox[{"system", ",", "1"}], "]"}], ",", "t0"}], "]"}], "/.", " ", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t_", "]"}], "->", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", - "]"}]}]}]}]], "Input"], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "1"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], - "\[Equal]", "0"}]}], "}"}]], "Output"] -}, Open ]], - -Cell[TextData[{ - "Here we find the field evolution equations with finite difference \ -approximation (first-order upwind scheme) for co-propagating beams. ", - StyleBox["h", - FontSlant->"Italic"], - " is the the grid spacing in the spatial dimension." -}], "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->100512453], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"polarizationcomponents", "=", - RowBox[{"ExprToReIm", "[", - RowBox[{ - RowBox[{ - RowBox[{"ExpandDipoleRME", "[", - RowBox[{"system", ",", - RowBox[{ - RowBox[{ - RowBox[{ - "4", "\[Pi]", " ", "\[ImaginaryI]", " ", "\[Omega]2", " ", "n0", " ", - RowBox[{"ReducedME", "[", - RowBox[{"1", ",", - RowBox[{"{", - RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], - RowBox[{"Components", "@", " ", - RowBox[{"ECT", "@", - RowBox[{"Sum", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"DensityMatrix", "[", "system", "]"}], "[", - RowBox[{"[", - RowBox[{"j", ",", "i"}], "]"}], "]"}], - RowBox[{"WignerEckart", "[", - RowBox[{ - RowBox[{"system", "[", - RowBox[{"[", "i", "]"}], "]"}], ",", - RowBox[{"{", - RowBox[{"Dipole", ",", "1"}], "}"}], ",", - RowBox[{"system", "[", - RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ",", - RowBox[{"{", - RowBox[{"i", ",", - RowBox[{"Length", "[", "system", "]"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"j", ",", "i"}], "}"}]}], "]"}]}]}]}], "/.", - RowBox[{ - RowBox[{"ReducedME", "[", - RowBox[{"2", ",", - RowBox[{"{", - RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}], - "\[Rule]", "0"}]}], "/.", - RowBox[{ - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", - "]"}]}]}]}], "]"}], "/.", - RowBox[{"\[Omega]2", "\[Rule]", - RowBox[{"2", - RowBox[{"\[Pi]", "/", "\[Lambda]"}]}]}]}], "/.", - RowBox[{ - RowBox[{"n0", " ", - SuperscriptBox["\[Lambda]", "2"], "\[CapitalGamma]2"}], "\[Rule]", - RowBox[{"4", "\[VeryThinSpace]", "\[Pi]", " ", - RowBox[{"\[Eta]", "/", "3"}]}]}]}], "]"}]}]], "Input"], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{"-", - SqrtBox["3"]}], " ", "\[Eta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",", - RowBox[{ - RowBox[{"-", - SqrtBox["3"]}], " ", "\[Eta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",", - RowBox[{ - RowBox[{"-", - SqrtBox["3"]}], " ", "\[Eta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",", - RowBox[{ - RowBox[{"-", - SqrtBox["3"]}], " ", "\[Eta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}], - "}"}]], "Output"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"fieldcomponents", "=", - RowBox[{ - RowBox[{"ExprToReIm", "[", - RowBox[{ - RowBox[{"Expand", "[", - RowBox[{ - RowBox[{"ReducedME", "[", - RowBox[{"1", ",", - RowBox[{"{", - RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], - RowBox[{"Components", "@", - RowBox[{"ToContravariant", "[", "field", "]"}]}]}], "]"}], "/.", - RowBox[{"t", "\[Rule]", "0"}]}], "]"}], "/.", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"a_", ",", "b_"}]], "\[Rule]", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}]], "Input"], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"fieldeqs", "=", - RowBox[{"Thread", "[", - RowBox[{ - RowBox[{"D", "[", - RowBox[{"fieldcomponents", ",", "t"}], "]"}], "\[Equal]", - RowBox[{ - RowBox[{"c", " ", "polarizationcomponents"}], "-", - RowBox[{"c", " ", - RowBox[{ - RowBox[{"(", - RowBox[{"fieldcomponents", "-", - RowBox[{"(", - RowBox[{"fieldcomponents", "/.", - RowBox[{"i", "\[Rule]", - RowBox[{"i", "-", "1"}]}]}], ")"}]}], ")"}], "/", "h"}]}]}]}], - "]"}]}]], "Input"], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"c", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", - RowBox[{ - RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], - "h"]}], "-", - RowBox[{ - SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}], - ",", - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"c", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", - RowBox[{ - RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}], - "h"]}], "-", - RowBox[{ - SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}], - ",", - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"c", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", - RowBox[{ - RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], ")"}]}], - "h"]}], "-", - RowBox[{ - SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Im", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}], - ",", - RowBox[{ - RowBox[{ - SuperscriptBox[ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]", - MultilineFunction->None], "[", "t", "]"}], "\[Equal]", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"c", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", - RowBox[{ - RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], ")"}]}], - "h"]}], "-", - RowBox[{ - SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", - RowBox[{ - SubscriptBox["\[Rho]", - RowBox[{"Re", ",", - RowBox[{"{", - RowBox[{"1", ",", "0"}], "}"}], ",", - RowBox[{"{", - RowBox[{"2", ",", - RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}], - "}"}]], "Output"] -}, Open ]], - -Cell["Initial conditions for fields (assume uniform in space).", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->135712718], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"initfields", "=", - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", - SubscriptBox["\[CapitalOmega]0", "1"]}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", - SubscriptBox["\[CapitalOmega]0", - RowBox[{"-", "1"}]]}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", - "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", - "0"}]}], "}"}]}]], "Input", - CellChangeTimes->{{3.534636308703125*^9, 3.53463633696875*^9}}], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", - SubscriptBox["\[CapitalOmega]0", "1"]}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", - SubscriptBox["\[CapitalOmega]0", - RowBox[{"-", "1"}]]}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", - "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}]}], - "}"}]], "Output"] -}, Open ]], - -Cell["\<\ -Boundary conditions for co-propagating fields. Fields 1 and 3 are constant, \ -fields 2 and 4 are pulsed. The first point is 0, and the last point is n0.\ -\>", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->71091213], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"boundaryconds", "=", - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", - SubscriptBox["\[CapitalOmega]0", "1"]}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", - SubscriptBox["\[CapitalOmega]0", - RowBox[{"-", "1"}]]}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", - "0"}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}], - "}"}]}]], "Input", - CellChangeTimes->{{3.534636354140625*^9, 3.534636376*^9}}], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", - SubscriptBox["\[CapitalOmega]0", "1"]}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", - SubscriptBox["\[CapitalOmega]0", - RowBox[{"-", "1"}]]}], ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}], - ",", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}], - "}"}]], "Output"] -}, Open ]] -}, Open ]], - -Cell[CellGroupData[{ - -Cell["Results", "Section"], - -Cell["Choose number of spatial points.", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->35853137], - -Cell[BoxData[ - RowBox[{ - RowBox[{"n", "=", "80"}], ";"}]], "Input"], - -Cell["All system variables for all spatial points.", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->380000867], - -Cell[BoxData[ - RowBox[{ - RowBox[{"allvars", "=", - RowBox[{"Flatten", "@", - RowBox[{"Table", "[", - RowBox[{"vars", ",", - RowBox[{"{", - RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"], - -Cell["Equations for all points for the co-propagating case.", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->129539961], - -Cell[BoxData[ - RowBox[{ - RowBox[{"TableForm", "[", - RowBox[{"alleqs", "=", - RowBox[{"Join", "[", - RowBox[{ - RowBox[{"DeleteCases", "[", - RowBox[{ - RowBox[{"Flatten", "@", - RowBox[{"Table", "[", - RowBox[{ - RowBox[{"Join", "[", - RowBox[{"eqs", ",", "inits", ",", "fieldeqs", ",", "initfields"}], - "]"}], ",", - RowBox[{"{", - RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], ",", - RowBox[{"Alternatives", "@@", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"#", "[", - RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]", - "_"}], "&"}], "/@", - RowBox[{"(", - RowBox[{"boundaryconds", "/.", - RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}]}], "]"}], ",", - RowBox[{"(", - RowBox[{"boundaryconds", "/.", - RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], "]"}]}], "]"}], - ";"}]], "Input", - CellChangeTimes->{3.53463640765625*^9, 3.534636603890625*^9}], - -Cell[TextData[{ - "Here we choose parameters and integrate the equations. Blue is ", - Cell[BoxData[ - FormBox[ - SuperscriptBox["\[Sigma]", "-"], TraditionalForm]], - FormatType->"TraditionalForm"], - " field intensity, magenta is ", - Cell[BoxData[ - FormBox[ - SuperscriptBox["\[Sigma]", "+"], TraditionalForm]], - FormatType->"TraditionalForm"], - "field intensity." -}], "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->40567123], - -Cell[TextData[{ - "Parameters:\n", - Cell[BoxData[ - SubscriptBox["\[CapitalOmega]0", - RowBox[{"-", "1"}]]]], - ": input Rabi frequency for ", - Cell[BoxData[ - FormBox[ - RowBox[{ - SuperscriptBox["\[Sigma]", "-"], " "}], TraditionalForm]], - FormatType->"TraditionalForm"], - "(rad/s) \n", - Cell[BoxData[ - SubscriptBox["\[CapitalOmega]0", "1"]]], - ": input Rabi frequency for ", - Cell[BoxData[ - FormBox[ - SuperscriptBox["\[Sigma]", "+"], TraditionalForm]], - FormatType->"TraditionalForm"], - "(rad/s) \n\[CapitalGamma]2: natural width of J=1 level (rad/s) \n\ -\[CapitalGamma]3: natural width of upper J=0 level (rad/s)\n\[Gamma]t: \ -transit relaxation rate (rad/s)\nEc: static electric field coupling strength \ -(rad/s)\n\[CapitalDelta]: Light detuning from J=1 level (rad/s)\n\ -\[CapitalOmega]L: Zeeman shift (rad/s)\n", - Cell[BoxData[ - SubscriptBox["\[CapitalDelta]23", "i_"]]], - ": frequency splitting between upper J=1 and J=0 level as a function of the \ -position ", - Cell[BoxData[ - FormBox["i", TraditionalForm]], - FormatType->"TraditionalForm"], - ", as ", - Cell[BoxData[ - FormBox["i", TraditionalForm]], - FormatType->"TraditionalForm"], - " varies from zero to ", - Cell[BoxData[ - FormBox["n", TraditionalForm]], - FormatType->"TraditionalForm"], - " (rad/s)\nh: distance between grid points (m)\nc: light speed (m/s)\n\ -\[Eta]: light coupling constant (rad/s/m)" -}], "Text"], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{"params", "=", - RowBox[{"{", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]0", - RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",", - RowBox[{ - SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]", - RowBox[{"1.", " ", "2", "\[Pi]", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"\[CapitalGamma]2", "\[Rule]", - RowBox[{"1.", " ", "2", "\[Pi]", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",", - RowBox[{"\[Gamma]t", "\[Rule]", - RowBox[{".001", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"Ec", "\[Rule]", - RowBox[{"10.", " ", "2", "\[Pi]", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"\[CapitalDelta]", "\[Rule]", - RowBox[{ - RowBox[{"-", "100."}], " ", "2", "\[Pi]", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"\[CapitalOmega]L", "\[Rule]", - RowBox[{"50.", " ", "2", "\[Pi]", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"c", "\[Rule]", - RowBox[{"3.", " ", - SuperscriptBox["10", "8"]}]}], ",", - RowBox[{"\[Eta]", "\[Rule]", - RowBox[{"3.", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"794.7", " ", - SuperscriptBox["10", - RowBox[{"-", "9"}]]}], ")"}], "2"], - RowBox[{"(", - SuperscriptBox["10", "15"], ")"}], - RowBox[{ - RowBox[{"(", - RowBox[{"2", " ", "\[Pi]", " ", - SuperscriptBox["10", "6"]}], ")"}], "/", - RowBox[{"(", - RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",", - RowBox[{"h", "\[Rule]", - RowBox[{"5.", "/", "n"}]}], ",", - RowBox[{ - SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "105."}], "+", - RowBox[{"10", - RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n", - RowBox[{ - RowBox[{"sol", "=", - RowBox[{"NDSolve", "[", - RowBox[{ - RowBox[{"Evaluate", "[", - RowBox[{"alleqs", "/.", "params"}], "]"}], ",", "allvars", ",", - RowBox[{"{", - RowBox[{"t", ",", "0", ",", - RowBox[{"4.", " ", - SuperscriptBox["10", - RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{"ListLinePlot", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"Transpose", "@", - RowBox[{"Table", "[", - RowBox[{ - RowBox[{"Evaluate", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"i", " ", "h"}], ",", - SuperscriptBox[ - RowBox[{"Abs", "[", - RowBox[{"(", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+", - RowBox[{"\[ImaginaryI]", " ", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}], - ")"}], "]"}], "2"]}], "}"}], ",", - RowBox[{"{", - RowBox[{ - RowBox[{"i", " ", "h"}], ",", - SuperscriptBox[ - RowBox[{"Abs", "[", - RowBox[{"(", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+", - RowBox[{"\[ImaginaryI]", " ", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}], - ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}], - "]"}], ",", - RowBox[{"{", - RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.", - RowBox[{"sol", "[", - RowBox[{"[", "1", "]"}], "]"}]}], "/.", - RowBox[{"t", "\[Rule]", - RowBox[{"4.", " ", - SuperscriptBox["10", - RowBox[{"-", "6"}]]}]}]}], ",", - RowBox[{"FrameLabel", "\[Rule]", - RowBox[{"{", - RowBox[{ - "\"\\"", ",", - "\"\\""}], "}"}]}]}], - "]"}]}], "Input"], - -Cell[BoxData[ - GraphicsBox[{{}, {}, - {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" -1:eJxt039M1HUcx/H7jfLzfhBUrlxQJpOAzMIm6/OGiMMOQkg2IX4deAwERTyE -CEygOBCoKDOooaZpDMjzCDiF0zrZLVCWc4qI/PI8TqrjNNQy0IN+jBf/9d2+ -++6x5/f93Wf7fj7PpOfFqXgcDif23/u/5/9fOua/1Zrw0fxk6KKNbOJ1691m -jSBs0f2sw3Rm92cOb/gSExWk9ttSn4MHWZ1I8WjE50V4mF1t666z1K2Hx1ju -iU7/+HWhsJk1aHipG8MjYAv7Wa4SaMxRsJWNGrS3hFOx8BQ7YX16QLkQD//K -NrR39zklJMI2Nt43Gv1EQSpsZxtXn4zYFJ8O32HWw0ECabEKnmGmX95Wu+7P -gu+y38YP5ZyMzIXvsVXXnt/2HWcnfJ9d/N7TfPGFXfAfrP+Sb+7xLQXwnyyp -un4g0V4IP2CXO08JTDnF8F9srv2lH4q3l8Kz7HawUl2yeS88x+JLInvfUZXD -D9mVzyMDVnp+AD9izhphxEppJexg1T57OEm8Knie+SoeRuVH74MX2Io990IC -amrhv1nsBm0A3+9jmEMjfoLqTcr6RZdx6FmTIuNd86foXDpvmcg5mrEfnUuF -12+4ZT15AJ1HC3Gj+dk3vkDn0eo0haFlqBGdT9PJk8br9q/Q+fTqwM2YosCD -6AL61vFl+FOth9EFJD/7yi2h7xF0Ic1UWSouHDqKLqT1P35Y6utzDF1ER242 -+L0/fRxdRDXeO5Mbtc3oTnRuvEn11rUWdCeKkXt0BU21oS+jAVu5cnavFn0Z -qWWPu+/epUNfTkHyrLBZRzv6cvrJm1s/ktCB7kzn8qRSh1cXujO1JNROhFfp -0V0oNPOTyomXT6O7kMiFm9kb143uSpLhYV42pwfdlRobxrZqYpa6Gxla174X -Ob30fTcK5lx5My4R6+W4U6BmjbZtEP+rzJ0qJY81maIy0T1I37zWs0KG/Vjm -QQcnx3aUDy3tXzEVrvjG4G9XL5rE1GcvKjGsysf7YiqqDfx6iwQ2iqlzfiil -1bYd8xI6c/aBIplgkpB8c7CYL9iGeQmdz9N3NIVkY15CDQF3ii/3LK1PSjon -H93p33EeSUqW+y2ZrzkyMC+lGY831uxYBxulVHPKluGlU2JeRqX6Xr7+dhrm -ZdSjrp9LqcD5L5NRdFftVaNzCuZlxE03e42EJGHek45FX0g7MJgY9g98xGyh - - "]]}, - {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" -1:eJw1zgtMU3cUx/FrgVaE0tJqWCYpuo3geOiqTgSEc4LEDXVxVYgKRgUlisYJ -qIzGV0UUCRAEESxhLqDAECYVsICVCaLRoKJiFTYfPAQllQw3EC2+jefc5Obm -k+//98+dGr11aYxIEATNx/fTl5+65DWpfcPNwZ9lgOLN+miry0VyE6SuPrDY -8Jj7VSjvT6vR9rJvQa+bedHJdrYZ/p6bebCrgd0JN2K3ty8/z34Ad+s9UVHN -7objmfKnC4vZveCEIcqOCnYfuF4yr/vyBPsJ5LYq1Huy2QNQIt3l653HtkDn -ynj/U0nsQdgbsOLKnTj2v+CeukydtYr9HDb1tc1zDGH/BymDD69UeLH/hzeu -SWEiFXsYakeTZWXWJvIIZAdrbSMG2S/Ad5kkoes2exTWTAs3JhnZLyH03rN8 -fTH7FZTGaqb4p7CtkB9wplG6kT0G9UXuBSOh7NdQqFFv8vNgv4FIL9Vv6wT2 -W3hZtbZoqukC+R08jNB/c2cV+z38nvYocKKYLaC++9X1hWV/fbZOwIYQF7Up -iCyMw623ftyR0N5IfRyK/Gc050aRBRHW/fRVZGTveeoiDBsS9q1dTxZssMOo -Tw+6baJugx6+F9+OAlmwRaXTZY1f7jnqtlj0dFifaGmgboctbQvQw42ss8Pv -q2ts+8LrqYuxQ9YzeeWGOupiTJj1z+UbCUbqEnSMaL1+NPIsdQnmnT60aNvs -WurjcbUpHGWWaurjUTKywui6/wx1ezQF747601pF3R6/NujGDAWV1CfgkbiN -ge9tyqlPQB9tfKJZVULdAUOXlIslnkXUHdBXPXTYJ6aAuiP+GnVT/0PjEeqO -OFM7lpMzPYu6FB+Y7ecmRmdTl2Lb/u/uBy0opO6Equ6MxGuGUupOKD5bJU/N -KqMuw5175tW2NNP/6GTY83O394wv6LwgRwg0y94NUEc5qt0mnf5jDt8nx+c+ -Xq79nuQmOVZs36L9JYb3zuh3YVdAWBQZnVEl3Tc0ksF7Z0zPDAs4mM57Z/Se -5WJnreC9Apt005XqSt4rMC//UVxlC+8VWDK/s3XoEu8VaMk5OeeumfdK3FZl -+DbtHu+VOBYvybV08V6JsapjDvd7eK/EuuQUzbN+3k/EGofkaSEDpcEfAHau -f0Y= - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->True, - AxesOrigin->{0, 0}, - Frame->True, - FrameLabel->{ - FormBox["\"Position (m)\"", TraditionalForm], - FormBox[ - "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \ -\\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"", - TraditionalForm]}, - PlotRange->{All, All}, - PlotRangeClipping->True, - PlotRangePadding->{Automatic, Automatic}]], "Output"] -}, Open ]], - -Cell["\<\ -Same plot with flipped magnetic field\ -\>", "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->264338212], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{"params", "=", - RowBox[{"{", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]0", - RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",", - RowBox[{ - SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]", - RowBox[{"1.", " ", "2", "\[Pi]", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"\[CapitalGamma]2", "\[Rule]", - RowBox[{"1.", " ", "2", "\[Pi]", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",", - RowBox[{"\[Gamma]t", "\[Rule]", - RowBox[{".001", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"Ec", "\[Rule]", - RowBox[{"10.", " ", "2", "\[Pi]", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"\[CapitalDelta]", "\[Rule]", - RowBox[{ - RowBox[{"-", "100."}], " ", "2", "\[Pi]", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"\[CapitalOmega]L", "\[Rule]", - RowBox[{ - RowBox[{"-", "50."}], " ", "2", "\[Pi]", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"c", "\[Rule]", - RowBox[{"3.", " ", - SuperscriptBox["10", "8"]}]}], ",", - RowBox[{"\[Eta]", "\[Rule]", - RowBox[{"3.", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"794.7", " ", - SuperscriptBox["10", - RowBox[{"-", "9"}]]}], ")"}], "2"], - RowBox[{"(", - SuperscriptBox["10", "15"], ")"}], - RowBox[{ - RowBox[{"(", - RowBox[{"2", " ", "\[Pi]", " ", - SuperscriptBox["10", "6"]}], ")"}], "/", - RowBox[{"(", - RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",", - RowBox[{"h", "\[Rule]", - RowBox[{"5.", "/", "n"}]}], ",", - RowBox[{ - SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"-", "105."}], "+", - RowBox[{"10", - RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ", - SuperscriptBox["10", "6"]}]}], ",", - RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n", - RowBox[{ - RowBox[{"sol", "=", - RowBox[{"NDSolve", "[", - RowBox[{ - RowBox[{"Evaluate", "[", - RowBox[{"alleqs", "/.", "params"}], "]"}], ",", "allvars", ",", - RowBox[{"{", - RowBox[{"t", ",", "0", ",", - RowBox[{"4.", " ", - SuperscriptBox["10", - RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{"ListLinePlot", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"Transpose", "@", - RowBox[{"Table", "[", - RowBox[{ - RowBox[{"Evaluate", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"i", " ", "h"}], ",", - SuperscriptBox[ - RowBox[{"Abs", "[", - RowBox[{"(", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+", - RowBox[{"\[ImaginaryI]", " ", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", - RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}], - ")"}], "]"}], "2"]}], "}"}], ",", - RowBox[{"{", - RowBox[{ - RowBox[{"i", " ", "h"}], ",", - SuperscriptBox[ - RowBox[{"Abs", "[", - RowBox[{"(", - RowBox[{ - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+", - RowBox[{"\[ImaginaryI]", " ", - RowBox[{ - SubscriptBox["\[CapitalOmega]", - RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}], - ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}], - "]"}], ",", - RowBox[{"{", - RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.", - RowBox[{"sol", "[", - RowBox[{"[", "1", "]"}], "]"}]}], "/.", - RowBox[{"t", "\[Rule]", - RowBox[{"4.", " ", - SuperscriptBox["10", - RowBox[{"-", "6"}]]}]}]}], ",", - RowBox[{"FrameLabel", "\[Rule]", - RowBox[{"{", - RowBox[{ - "\"\\"", ",", - "\"\\""}], "}"}]}]}], - "]"}]}], "Input"], - -Cell[BoxData[ - GraphicsBox[{{}, {}, - {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" -1:eJxtzn9MzHEcx/Fvv0R31V0hP1rkx8atNrXlV3i/T0k4UVSE8qOk/GiF4nak -kBYn3xaG/EjtnJbunFDKOuoIiwoX7SQ5lVh+xMnl93p///Pdvvvusefn9dnX -fW1CSIwlwzDBf99/3/8/ang9RfP96iijuN9a2CtXL453sZnd71rYXBn+Gxtd -yPWQDqNLDIpx5CdQVdrS3nlkEvkZ4PQIPWueQjaA7qRpSa4Gya0QWWVs8Pkx -h9wGt9rBQ5IlIRth9Q538YcbweR2MAebErTvQ8mdsD5/swcTGEHugkMHAtJT -1kWR38Pbui/e/svWkrtBfPmoS0xsDPkjbOSXZCfJN5A/wc8zhrxur03kz1Cf -NnRWyJsEcg90xQdJmWFJ5C9gkr1ShfptI38Fj64F843aZLIJZsWsOS8P3En+ -BiNK5QVJ42TkXpiH++9vEaSSv4PUMUfkKkojm0H0rry6Wp9O7oPewvBco2Yf -+QcYFGNWRZzOIP8Edv3quT4VmeRfYBquzlrSnUX+DbrwZFtZmJzM4K5qfa+4 -NbvfexhMjXOfpwtiqVugcmr0sbN3cqhbYDdv8u2J4bnULVEkLfc9aXeMuiVO -jbS3EuqPU7dCVhprnlt/groVHuyYHqZ6dYq6Nfadel7l5nWGujWysqjUsAXn -qNugf1wB+1iRT90Gh9vX6er4BdQHYPClSVVLLxRSH4DNfPkGgURB3RZbjvD8 -lN5K6raYKPGc1jO2iPpAdOuJq10ZXUx9IOrUNw73qkqoD0KReGHUyiI19UFo -+La9M4zRULdDw72bsCbtCnU7/Nx+1vWAuZQ6D683P/WoybhGnYdsdXGo6cV1 -6nzcZXUtJK+jjDofMy9FODS4lVO3x9CnNXdHvKTze+yxrjXZUpLC3e+AOb7Z -mdadKuoO6Fp/Md7Ti8w4Ik/d8MhvN/f/jih9Pb6yIpHMCFC5z7c58jQZBfjA -Z4YykOXOC3CRlsmfqCRrBcj67k5py+f2QhyV8lCRdJnbC7HkydIyvYrbCzFa -dmjOsApuL8SA0ibvl5Xc3gm3Nl5IbKvh9k44fgV/Wl8tt3fCRdEWRcsecnsn -DCgcktjymNs7Y/HItx2Dm7i9M97+1eQGL7i9M04IzNA8aOH2zrjc38vQZeT2 -g9Fh28xNAW/Us/8Agkd76w== - "]]}, - {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" -1:eJw1ywtQzGsYx/F/m63VtteU0sokSRdDQsJ4H5t1GQ1tjJG0kVvbJvYccU4c -rRAToyZFmmKnIZdBamOLytaKzLhXWorOpOl0myK0VlqO6XnfmWfe+cx3fp6x -uyK2sRiGkf9/v3/69Kkxxzo+10hHdYt0uM7zaDJRG4h299rATXrqehIeXV9d -VUj9gkgfjLQtPEzdSFRd/vddVdQmkubsPmsojLqVDEz65hI4i/pfMuwYvPfE -OOp2stHFfWOX2YDuIFs/Rtq6vaXuJM4FCXJxJXUXaZ8yWZZbQN1Drm9Wpxw4 -SN1HlL2PV3YrqPuJxD+ytmcR9UeSnPbK+81E6k/k0rnpPj7f76MHiSzzmQTK -qD+TAN+nbSFq6i8kyMPYaZxK/ZVE89X9Ie3V6CHSGv+iPjaL2kz63mdc9g2j -/kYGxmdbeUNVaAuRcatmvLxB/Z3smtmQkBJOPUycb65rLGZT/yAeA817Jmsr -0SPkZFxd/39yaiuxhpULbD7cQ/8kthOMfpJMagYUTcsuFLigNQz4tsxZL6+6 -i90G5CrR0YZgtMYG/t6QuK6yqQI7C9KVdYp8KVrDAp/iFk5qYzl2WyhyuNv0 -MBCtsYUZZ2IgRqfHPgb4/ziHZlvvYB8D5udRS6TxaIYNh4KWpM/X3sbOhtxY -r8Ly/jLsdqB6XWFewEVr7CDFsyUvIkiH3R6sH/xzqmeWYreHwanN6VN8SrBz -4DTPs2TRj2LsHCjSunYKE25gHwuKpW4BDfeuYR8LE1qODJeevYzdAQor3MPe -7b+I3QG8htzWFBi12LlwONDwODw/DzsX+tKj4tT6LOyOkB39l9L75HHsjuAm -6bbMNu/HzoO8yA3xyhV7sfOg6OWyucneR7HzId+QydUZM7DzQXe+TWHJoF0A -OfzMNL/VydgFYH91vmCVAs0IwbtnpNZGtm/UIITGkcRUyxa0RginuNNa7XKT -Rm0Qgqy5j12zDc2IoPCqvGQeZw/uRcCae0bXlfMn7kXQfTDfdC7pD9yLIO6m -XZ3ApMa9GEKz1aGcjt24FwPDLYoKDkBrxPBkTl5bkj4R92KIWPq+dHD6Ttw7 -QdTWhis7Hqlw7wTgx4tmh8Tj3gnaHSUmhqXEvRMs98paEZCyA/fjoLdssaV3 -53bpL+2TdNk= - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->True, - AxesOrigin->{0, 0}, - Frame->True, - FrameLabel->{ - FormBox["\"Position (m)\"", TraditionalForm], - FormBox[ - "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \ -\\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"", - TraditionalForm]}, - PlotRange->{All, All}, - PlotRangeClipping->True, - PlotRangePadding->{Automatic, Automatic}]], "Output"] -}, Open ]] -}, Open ]] -}, -AutoGeneratedPackage->None, -WindowSize->{1084, 904}, -WindowMargins->{{Automatic, 248}, {Automatic, -30}}, -ShowSelection->True, -FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)", -StyleDefinitions->"Default.nb" -] -(* End of Notebook Content *) - -(* Internal cache information *) -(*CellTagsOutline -CellTagsIndex->{} -*) -(*CellTagsIndex -CellTagsIndex->{} -*) -(*NotebookFileOutline -Notebook[{ -Cell[CellGroupData[{ -Cell[567, 22, 32, 0, 71, "Section"], -Cell[602, 24, 206, 6, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->94096541], -Cell[CellGroupData[{ -Cell[833, 34, 68, 1, 31, "Input"], -Cell[904, 37, 64, 1, 30, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[1005, 43, 113, 2, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->123059143], -Cell[1121, 47, 230, 5, 31, "Input", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->2058623809], -Cell[1354, 54, 108, 2, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->184495045] -}, Open ]], -Cell[1477, 59, 349, 7, 31, "Input"], -Cell[1829, 68, 572, 16, 72, "Input"], -Cell[2404, 86, 282, 7, 33, "Input"], -Cell[2689, 95, 416, 11, 31, "Input"] -}, Open ]], -Cell[CellGroupData[{ -Cell[3142, 111, 38, 0, 71, "Section"], -Cell[3183, 113, 163, 3, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->188360977], -Cell[CellGroupData[{ -Cell[3371, 120, 2251, 50, 132, "Input"], -Cell[5625, 172, 2828, 69, 72, "Output"] -}, Open ]], -Cell[8468, 244, 120, 2, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->13161682], -Cell[CellGroupData[{ -Cell[8613, 250, 1677, 47, 53, "Input"], -Cell[10293, 299, 1779, 54, 55, "Output"] -}, Open ]], -Cell[12087, 356, 164, 4, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->337337829], -Cell[CellGroupData[{ -Cell[12276, 364, 634, 18, 52, "Input"], -Cell[12913, 384, 10059, 299, 132, "Output"] -}, Open ]], -Cell[22987, 686, 164, 4, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->327463138], -Cell[CellGroupData[{ -Cell[23176, 694, 1031, 28, 67, "Input"], -Cell[24210, 724, 707, 21, 72, "Output"] -}, Open ]], -Cell[24932, 748, 117, 2, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->737742553], -Cell[CellGroupData[{ -Cell[25074, 754, 146, 4, 31, "Input"], -Cell[25223, 760, 6204, 173, 144, "Output"] -}, Open ]], -Cell[31442, 936, 146, 4, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->944896957], -Cell[CellGroupData[{ -Cell[31613, 944, 537, 15, 31, "Input", - Evaluatable->False], -Cell[32153, 961, 1411, 28, 190, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[33601, 994, 197, 4, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->471402495], -Cell[33801, 1000, 1277, 29, 92, "Input", - CellGroupingRules->{GroupTogetherGrouping, 10001.}], -Cell[35081, 1031, 2306, 70, 132, "Output", - CellGroupingRules->{GroupTogetherGrouping, 10001.}], -Cell[37390, 1103, 478, 14, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->448215320], -Cell[37871, 1119, 367, 9, 31, "Input", - CellGroupingRules->{GroupTogetherGrouping, 10001.}, - CellID->150217419], -Cell[38241, 1130, 870, 23, 72, "Output", - CellGroupingRules->{GroupTogetherGrouping, 10001.}] -}, Open ]], -Cell[CellGroupData[{ -Cell[39148, 1158, 484, 14, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->78071612], -Cell[39635, 1174, 390, 9, 31, "Input", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->109972911], -Cell[40028, 1185, 1388, 40, 74, "Output", - CellGroupingRules->{GroupTogetherGrouping, 10000.}], -Cell[41419, 1227, 241, 7, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->24518771] -}, Open ]], -Cell[CellGroupData[{ -Cell[41697, 1239, 1104, 31, 33, "Input"], -Cell[42804, 1272, 4345, 136, 72, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[47186, 1413, 242, 7, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->112084045], -Cell[47431, 1422, 1706, 44, 77, "Input", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->26920765] -}, Open ]], -Cell[49152, 1469, 60487, 1739, 554, "Output"], -Cell[109642, 3210, 133, 2, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->16777324], -Cell[CellGroupData[{ -Cell[109800, 3216, 493, 14, 33, "Input"], -Cell[110296, 3232, 4557, 154, 72, "Output"] -}, Open ]], -Cell[114868, 3389, 341, 8, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->100512453], -Cell[CellGroupData[{ -Cell[115234, 3401, 2265, 58, 139, "Input"], -Cell[117502, 3461, 1330, 45, 37, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[118869, 3511, 678, 19, 33, "Input"], -Cell[119550, 3532, 553, 16, 30, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[120140, 3553, 537, 16, 31, "Input"], -Cell[120680, 3571, 4404, 138, 83, "Output"] -}, Open ]], -Cell[125099, 3712, 152, 2, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->135712718], -Cell[CellGroupData[{ -Cell[125276, 3718, 924, 27, 31, "Input"], -Cell[126203, 3747, 802, 25, 30, "Output"] -}, Open ]], -Cell[127020, 3775, 255, 5, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->71091213], -Cell[CellGroupData[{ -Cell[127300, 3784, 916, 27, 31, "Input"], -Cell[128219, 3813, 797, 25, 30, "Output"] -}, Open ]] -}, Open ]], -Cell[CellGroupData[{ -Cell[129065, 3844, 26, 0, 71, "Section"], -Cell[129094, 3846, 127, 2, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->35853137], -Cell[129224, 3850, 68, 2, 31, "Input"], -Cell[129295, 3854, 140, 2, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->380000867], -Cell[129438, 3858, 231, 7, 31, "Input"], -Cell[129672, 3867, 149, 2, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->129539961], -Cell[129824, 3871, 1171, 33, 72, "Input"], -Cell[130998, 3906, 458, 14, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->40567123], -Cell[131459, 3922, 1394, 41, 247, "Text"], -Cell[CellGroupData[{ -Cell[132878, 3967, 4644, 129, 143, "Input"], -Cell[137525, 4098, 3033, 59, 234, "Output"] -}, Open ]], -Cell[140573, 4160, 141, 4, 43, "MathCaption", - CellGroupingRules->{GroupTogetherGrouping, 10000.}, - CellID->264338212], -Cell[CellGroupData[{ -Cell[140739, 4168, 4667, 130, 143, "Input"], -Cell[145409, 4300, 3004, 58, 235, "Output"] -}, Open ]] -}, Open ]] -} -] -*) - -(* End of internal cache information *) +(* Content-type: application/mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 7.0' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 145, 7] +NotebookDataLength[ 159220, 4746] +NotebookOptionsPosition[ 152176, 4535] +NotebookOutlinePosition[ 152568, 4552] +CellTagsIndexPosition[ 152525, 4549] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ + +Cell[CellGroupData[{ +Cell["General setup", "Section"], + +Cell[TextData[{ + StyleBox["Mathematica", + FontSlant->"Italic"], + " 8 defines WignerD, so we need to unprotect it." +}], "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->94096541], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"$VersionNumber", "\[GreaterEqual]", "8."}], ",", + RowBox[{"Unprotect", "[", "WignerD", "]"}], ",", + RowBox[{"Remove", "[", "WignerD", "]"}]}], "]"}]], "Input"], + +Cell[BoxData[ + RowBox[{"{", "\<\"WignerD\"\>", "}"}]], "Output"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Load the package.", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->123059143], + +Cell[BoxData[ + RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9}, + 3.522586258751662*^9}, + CellID->2058623809], + +Cell["Set options.", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->184495045] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"SetOptions", "[", + RowBox[{"DensityMatrix", ",", + RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}], ",", + RowBox[{"TimeDependence", "\[Rule]", "True"}]}], "]"}], ";"}]], "Input", + CellChangeTimes->{{3.534553583703125*^9, 3.534553592359375*^9}, { + 3.534554968828125*^9, 3.534554970171875*^9}}], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"SetOptions", "[", + RowBox[{"Plot", ",", + RowBox[{"PlotRange", "\[Rule]", "All"}], ",", + RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"SetOptions", "[", + RowBox[{"ListLinePlot", ",", + RowBox[{"PlotRange", "\[Rule]", "All"}], ",", + RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"SetOptions", "[", + RowBox[{"ListDensityPlot", ",", + RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ";"}]}], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"SetOptions", "[", + RowBox[{"NDSolve", ",", + RowBox[{"PrecisionGoal", "\[Rule]", "1"}], ",", + RowBox[{"AccuracyGoal", "\[Rule]", "2"}], ",", + RowBox[{"MaxSteps", "\[Rule]", + SuperscriptBox["10", "6"]}]}], "]"}], ";"}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"SetOptions", "[", + RowBox[{"LevelDiagram", ",", + RowBox[{"JLabel", "\[Rule]", "True"}], ",", + RowBox[{"MLabel", "\[Rule]", "True"}], ",", + RowBox[{"Arrowheads", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"-", ".07"}], ",", ".07"}], "}"}]}], ",", + RowBox[{"MLabelPosition", "\[Rule]", + RowBox[{"{", "Top", "}"}]}]}], "]"}], ";"}]], "Input"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Atomic system setup", "Section"], + +Cell["Define the atomic system.", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellChangeTimes->{3.522586258751924*^9}, + CellID->188360977], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"system", "=", + RowBox[{"Sublevels", "[", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"AtomicState", "[", + RowBox[{"1", ",", + RowBox[{"J", "\[Rule]", "0"}], ",", + RowBox[{"L", "\[Rule]", "0"}], ",", + RowBox[{"S", "\[Rule]", "0"}], ",", + RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", + RowBox[{"Energy", "\[Rule]", "0"}], ",", + RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"AtomicState", "[", + RowBox[{"2", ",", + RowBox[{"J", "\[Rule]", "1"}], ",", + RowBox[{"L", "\[Rule]", "1"}], ",", + RowBox[{"S", "\[Rule]", "0"}], ",", + RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",", + RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",", + RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"AtomicState", "[", + RowBox[{"3", ",", + RowBox[{"J", "\[Rule]", "0"}], ",", + RowBox[{"L", "\[Rule]", "0"}], ",", + RowBox[{"S", "\[Rule]", "0"}], ",", + RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",", + RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",", + RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], + "\[IndentingNewLine]", "}"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{"TableForm", "[", + RowBox[{"system", "=", + RowBox[{"DeleteStates", "[", + RowBox[{"system", ",", + RowBox[{"Label", "\[Rule]", "2"}], ",", + RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.53455248065625*^9, 3.534552600640625*^9}, { + 3.534552682078125*^9, 3.534552741734375*^9}, {3.53455363609375*^9, + 3.534553678203125*^9}, {3.5345537420625*^9, 3.5345537629375*^9}, { + 3.534555252625*^9, 3.534555255046875*^9}}], + +Cell[BoxData[ + TagBox[ + TagBox[GridBox[{ + { + RowBox[{"AtomicState", "[", + RowBox[{"1", ",", + RowBox[{"J", "\[Rule]", "0"}], ",", + RowBox[{"L", "\[Rule]", "0"}], ",", + RowBox[{"S", "\[Rule]", "0"}], ",", + RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",", + RowBox[{"Energy", "\[Rule]", "0"}], ",", + RowBox[{"Parity", "\[Rule]", "Odd"}], ",", + RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}, + { + RowBox[{"AtomicState", "[", + RowBox[{"2", ",", + RowBox[{"J", "\[Rule]", "1"}], ",", + RowBox[{"L", "\[Rule]", "1"}], ",", + RowBox[{"S", "\[Rule]", "0"}], ",", + RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",", + RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",", + RowBox[{"Parity", "\[Rule]", "Even"}], ",", + RowBox[{"M", "\[Rule]", "1"}]}], "]"}]}, + { + RowBox[{"AtomicState", "[", + RowBox[{"2", ",", + RowBox[{"J", "\[Rule]", "1"}], ",", + RowBox[{"L", "\[Rule]", "1"}], ",", + RowBox[{"S", "\[Rule]", "0"}], ",", + RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",", + RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",", + RowBox[{"Parity", "\[Rule]", "Even"}], ",", + RowBox[{"M", "\[Rule]", + RowBox[{"-", "1"}]}]}], "]"}]}, + { + RowBox[{"AtomicState", "[", + RowBox[{"3", ",", + RowBox[{"J", "\[Rule]", "0"}], ",", + RowBox[{"L", "\[Rule]", "0"}], ",", + RowBox[{"S", "\[Rule]", "0"}], ",", + RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",", + RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",", + RowBox[{"Parity", "\[Rule]", "Odd"}], ",", + RowBox[{"M", "\[Rule]", "0"}]}], "]"}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.5599999999999999]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + Column], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell["Define the optical field.", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->13161682], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"field", "=", + RowBox[{ + RowBox[{"ToCartesian", "[", + RowBox[{"Transpose", "@", + RowBox[{"{", + RowBox[{"{", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ", + RowBox[{"(", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]], "+", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}]}], ")"}]}], + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]], ",", "0", + ",", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ", + RowBox[{"(", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]], "+", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}]}], ")"}]}], + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]]}], "}"}], + "}"}]}], "]"}], "//", "FullSimplify"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], "-", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], "+", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]], "-", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], ")"}]}], + RowBox[{ + SqrtBox["2"], " ", + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", + RowBox[{"(", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]], "+", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]], "-", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"(", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]], "+", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], ")"}]}]}], ")"}]}], + RowBox[{ + SqrtBox["2"], " ", + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",", "0"}], + "}"}]], "Output"] +}, Open ]], + +Cell["The Hamiltonian for the system subject to the optical field.", \ +"MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->337337829], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"Ho", "=", + RowBox[{ + RowBox[{"Expand", "@", + RowBox[{"Hamiltonian", "[", + RowBox[{"system", ",", + RowBox[{"ElectricField", "\[Rule]", "field"}], ",", + RowBox[{"MagneticField", "\[Rule]", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{"\[CapitalOmega]L", "/", "BohrMagneton"}]}], "}"}]}]}], + "]"}]}], "/.", " ", + RowBox[{ + RowBox[{"ReducedME", "[", + RowBox[{"2", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}], "\[Rule]", + "0"}]}]}], "]"}]], "Input"], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"0", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}], "-", + FractionBox[ + RowBox[{ + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}], + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}], "+", + FractionBox[ + RowBox[{ + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}], "0"}, + { + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}], + RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "0"}, + { + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{"Cos", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + RowBox[{"Sin", "[", + RowBox[{"t", " ", "\[Omega]"}], "]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}], "0", + RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}], "0"}, + {"0", "0", "0", "\[Omega]3"} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell["The Hamiltonian for the system subject to the coupling field", \ +"MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->327463138], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"HE", "=", + RowBox[{ + RowBox[{"Expand", "@", + RowBox[{"Hamiltonian", "[", + RowBox[{"system", ",", + RowBox[{"ElectricField", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"Ec", + RowBox[{ + SqrtBox["6"], "/", + RowBox[{"ReducedME", "[", + RowBox[{"2", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}]}], + ",", "0", ",", "0"}], "}"}]}], ",", + RowBox[{"Interaction", "\[Rule]", + RowBox[{"{", "E1", "}"}]}]}], "]"}]}], "/.", " ", + RowBox[{ + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], "\[Rule]", + "0"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.53455311584375*^9, 3.534553169015625*^9}, { + 3.534553199875*^9, 3.534553204765625*^9}, {3.5345532359375*^9, + 3.534553278921875*^9}, 3.534553331125*^9}], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"0", "0", "0", "0"}, + {"0", "0", "0", "Ec"}, + {"0", "0", "0", + RowBox[{"-", "Ec"}]}, + {"0", "Ec", + RowBox[{"-", "Ec"}], "0"} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell["The total Hamiltonian", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->737742553], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"H", "=", + RowBox[{ + RowBox[{"Ho", "+", "HE"}], "//", "TrigToExp"}]}], "]"}]], "Input"], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"0", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}], "-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", + + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}], + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}], "-", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", + + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", + + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}], "0"}, + { + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", + + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", + + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}], + RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "Ec"}, + { + RowBox[{ + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", + + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{"\[ImaginaryI]", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ", + + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}], "0", + RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}], + RowBox[{"-", "Ec"}]}, + {"0", "Ec", + RowBox[{"-", "Ec"}], "\[Omega]3"} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output"] +}, Open ]], + +Cell["\<\ +The level diagram showing field detunings. Dashed arrows indicate dc fields. \ +The level diagram is set to not evaluate, because it needs an updated version \ +of the package that I haven\[CloseCurlyQuote]t released yet.\ +\>", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->944896957], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"LevelDiagram", "[", + RowBox[{ + RowBox[{"system", "/.", + RowBox[{ + RowBox[{"(", + RowBox[{"Parity", "\[Rule]", "_"}], ")"}], "\[Rule]", + RowBox[{"Sequence", "[", "]"}]}]}], ",", + RowBox[{"H", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Omega]2", "\[Rule]", "3."}], ",", + RowBox[{"\[Omega]3", "\[Rule]", "3.5"}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", "1."}], ",", + RowBox[{"\[Omega]", "\[Rule]", "3."}]}], "}"}]}]}], "]"}]], "Input", + Evaluatable->False], + +Cell[BoxData[ + GraphicsBox[{{{{}, LineBox[{{-0.4, 0.}, {0.4, 0.}}]}, {{}, + LineBox[{{0.6, 4.}, {1.4, 4.}}]}, {{}, + LineBox[{{-1.4, 2.}, {-0.6, 2.}}]}, {{}, + LineBox[{{-0.4, 3.5}, {0.4, 3.5}}]}}, {{InsetBox[ + RowBox[{"M", "\[LongEqual]", + RowBox[{"-", "1"}]}], {-1., 4.}, {0, -1.2}], InsetBox[ + RowBox[{"M", "\[LongEqual]", "0"}], {0., 4.}, {0, -1.2}], InsetBox[ + RowBox[{"M", "\[LongEqual]", "1"}], {1., 4.}, {0, -1.2}]}, {}, {InsetBox[ + RowBox[{ + SubscriptBox["J", "1"], "\[LongEqual]", "0"}], + Offset[{-6.6000000000000005`, 0}, {-1.4, 0}], {1, 0}], InsetBox[ + RowBox[{ + SubscriptBox["J", "2"], "\[LongEqual]", "1"}], + Offset[{-6.6000000000000005`, 0}, {-1.4, 3.}], {1, 0}], InsetBox[ + RowBox[{ + SubscriptBox["J", "3"], "\[LongEqual]", "0"}], + Offset[{-6.6000000000000005`, 0}, {-1.4, 3.5}], {1, 0}]}}, + {Arrowheads[{-0.07, 0.07}], + ArrowBox[{{0.04000000000000001, 0.}, {0.96, 3.}}], + ArrowBox[{{0.04000000000000001, 0.}, {0.96, 3.}}], + ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 3.}}], + ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 3.}}], + {Dashing[{Small, Small}], + ArrowBox[{{-0.96, 2.}, {-0.04000000000000001, 3.5}}]}, + {Dashing[{Small, Small}], + ArrowBox[{{0.04000000000000001, 3.5}, {0.96, 4.}}]}}, + {PointSize[0.0225]}}, + ImagePadding->{{38.300000000000004`, 2}, {2., 13.700000000000001`}}, + ImageSize->180.3]], "Output"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Apply the rotating-wave approximation to the Hamiltonian.", \ +"MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellChangeTimes->{3.522586258753521*^9}, + CellID->471402495], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"Hrwa", "=", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"RotatingWaveApproximation", "[", + RowBox[{"system", ",", "H", ",", + RowBox[{"{", "\[Omega]", "}"}], ",", "\[IndentingNewLine]", + RowBox[{"TransformMatrix", "\[Rule]", + RowBox[{"MatrixExp", "[", + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", + RowBox[{"DiagonalMatrix", "[", + RowBox[{"{", + RowBox[{ + "0", ",", "\[Omega]", ",", "\[Omega]", ",", "\[Omega]"}], + "}"}], "]"}]}], "]"}]}]}], "]"}], "/.", + RowBox[{"\[Omega]", "\[Rule]", + RowBox[{"\[Omega]2", "+", "\[CapitalDelta]"}]}]}], "/.", + RowBox[{"\[Omega]3", "\[Rule]", + RowBox[{"\[Omega]2", "+", "\[CapitalDelta]23"}]}]}]}], ")"}], "//", + "MatrixForm"}], " ", "//", "Simplify"}], " ", + "\[IndentingNewLine]"}]], "Input", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellChangeTimes->{{3.534553435828125*^9, 3.534553480625*^9}, { + 3.534553524203125*^9, 3.53455353465625*^9}, {3.534553920421875*^9, + 3.534554035921875*^9}, {3.534555327859375*^9, 3.534555328671875*^9}}], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"0", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], "+", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], "+", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "0"}, + { + FractionBox[ + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1"}]]}], "+", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1"}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], + RowBox[{ + RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalOmega]L"}], "0", "Ec"}, + { + FractionBox[ + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}]}]]}], "+", + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}]}]]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "0", + RowBox[{ + RowBox[{"-", "\[CapitalDelta]"}], "-", "\[CapitalOmega]L"}], + RowBox[{"-", "Ec"}]}, + {"0", "Ec", + RowBox[{"-", "Ec"}], + RowBox[{ + RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalDelta]23"}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output", + CellGroupingRules->{GroupTogetherGrouping, 10001.}], + +Cell[TextData[{ + Cell[BoxData[ + ButtonBox["IntrinsicRelaxation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]], + " and ", + Cell[BoxData[ + ButtonBox["TransitRelaxation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]], + " supply the relaxation matrices." +}], "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellChangeTimes->{3.52258625875446*^9}, + CellID->448215320], + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"relax", "=", + RowBox[{ + RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", + RowBox[{"TransitRelaxation", "[", + RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellChangeTimes->{3.522586258754587*^9}, + CellID->150217419], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"\[Gamma]t", "0", "0", "0"}, + {"0", + RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0", "0"}, + {"0", "0", + RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0"}, + {"0", "0", "0", + RowBox[{"\[CapitalGamma]3", "+", "\[Gamma]t"}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output", + CellGroupingRules->{GroupTogetherGrouping, 10001.}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[TextData[{ + Cell[BoxData[ + ButtonBox["OpticalRepopulation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], + " and ", + Cell[BoxData[ + ButtonBox["TransitRepopulation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], + " supply the repopulation matrices." +}], "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellChangeTimes->{3.522586211804159*^9}, + CellID->78071612], + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"repop", "=", + RowBox[{ + RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", + RowBox[{"TransitRepopulation", "[", + RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellChangeTimes->{3.522586211804293*^9, 3.53455357284375*^9}, + CellID->109972911], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + { + RowBox[{"\[Gamma]t", "+", + RowBox[{"\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+", + RowBox[{"\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}], "0", "0", + "0"}, + {"0", "0", "0", "0"}, + {"0", "0", "0", "0"}, + {"0", "0", "0", "0"} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output", + CellGroupingRules->{GroupTogetherGrouping, 10000.}], + +Cell[TextData[{ + "Density-matrix and field variables at one point ", + Cell[BoxData[ + FormBox["i", TraditionalForm]]] +}], "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->24518771] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"vars", "=", + RowBox[{ + RowBox[{"Join", "[", + RowBox[{ + RowBox[{ + RowBox[{"DMVariables", "[", "system", "]"}], "/.", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], + ",", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "q", ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "q", ",", "i"}]], "[", "t", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"q", ",", "1", ",", + RowBox[{"-", "1"}], ",", + RowBox[{"-", "2"}]}], "}"}]}], "]"}]}], "]"}], "//", + "Flatten"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[TextData[{ + "Density matrix evolution equations at one point ", + Cell[BoxData[ + FormBox["i", TraditionalForm]]] +}], "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->112084045], + +Cell[BoxData[ + RowBox[{"TableForm", "[", + RowBox[{"eqs", "=", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Expand", "@", + RowBox[{"LiouvilleEquation", "[", + RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}]}], + "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + SubscriptBox["\[Rho]", + RowBox[{"r_", ",", "a_", ",", "b_"}]], ")"}], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Rule]", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + SubscriptBox["\[Rho]", + RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], ")"}], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}]}], "}"}]}], "/.", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"a_", ",", "b_"}]], "\[Rule]", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.", + RowBox[{"\[CapitalDelta]23", "\[Rule]", + SubscriptBox["\[CapitalDelta]23", "i"]}]}]}], "]"}]], "Input", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellChangeTimes->{{3.53460253115625*^9, 3.53460255159375*^9}, { + 3.534607779234375*^9, 3.53460778478125*^9}, {3.53463614115625*^9, + 3.5346361436875*^9}, {3.53463617796875*^9, 3.53463618378125*^9}}, + CellID->26920765] +}, Open ]], + +Cell[BoxData[ + TagBox[ + TagBox[GridBox[{ + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{"\[Gamma]t", "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + SqrtBox["3"]], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + SqrtBox["3"]], "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + SqrtBox["3"]], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + SqrtBox["3"]], "+", + RowBox[{"\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"\[CapitalDelta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{"\[CapitalDelta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + SqrtBox["3"]], "-", + RowBox[{"2", " ", "Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + SqrtBox["3"]], "-", + RowBox[{"\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"\[CapitalDelta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{"\[CapitalDelta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"2", " ", "\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{"\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{"\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"2", " ", "\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + SqrtBox["3"]], "+", + RowBox[{"2", " ", "Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + SqrtBox["3"]], "-", + RowBox[{"\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"\[CapitalDelta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{ + SubscriptBox["\[CapitalDelta]23", "i"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[CapitalGamma]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[CapitalDelta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{ + SubscriptBox["\[CapitalDelta]23", "i"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "+", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{ + SubscriptBox["\[CapitalDelta]23", "i"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{ + SubscriptBox["\[CapitalDelta]23", "i"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{"\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{ + SubscriptBox["\[CapitalDelta]23", "i"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{ + FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + FractionBox[ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + + RowBox[{"2", " ", + SqrtBox["3"]}]], "-", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"\[CapitalOmega]L", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{ + SubscriptBox["\[CapitalDelta]23", "i"], " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", + "]"}]}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", "Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "+", + RowBox[{"2", " ", "Ec", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[CapitalGamma]3", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], + "-", + RowBox[{"\[Gamma]t", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", + "]"}]}]}]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.5599999999999999]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + Column], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output"], + +Cell["Initial conditions for density matrix:", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->16777324], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"inits", "=", + RowBox[{ + RowBox[{"InitialConditions", "[", + RowBox[{"system", ",", + RowBox[{"TransitRepopulation", "[", + RowBox[{"system", ",", "1"}], "]"}], ",", "t0"}], "]"}], "/.", " ", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t_", "]"}], "->", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", + "]"}]}]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "1"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}], + "\[Equal]", "0"}]}], "}"}]], "Output"] +}, Open ]], + +Cell[TextData[{ + "Here we find the field evolution equations with finite difference \ +approximation (second-order upwind scheme) for co-propagating beams. ", + StyleBox["h", + FontSlant->"Italic"], + " is the the grid spacing in the spatial dimension." +}], "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->100512453], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"polarizationcomponents", "=", + RowBox[{"ExprToReIm", "[", + RowBox[{ + RowBox[{ + RowBox[{"ExpandDipoleRME", "[", + RowBox[{"system", ",", + RowBox[{ + RowBox[{ + RowBox[{ + "4", "\[Pi]", " ", "\[ImaginaryI]", " ", "\[Omega]2", " ", "n0", " ", + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], + RowBox[{"Components", "@", " ", + RowBox[{"ECT", "@", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"DensityMatrix", "[", "system", "]"}], "[", + RowBox[{"[", + RowBox[{"j", ",", "i"}], "]"}], "]"}], + RowBox[{"WignerEckart", "[", + RowBox[{ + RowBox[{"system", "[", + RowBox[{"[", "i", "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", + RowBox[{"system", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "[", "system", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i"}], "}"}]}], "]"}]}]}]}], "/.", + RowBox[{ + RowBox[{"ReducedME", "[", + RowBox[{"2", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}], + "\[Rule]", "0"}]}], "/.", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ", + + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", + "]"}]}]}]}], "]"}], "/.", + RowBox[{"\[Omega]2", "\[Rule]", + RowBox[{"2", + RowBox[{"\[Pi]", "/", "\[Lambda]"}]}]}]}], "/.", + RowBox[{ + RowBox[{"n0", " ", + SuperscriptBox["\[Lambda]", "2"], "\[CapitalGamma]2"}], "\[Rule]", + RowBox[{"4", "\[VeryThinSpace]", "\[Pi]", " ", + RowBox[{"\[Eta]", "/", "3"}]}]}]}], "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SqrtBox["3"]}], " ", "\[Eta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",", + RowBox[{ + RowBox[{"-", + SqrtBox["3"]}], " ", "\[Eta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",", + RowBox[{ + RowBox[{"-", + SqrtBox["3"]}], " ", "\[Eta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",", + RowBox[{ + RowBox[{"-", + SqrtBox["3"]}], " ", "\[Eta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}], + "}"}]], "Output"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"fieldcomponents", "=", + RowBox[{ + RowBox[{"ExprToReIm", "[", + RowBox[{ + RowBox[{"Expand", "[", + RowBox[{ + RowBox[{"ReducedME", "[", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], + RowBox[{"Components", "@", + RowBox[{"ToContravariant", "[", "field", "]"}]}]}], "]"}], "/.", + RowBox[{"t", "\[Rule]", "0"}]}], "]"}], "/.", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"a_", ",", "b_"}]], "\[Rule]", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"UFDWeights", "[", + RowBox[{"m_", ",", " ", "n_", ",", " ", "s_"}], "]"}], " ", ":=", " ", + RowBox[{"CoefficientList", "[", + RowBox[{ + RowBox[{"Normal", "[", + RowBox[{ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + SuperscriptBox["x", "s"], + SuperscriptBox[ + RowBox[{"Log", "[", "x", "]"}], "m"]}], ",", + RowBox[{"{", + RowBox[{"x", ",", "1", ",", "n"}], "}"}]}], "]"}], "/", + SuperscriptBox["h", "m"]}], "]"}], ",", "x"}], "]"}]}]], "Input"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"fieldeqs", "=", + RowBox[{"Thread", "[", + RowBox[{ + RowBox[{"D", "[", + RowBox[{"fieldcomponents", ",", "t"}], "]"}], "\[Equal]", + RowBox[{ + RowBox[{"c", " ", "polarizationcomponents"}], "-", + RowBox[{"c", " ", + RowBox[{ + RowBox[{"UFDWeights", "[", + RowBox[{"1", ",", "2", ",", "2"}], "]"}], ".", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"(", + RowBox[{"fieldcomponents", "/.", + RowBox[{"i", "\[Rule]", + RowBox[{"i", "+", "j"}]}]}], ")"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"-", "2"}], ",", "0"}], "}"}]}], "]"}]}]}]}]}], + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "c"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", + RowBox[{ + RowBox[{"-", "2"}], "+", "i"}]}]], "[", "t", "]"}], + RowBox[{"2", " ", "h"}]], "-", + FractionBox[ + RowBox[{"2", " ", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", + RowBox[{ + RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "h"], "+", + FractionBox[ + RowBox[{"3", " ", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", "h"}]]}], ")"}]}], "-", + RowBox[{ + SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "c"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", + RowBox[{ + RowBox[{"-", "2"}], "+", "i"}]}]], "[", "t", "]"}], + RowBox[{"2", " ", "h"}]], "-", + FractionBox[ + RowBox[{"2", " ", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", + RowBox[{ + RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "h"], "+", + FractionBox[ + RowBox[{"3", " ", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", "h"}]]}], ")"}]}], "-", + RowBox[{ + SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "c"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", + RowBox[{ + RowBox[{"-", "2"}], "+", "i"}]}]], "[", "t", "]"}], + RowBox[{"2", " ", "h"}]], "-", + FractionBox[ + RowBox[{"2", " ", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", + RowBox[{ + RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "h"], "+", + FractionBox[ + RowBox[{"3", " ", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", "h"}]]}], ")"}]}], "-", + RowBox[{ + SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Im", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "c"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", + RowBox[{ + RowBox[{"-", "2"}], "+", "i"}]}]], "[", "t", "]"}], + RowBox[{"2", " ", "h"}]], "-", + FractionBox[ + RowBox[{"2", " ", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", + RowBox[{ + RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "h"], "+", + FractionBox[ + RowBox[{"3", " ", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], + RowBox[{"2", " ", "h"}]]}], ")"}]}], "-", + RowBox[{ + SqrtBox["3"], " ", "c", " ", "\[Eta]", " ", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"Re", ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}], + "}"}]], "Output"] +}, Open ]], + +Cell["Initial conditions for fields (assume uniform in space).", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->135712718], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"initfields", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", + SubscriptBox["\[CapitalOmega]0", "1"]}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", + SubscriptBox["\[CapitalOmega]0", + RowBox[{"-", "1"}]]}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", + "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", + "0"}]}], "}"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", + SubscriptBox["\[CapitalOmega]0", "1"]}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", + SubscriptBox["\[CapitalOmega]0", + RowBox[{"-", "1"}]]}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]", + "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}]}], + "}"}]], "Output"] +}, Open ]], + +Cell["\<\ +Boundary conditions for co-propagating fields. Fields 1 and 3 are constant, \ +fields 2 and 4 are pulsed. The first point is 0, and the last point is n0.\ +\>", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->71091213], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"boundaryconds", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", + SubscriptBox["\[CapitalOmega]0", "1"]}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", + SubscriptBox["\[CapitalOmega]0", + RowBox[{"-", "1"}]]}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", + "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}], + "}"}]}]], "Input", + CellChangeTimes->{{3.534636354140625*^9, 3.534636376*^9}}], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", + SubscriptBox["\[CapitalOmega]0", "1"]}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", + SubscriptBox["\[CapitalOmega]0", + RowBox[{"-", "1"}]]}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}], + ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}], + "}"}]], "Output"] +}, Open ]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Results", "Section"], + +Cell[CellGroupData[{ + +Cell["setup", "Subsection"], + +Cell["Choose number of spatial points.", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->14274527], + +Cell[BoxData[ + RowBox[{ + RowBox[{"n", "=", "40"}], ";"}]], "Input", + CellChangeTimes->{3.538429326772045*^9, 3.5384293666463256`*^9}], + +Cell["All system variables for all spatial points.", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->809681492], + +Cell[BoxData[ + RowBox[{ + RowBox[{"allvars", "=", + RowBox[{"Flatten", "@", + RowBox[{"Table", "[", + RowBox[{"vars", ",", + RowBox[{"{", + RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"], + +Cell["Equations for all points for the co-propagating case.", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->383167958], + +Cell[BoxData[ + RowBox[{ + RowBox[{"alleqs", "=", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"#", "[", + RowBox[{"[", "1", "]"}], "]"}], "-", + RowBox[{"#", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "\[Equal]", "0"}], "&"}], ")"}], "/@", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"Flatten", "@", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Join", "[", + RowBox[{"eqs", ",", "fieldeqs"}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"r_", ",", "s_", ",", "i_"}]], "[", "t_", "]"}], "/;", + RowBox[{"i", "<", "0"}]}], "->", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"r", ",", "s", ",", "0"}]], "[", "t", "]"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"r_", ",", "s_", ",", "i_"}]], "[", "t_", "]"}], "/;", + RowBox[{"i", ">", "n"}]}], "->", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"r", ",", "s", ",", "n"}]], "[", "t", "]"}]}]}], "}"}]}], + "/.", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"#", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]", + "_"}], ")"}], "\[Rule]", "#"}], "&"}], ")"}], "/@", + RowBox[{"(", + RowBox[{"boundaryconds", "/.", + RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}], ")"}]}]}], + ";"}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"allinits", "=", + RowBox[{"Flatten", "@", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Join", "[", + RowBox[{"inits", ",", "initfields"}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"], + +Cell["\<\ +Relabel variables to enforce efficient ordering in NDSolve.\ +\>", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->202174683], + +Cell[BoxData[ + RowBox[{ + RowBox[{"allvars1", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubscriptBox["y", "i"], "[", "t", "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "[", "allvars", "]"}]}], "}"}]}], "]"}]}], + ";"}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"varreps", "=", + RowBox[{"MapThread", "[", + RowBox[{"Rule", ",", + RowBox[{"{", + RowBox[{"allvars", ",", "allvars1"}], "}"}]}], "]"}]}], ";"}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"alleqs1", "=", + RowBox[{ + RowBox[{"alleqs", "/.", + RowBox[{"Dispatch", "[", "varreps", "]"}]}], "/.", + RowBox[{"Dispatch", "[", + RowBox[{"D", "[", + RowBox[{"varreps", ",", "t"}], "]"}], "]"}]}]}], ";"}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"allinits1", "=", + RowBox[{"allinits", "/.", + RowBox[{"(", + RowBox[{"varreps", "/.", + RowBox[{"t", "\[Rule]", "t0"}]}], ")"}]}]}], ";"}]], "Input"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["plots", "Subsection"], + +Cell[TextData[{ + "Here we choose parameters and integrate the equations. Blue is ", + Cell[BoxData[ + FormBox[ + SuperscriptBox["\[Sigma]", "-"], TraditionalForm]]], + " field intensity, magenta is ", + Cell[BoxData[ + FormBox[ + SuperscriptBox["\[Sigma]", "+"], TraditionalForm]]], + "field intensity." +}], "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->33380891], + +Cell[TextData[{ + "Parameters:\n", + Cell[BoxData[ + SubscriptBox["\[CapitalOmega]0", + RowBox[{"-", "1"}]]]], + ": input Rabi frequency for ", + Cell[BoxData[ + FormBox[ + RowBox[{ + SuperscriptBox["\[Sigma]", "-"], " "}], TraditionalForm]]], + "(rad/s) \n", + Cell[BoxData[ + SubscriptBox["\[CapitalOmega]0", "1"]]], + ": input Rabi frequency for ", + Cell[BoxData[ + FormBox[ + SuperscriptBox["\[Sigma]", "+"], TraditionalForm]]], + "(rad/s) \n\[CapitalGamma]2: natural width of J=1 level (rad/s) \n\ +\[CapitalGamma]3: natural width of upper J=0 level (rad/s)\n\[Gamma]t: \ +transit relaxation rate (rad/s)\nEc: static electric field coupling strength \ +(rad/s)\n\[CapitalDelta]: Light detuning from J=1 level (rad/s)\n\ +\[CapitalOmega]L: Zeeman shift (rad/s)\n", + Cell[BoxData[ + SubscriptBox["\[CapitalDelta]23", "i_"]]], + ": frequency splitting between upper J=1 and J=0 level as a function of the \ +position ", + Cell[BoxData[ + FormBox["i", TraditionalForm]]], + ", as ", + Cell[BoxData[ + FormBox["i", TraditionalForm]]], + " varies from zero to ", + Cell[BoxData[ + FormBox["n", TraditionalForm]]], + " (rad/s)\nh: distance between grid points (m)\nc: light speed (m/s)\n\ +\[Eta]: light coupling constant (rad/s/m)" +}], "Text"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"params", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]0", + RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]", + RowBox[{"1.", " ", "2", "\[Pi]", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"\[CapitalGamma]2", "\[Rule]", + RowBox[{"1.", " ", "2", "\[Pi]", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",", + RowBox[{"\[Gamma]t", "\[Rule]", + RowBox[{".001", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"Ec", "\[Rule]", + RowBox[{"6.", " ", "2", "\[Pi]", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"\[CapitalDelta]", "\[Rule]", + RowBox[{"0.", " ", "2", "\[Pi]", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", + RowBox[{"50.", " ", "2", "\[Pi]", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"c", "\[Rule]", + RowBox[{"3.", " ", + SuperscriptBox["10", "8"]}]}], ",", + RowBox[{"\[Eta]", "\[Rule]", + RowBox[{"3.", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"794.7", " ", + SuperscriptBox["10", + RowBox[{"-", "9"}]]}], ")"}], "2"], + RowBox[{"(", + RowBox[{".5", " ", + SuperscriptBox["10", "15"]}], ")"}], + RowBox[{ + RowBox[{"(", + RowBox[{"2", " ", "\[Pi]", " ", + SuperscriptBox["10", "6"]}], ")"}], "/", + RowBox[{"(", + RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",", + RowBox[{"h", "\[Rule]", + RowBox[{"5.", "/", "n"}]}], ",", + RowBox[{ + SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2."}], "+", + RowBox[{"4", + RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n", + RowBox[{"AbsoluteTiming", "[", + RowBox[{ + RowBox[{"sol", "=", + RowBox[{"NDSolve", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{"N", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"alleqs1", ",", "allinits1"}], "}"}], "/.", "params"}], + "]"}], "]"}], ",", "allvars1", ",", + RowBox[{"{", + RowBox[{"t", ",", "0", ",", + RowBox[{"8.", " ", + SuperscriptBox["10", + RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}], + "]"}], "\[IndentingNewLine]", + RowBox[{"ListLinePlot", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Transpose", "@", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"i", " ", "h"}], ",", + SuperscriptBox[ + RowBox[{"Abs", "[", + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}], + ")"}], "]"}], "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"i", " ", "h"}], ",", + SuperscriptBox[ + RowBox[{"Abs", "[", + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}], + ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}], + "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.", + "varreps"}], "/.", + RowBox[{"sol", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "/.", + RowBox[{"t", "\[Rule]", + RowBox[{"8.", " ", + SuperscriptBox["10", + RowBox[{"-", "6"}]]}]}]}], ",", + RowBox[{"FrameLabel", "\[Rule]", + RowBox[{"{", + RowBox[{ + "\"\\"", ",", + "\"\\""}], "}"}]}]}], + "]"}]}], "Input", + CellChangeTimes->{{3.5384287522751856`*^9, 3.5384287728023596`*^9}, + 3.538428821914169*^9, {3.538428862516491*^9, 3.5384288627725058`*^9}, { + 3.538428902935803*^9, 3.5384291940654545`*^9}, {3.538429259116175*^9, + 3.5384292721439204`*^9}, {3.538429535554987*^9, 3.5384296043139195`*^9}, { + 3.5384301232836027`*^9, 3.5384301351312804`*^9}}], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"1.4660839`7.617703818005998", ",", "Null"}], "}"}]], "Output"], + +Cell[BoxData[ + GraphicsBox[{{}, {}, + {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" +1:eJxTTMoPSmViYGDQBGIQDQPREdMuOuQcsILwDti3ndSQaugXcYLwL9g/fv9v +yeSvNlD+DfvbbFdqV84LhvIf2DNlcgufmZMM5T+xv2cYZn90QQGU/8L++x6l +Rv+CSij/jf2qot707YpNUP4H+/B5by897OyA8j/Zz9a3VOF91g/lf7F/tu7B +mwmCU6D8b/Zizh43lCbNgPJ/2L+e9P9pU8JcKP+X/dtTtd6rDBZC+X/sPQr4 +bzjvWAzl/7P/eHzpxzT9ZVA+g0PLZpaW5PIVUD6jw/rlh93u566C8pkcHkzb +dSSNew2Uz+yw0Kf19heRdVA+i8N6ppNCn802QvmsDspH5XYEPdsE5bM5vL7/ +LeV/xRYon93hd7WdYdS/rVA+h8PqayVcqWXboXxOh/fVSmuV7u+A8rkcPFtP +TWk03QXlczs8yllhs71sN5TP42B8LmpV6II9UD6vg1vrjidRG/ZC+XwOrp+5 +nzgt3Qfl8zssDdv9nbtuP5Qv4FByb84jKdkDEH6DgEPi+pX593OgfAZBh+8d +6zwmrIPJCzo4+E4TXfIIJi/kIN4n+vAY50GovJADn/2HqCsqUD6DsENTyCTd +iyYweWGHf66WMx9bweRFHBbX3273tjjoBABZ2MLB + "]]}, + {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" +1:eJxTTMoPSmViYGDQBGIQDQM7muLbn3w+6AThHbD/JxR2bvMTGP+C/bMbf4Or +z8D4N+wFvcqWvVsF4z+wrzJk3llcC+M/se/o2nv2jSOM/8Je96nseYnvB6D8 +N/aTb7Ify50D43+wf+LN7PXTEMb/ZN/HdtdoXcF+KP+LvcSSGY45ifug/G/2 +CeUf7c9a7oXyf9jzGdoLvfu3G8r/Ze9ilvri7PZdUP4f+9pOs67tuTuh/H/2 +uxnX9N7X2QHlMzhc33GAq4J1O5TP6PD+QiLfcc5tUD6Tg8+h9eK77bZC+cwO +6RnhpvE2W6B8Fod8ESUNtTcboXxWh64LSkoSRhugfDaHiLDdTixGa6F8doeV +pmuOPJdeBeVzOPCy6la8lF8O5XM6hKREMb93XALlcznkHEydJNGxEMrndkjO +PJAv8mEulM/jUO0xOy5RdyaUz+twMf7RGrULU6B8Pofm15NSS+5NgPL5HSIl +DVNX7OiC8gUcuAsyHk2b3gLhNwg4cGkxyHVvroPKCzrktR9/c+dbKVRe0EHy +pEra+iu5UHkhhxWs/07zfEyCygs5WMQryHFJhEHlhR2aF7kIeU5yh8oLO1gc +7Q4p6LKEyos4RK9abp4gbOoEAJZ7tCU= + "]]}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->True, + AxesOrigin->{0, 0}, + Frame->True, + FrameLabel->{ + FormBox["\"Position (m)\"", TraditionalForm], + FormBox[ + "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \ +\\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"", + TraditionalForm]}, + PlotRange->{All, All}, + PlotRangeClipping->True, + PlotRangePadding->{Automatic, Automatic}]], "Output"] +}, Open ]], + +Cell["Same plot with flipped magnetic field", "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->15127317], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"params", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]0", + RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]", + RowBox[{"1.", " ", "2", "\[Pi]", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"\[CapitalGamma]2", "\[Rule]", + RowBox[{"1.", " ", "2", "\[Pi]", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",", + RowBox[{"\[Gamma]t", "\[Rule]", + RowBox[{".001", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"Ec", "\[Rule]", + RowBox[{"6.", " ", "2", "\[Pi]", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"\[CapitalDelta]", "\[Rule]", + RowBox[{"0.", " ", "2", "\[Pi]", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", + RowBox[{ + RowBox[{"-", "50."}], " ", "2", "\[Pi]", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"c", "\[Rule]", + RowBox[{"3.", " ", + SuperscriptBox["10", "8"]}]}], ",", + RowBox[{"\[Eta]", "\[Rule]", + RowBox[{"3.", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"794.7", " ", + SuperscriptBox["10", + RowBox[{"-", "9"}]]}], ")"}], "2"], + RowBox[{"(", + RowBox[{".5", " ", + SuperscriptBox["10", "15"]}], ")"}], + RowBox[{ + RowBox[{"(", + RowBox[{"2", " ", "\[Pi]", " ", + SuperscriptBox["10", "6"]}], ")"}], "/", + RowBox[{"(", + RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",", + RowBox[{"h", "\[Rule]", + RowBox[{"5.", "/", "n"}]}], ",", + RowBox[{ + SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2."}], "+", + RowBox[{"4", + RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ", + SuperscriptBox["10", "6"]}]}], ",", + RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n", + RowBox[{"AbsoluteTiming", "[", + RowBox[{ + RowBox[{"sol", "=", + RowBox[{"NDSolve", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{"N", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"alleqs1", ",", "allinits1"}], "}"}], "/.", "params"}], + "]"}], "]"}], ",", "allvars1", ",", + RowBox[{"{", + RowBox[{"t", ",", "0", ",", + RowBox[{"8.", " ", + SuperscriptBox["10", + RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}], + "]"}], "\[IndentingNewLine]", + RowBox[{"ListLinePlot", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Transpose", "@", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"i", " ", "h"}], ",", + SuperscriptBox[ + RowBox[{"Abs", "[", + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", + RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}], + ")"}], "]"}], "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"i", " ", "h"}], ",", + SuperscriptBox[ + RowBox[{"Abs", "[", + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+", + RowBox[{"\[ImaginaryI]", " ", + RowBox[{ + SubscriptBox["\[CapitalOmega]", + RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}], + ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}], + "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.", + "varreps"}], "/.", + RowBox[{"sol", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "/.", + RowBox[{"t", "\[Rule]", + RowBox[{"8.", " ", + SuperscriptBox["10", + RowBox[{"-", "6"}]]}]}]}], ",", + RowBox[{"FrameLabel", "\[Rule]", + RowBox[{"{", + RowBox[{ + "\"\\"", ",", + "\"\\""}], "}"}]}]}], + "]"}]}], "Input", + CellChangeTimes->{ + 3.5384292031419735`*^9, {3.538429295341247*^9, 3.5384292970053425`*^9}}], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"1.8981086`7.729866050392017", ",", "Null"}], "}"}]], "Output"], + +Cell[BoxData[ + GraphicsBox[{{}, {}, + {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" +1:eJxTTMoPSmViYGDQBGIQDQPTej+/XVlnagnhHbBXETnr+KdWxAnCv2D/feKf +mW03bKD8G/ZGOv52T9uCofwH9kWNR5jfNSVD+U/stdhchK51FED5L+y3hfc6 +rXWshPLf2Fvs3zbz8PdGKP+D/bPdvT+ueHZA+Z/szx0+udS+oR/K/2K/6dtl +NbYdk6H8b/blc+vbvrLNgPJ/2H99I/A7aP4cKP+X/f14XzvnyQug/D/25m93 +LFwwfxGU/8/+wrbPPvvbl0D5DA5NyddD/rEtg/IZHaKTf7I/3rwUymdy+NV0 +YsGPfph+Zgc7ry/T08Rg9rM4tJ8LqGzd6wnlszrcu678WePbTkcIn82h4vrz +7N9F0lB5dofdqWsfrn1qBOVzOBj+2n5wl5Y1lM/pwLz6YWZ8IozP5bDpM/sJ +ty3mUD63w/enthu41plA+TwOD9+c+2N9HmYerwNr34/ZzKcNoHw+h4ZffXMW +HtKB8vkdJLYvv3swQwPKF3BYErhM2k9IFcJvEHCYay/L/DlRCSov6BB/JepR +u44CVF7QobrPYc4US1movJBDvOMyqzsw/zUIOfw8q8sltE8KKi/s0LG8Qfz+ +Tyi/QdjhfeaGh4ukZaDyIg5Fp1t7or7IOgEA5cu/PQ== + "]]}, + {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData[" +1:eJxTTMoPSmViYGDQBGIQDQPbm+Lbn3w+6AThHbBfVyW6lv0gjH/Bft5b73X3 +m2H8G/bfp5l5MbrC+A/sV0yXqw3+fwDKf2Kf8vrcNY51MP4L+0+TNDSSfWH8 +N/YlWk58nVv3Q/kf7KdeCZeNWrcPyv9k35Jp8Ti3bS+U/8W+e8+U7hyzPVD+ +N3vN6Q4f2g/tgvJ/2NuveN+1yWYnlP/L/rTfrc0eM7ZD+X/sn737xfR191Yo +/589z7xfiuFXN0P5DA5Oi3sig/5thPIZHSb+DXy3W3k9lM/ksM+e6eHK6BVQ +PrPDV50HAWr350H5LA4T1hpyHjNPg/JZHab8kLZke+AK5bM5fFsV9nvjdjMo +n90hs8SwNahSDcrncAhyzV/71loMyud0ODuthY8zSALK53LwLCvUunNHEcrn +djjyZutZxTeqUD6PQ7rQ8x3XkzShfF4H3uhPGrpWelA+n8PWldbrwiYaQvn8 +DiLhIhbbM4yhfAEHM6VXh+9+MoHwGwQcPnzslHSJg7lX0OFDsMO/Q5nmUHlB +B62exzLpwhZQeSGHJyurLy9qgPIbhBzk2C6f+7EMJi/sMDdLMfxvG0xe2GGC +rNWiADOYvIiD+WZpxQnbzZ0A9Gi36g== + "]]}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->True, + AxesOrigin->{0, 0}, + Frame->True, + FrameLabel->{ + FormBox["\"Position (m)\"", TraditionalForm], + FormBox[ + "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \ +\\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"", + TraditionalForm]}, + PlotRange->{All, All}, + PlotRangeClipping->True, + PlotRangePadding->{Automatic, Automatic}]], "Output"] +}, Open ]] +}, Open ]] +}, Open ]] +}, +AutoGeneratedPackage->None, +WindowSize->{1032, 967}, +WindowMargins->{{0, Automatic}, {Automatic, 10}}, +ShowSelection->True, +FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)", +StyleDefinitions->"Default.nb" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[CellGroupData[{ +Cell[567, 22, 32, 0, 71, "Section"], +Cell[602, 24, 206, 6, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->94096541], +Cell[CellGroupData[{ +Cell[833, 34, 223, 5, 31, "Input"], +Cell[1059, 41, 64, 1, 30, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1160, 47, 113, 2, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->123059143], +Cell[1276, 51, 230, 5, 31, "Input", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->2058623809], +Cell[1509, 58, 108, 2, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->184495045] +}, Open ]], +Cell[1632, 63, 349, 7, 31, "Input"], +Cell[1984, 72, 572, 16, 72, "Input"], +Cell[2559, 90, 282, 7, 33, "Input"], +Cell[2844, 99, 416, 11, 31, "Input"] +}, Open ]], +Cell[CellGroupData[{ +Cell[3297, 115, 38, 0, 71, "Section"], +Cell[3338, 117, 163, 3, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->188360977], +Cell[CellGroupData[{ +Cell[3526, 124, 2251, 50, 132, "Input"], +Cell[5780, 176, 2828, 69, 86, "Output"] +}, Open ]], +Cell[8623, 248, 120, 2, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->13161682], +Cell[CellGroupData[{ +Cell[8768, 254, 1677, 47, 53, "Input"], +Cell[10448, 303, 1779, 54, 55, "Output"] +}, Open ]], +Cell[12242, 360, 158, 3, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->337337829], +Cell[CellGroupData[{ +Cell[12425, 367, 634, 18, 52, "Input"], +Cell[13062, 387, 10059, 299, 146, "Output"] +}, Open ]], +Cell[23136, 689, 158, 3, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->327463138], +Cell[CellGroupData[{ +Cell[23319, 696, 1031, 28, 67, "Input"], +Cell[24353, 726, 707, 21, 86, "Output"] +}, Open ]], +Cell[25075, 750, 117, 2, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->737742553], +Cell[CellGroupData[{ +Cell[25217, 756, 146, 4, 31, "Input"], +Cell[25366, 762, 6274, 180, 158, "Output"] +}, Open ]], +Cell[31655, 945, 323, 6, 59, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->944896957], +Cell[CellGroupData[{ +Cell[32003, 955, 538, 15, 31, "Input", + Evaluatable->False], +Cell[32544, 972, 1463, 29, 228, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[34044, 1006, 197, 4, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->471402495], +Cell[34244, 1012, 1277, 29, 92, "Input", + CellGroupingRules->{GroupTogetherGrouping, 10001.}], +Cell[35524, 1043, 2306, 70, 146, "Output", + CellGroupingRules->{GroupTogetherGrouping, 10001.}], +Cell[37833, 1115, 478, 14, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->448215320], +Cell[38314, 1131, 367, 9, 31, "Input", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->150217419], +Cell[38684, 1142, 870, 23, 86, "Output", + CellGroupingRules->{GroupTogetherGrouping, 10001.}] +}, Open ]], +Cell[CellGroupData[{ +Cell[39591, 1170, 484, 14, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->78071612], +Cell[40078, 1186, 390, 9, 31, "Input", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->109972911], +Cell[40471, 1197, 1388, 40, 88, "Output", + CellGroupingRules->{GroupTogetherGrouping, 10000.}], +Cell[41862, 1239, 208, 6, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->24518771] +}, Open ]], +Cell[CellGroupData[{ +Cell[42107, 1250, 971, 29, 33, "Input"], +Cell[43081, 1281, 4345, 136, 72, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[47463, 1422, 209, 6, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->112084045], +Cell[47675, 1430, 1706, 44, 77, "Input", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->26920765] +}, Open ]], +Cell[49396, 1477, 60787, 1769, 568, "Output"], +Cell[110186, 3248, 133, 2, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->16777324], +Cell[CellGroupData[{ +Cell[110344, 3254, 493, 14, 33, "Input"], +Cell[110840, 3270, 4557, 154, 92, "Output"] +}, Open ]], +Cell[115412, 3427, 342, 8, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->100512453], +Cell[CellGroupData[{ +Cell[115779, 3439, 2275, 59, 161, "Input"], +Cell[118057, 3500, 1330, 45, 37, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[119424, 3550, 678, 19, 33, "Input"], +Cell[120105, 3571, 553, 16, 30, "Output"] +}, Open ]], +Cell[120673, 3590, 557, 16, 33, "Input"], +Cell[CellGroupData[{ +Cell[121255, 3610, 711, 21, 52, "Input"], +Cell[121969, 3633, 5762, 176, 159, "Output"] +}, Open ]], +Cell[127746, 3812, 152, 2, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->135712718], +Cell[CellGroupData[{ +Cell[127923, 3818, 859, 26, 31, "Input"], +Cell[128785, 3846, 802, 25, 30, "Output"] +}, Open ]], +Cell[129602, 3874, 255, 5, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->71091213], +Cell[CellGroupData[{ +Cell[129882, 3883, 916, 27, 31, "Input"], +Cell[130801, 3912, 797, 25, 30, "Output"] +}, Open ]] +}, Open ]], +Cell[CellGroupData[{ +Cell[131647, 3943, 26, 0, 71, "Section"], +Cell[CellGroupData[{ +Cell[131698, 3947, 27, 0, 36, "Subsection"], +Cell[131728, 3949, 127, 2, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->14274527], +Cell[131858, 3953, 134, 3, 31, "Input"], +Cell[131995, 3958, 140, 2, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->809681492], +Cell[132138, 3962, 231, 7, 31, "Input"], +Cell[132372, 3971, 149, 2, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->383167958], +Cell[132524, 3975, 1930, 58, 96, "Input"], +Cell[134457, 4035, 305, 9, 31, "Input"], +Cell[134765, 4046, 163, 4, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->202174683], +Cell[134931, 4052, 289, 10, 31, "Input"], +Cell[135223, 4064, 204, 6, 31, "Input"], +Cell[135430, 4072, 274, 8, 31, "Input"], +Cell[135707, 4082, 199, 6, 31, "Input"] +}, Open ]], +Cell[CellGroupData[{ +Cell[135943, 4093, 27, 0, 36, "Subsection"], +Cell[135973, 4095, 392, 12, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->33380891], +Cell[136368, 4109, 1229, 36, 247, "Text"], +Cell[CellGroupData[{ +Cell[137622, 4149, 5235, 141, 143, "Input"], +Cell[142860, 4292, 102, 2, 30, "Output"], +Cell[142965, 4296, 1942, 40, 235, "Output"] +}, Open ]], +Cell[144922, 4339, 132, 2, 43, "MathCaption", + CellGroupingRules->{GroupTogetherGrouping, 10000.}, + CellID->15127317], +Cell[CellGroupData[{ +Cell[145079, 4345, 5003, 139, 143, "Input"], +Cell[150085, 4486, 102, 2, 30, "Output"], +Cell[150190, 4490, 1946, 40, 235, "Output"] +}, Open ]] +}, Open ]] +}, Open ]] +} +] +*) + +(* End of internal cache information *) -- cgit v1.2.3