diff options
-rw-r--r-- | xmds2/Shahriar_system/Nlevels_no_dopler_with_z.xsil | 298 | ||||
-rw-r--r-- | xmds2/Shahriar_system/Readme | 7 | ||||
-rw-r--r-- | xmds2/Shahriar_system/Shahriar_system.xmds | 138 | ||||
-rw-r--r-- | xmds2/Shahriar_system/pp.m | 106 |
4 files changed, 477 insertions, 72 deletions
diff --git a/xmds2/Shahriar_system/Nlevels_no_dopler_with_z.xsil b/xmds2/Shahriar_system/Nlevels_no_dopler_with_z.xsil new file mode 100644 index 0000000..a3b05f2 --- /dev/null +++ b/xmds2/Shahriar_system/Nlevels_no_dopler_with_z.xsil @@ -0,0 +1,298 @@ +<?xml version="1.0"?> +<simulation xmds-version="2"> + + <name>Shahriar_system</name> + + <author>Eugeniy Mikhailov, Simon Rochester</author> + <description> + License GPL. + + Solving 3 level atom in double drive configuration + after Shahriar paper about white cavity + with field propagation along spatial axis Z + no Doppler broadening. + + All fields detuned from upper level i.e. Raman configuration + + + * + * ..... + * / .... + * / .... \ + * / / \ + * / /-------- |3> + * E3 / \ + * / E2 \ + * / / \ E1 + * ------ |2> \ + * \ + * ------- |1> + * + + + We are solving + dE/dz+(1/c)*dE/dt=i*eta*rho_ij, where j level is higher then i. + Note that E is actually a Rabi frequency of electromagnetic field not the EM field + in xmds terms it looks like + dE_dz = i*eta*rhoij - 1/c*L[E], here we moved t dependence to Fourier space + + VERY IMPORTANT: all Rabi frequency should be given in [1/s], if you want to + normalize it to something else look drho/dt equation. + No need to renormalizes eta as long as its express through i + the upper level decay rate in the same units as Rabi frequency. + </description> + + <features> + <globals> + <![CDATA[ + const double pi = M_PI; + const double c=3.e8; + const double lambda=794.7e-9; //wavelength in m + const double N=1e10*(1e6); //number of particles per cubic m i.e. density + const double Gamma_super=6*(2*M_PI*1e6); // characteristic decay rate of upper level used for eta calculations expressed in [1/s] + const double eta = 3*lambda*lambda*N*Gamma_super/8.0/M_PI; // eta constant in the wave equation for Rabi frequency. Units are [1/(m s)] + + // repopulation rate (atoms flying in/out the laser beam) in [1/s] + const double gt=0.01/2 *(2*M_PI*1e6); + // Natural linewidth of the upper level [1/s] + const double G=2*6 *(2*M_PI*1e6); + + // incoherent pumping rate from level |1> to |3> in [1/s] + const double gp=2*.6 *(2*M_PI*1e6); + + // total decay of i-th level branching ratios. Rij branching of i-th level to j-th + const double R31=0.5, R32=0.5; + + + complex E1c, E2c, E3c; // Complex conjugated Rabi frequencies + + complex r21, r31, r32; // density matrix elements + ]]> + </globals> + <benchmark /> + <arguments> + <!-- Rabi frequency divided by 2 in [1/s] --> + <!--probe--> + <argument name="E1o" type="real" default_value="0.0025*(2*M_PI*1e6)" /> + <!--pump fields--> + <argument name="E2o" type="real" default_value="6.0*(2*M_PI*1e6)" /> + <argument name="E3o" type="real" default_value="0.0*(2*M_PI*1e6)" /> + <!-- Fields detuning in [1/s] --> + <!-- probe field detuning--> + <argument name="d1" type="real" default_value="0*(2*M_PI*1e6)" /> + <!-- averaged detuning of pump fields i.e. mid point --> + <argument name="da" type="real" default_value="0*(2*M_PI*1e6)" /> + <!-- detuning of pump fields with respect to each other --> + <argument name="delta" type="real" default_value=".001*(2*M_PI*1e6)" /> + </arguments> + <bing /> + <fftw plan="patient" /> + <openmp /> + <auto_vectorise /> + </features> + + <!-- 'z' and 't' to have dimensions [m] and [s] --> + <geometry> + <propagation_dimension> z </propagation_dimension> + <transverse_dimensions> + <dimension name="t" lattice="1000" domain="(-2.0e-6, 4.0e-6)" /> + </transverse_dimensions> + </geometry> + + <!-- Rabi frequency --> + <vector name="E_field" type="complex" initial_space="t"> + <components>E1 E2 E3</components> + <initialisation> + <![CDATA[ + // Initial (at starting 'z' position) electromagnetic field does not depend on detuning + // as well as time + E1=E1o*exp(-pow( ((t-0.0)/1e-6),2) ); + E2=E2o; + E3=E3o; + ]]> + </initialisation> + </vector> + + <vector name="density_matrix" type="complex" initial_space="t"> + <components>r11 r22 r33 r12 r13 r23 </components> + <!-- + note one of the level population is redundant since + r11+r22+r33=1 + --> + <initialisation> + <![CDATA[ + // Note: + // convergence is really slow if all populations concentrated at the bottom level |1> + // this is because if r11=1, everything else is 0 and then every small increment + // seems to be huge and adaptive solver makes smaller and smaller steps. + // As quick and dirty fix I reshuffle initial population + // so some of the population sits at the second ground level |2> + // TODO: Fix above. Make the equation of motion for r11 + // and express other level, let's say r44 + // through population normalization + r11 = 1; r22 = 0; r33 = 0; + r12 = 0; r13 = 0; + r23 = 0; + ]]> + </initialisation> + </vector> + + <vector name="pump_detunings" type="complex" initial_space="t"> + <components> d dc </components> + <!--dc is probably redundant since it is just complex conjugate of d--> + <initialisation> + <![CDATA[ + d = exp( i*t*delta ); + dc = conj(d); + ]]> + </initialisation> + </vector> + + + <sequence> + <!--For this set of conditions ARK45 is faster than ARK89--> + <integrate algorithm="ARK45" tolerance="1e-5" interval="7e-2"> + <!--SIC algorithm seems to be much slower and needs fine 'z' step tuning and much finer time grid--> + <!--For example I had to quadruple the time grid from 1000 to 4000 when increased z distance from 0.02 to 0.04--> + + <!--<integrate algorithm="SIC" interval="4e-2" steps="200">--> + <samples>200 200</samples> + <operators> + <operator kind="cross_propagation" algorithm="SI" propagation_dimension="t"> + <integration_vectors>density_matrix</integration_vectors> + <dependencies>E_field pump_detunings</dependencies> + <boundary_condition kind="left"> + <![CDATA[ + r11 = 1; r22 = 0; r33 = 0; + r12 = 0; r13 = 0; + r23 = 0; + ]]> + </boundary_condition> + <![CDATA[ + E1c = conj(E1); + E2c = conj(E2); + E3c = conj(E3); + + r21=conj(r12); + r31=conj(r13); + r32=conj(r23); + + // Equations of motions according to Simon's mathematica code + dr11_dt = gt - 2*(gp + gt)*r11 - E1*i*r13 + E1c*i*r31 + G*r33; + dr12_dt = (-gp - 2*gt - d1*i + da*i)*r12 - i*(E2*d + E3*dc)*r13 + E1c*i*r32; + dr13_dt = -(E1c*i*r11) - i*(E3c*d + E2c*dc)*r12 + (-G - gp - 2*gt - d1*i)*r13 + E1c*i*r33; + dr22_dt = gt - 2*gt*r22 - i*(E2*d + E3*dc)*r23 + i*(E3c*d + E2c*dc)*r32 + G*r33; + dr23_dt = -(E1c*i*r21) - i*(E3c*d + E2c*dc)*r22 + (-G - 2*gt - da*i)*r23 + i*(E3c*d + E2c*dc)*r33; + dr33_dt = 2*gp*r11 + E1*i*r13 + i*(E2*d + E3*dc)*r23 - E1c*i*r31 - i*(E3c*d + E2c*dc)*r32 - 2*(G + gt)*r33; + + ]]> + </operator> + <operator kind="ex" constant="yes"> + <operator_names>Lt</operator_names> + <![CDATA[ + Lt = i*1./c*kt; + ]]> + </operator> + <integration_vectors>E_field</integration_vectors> + <dependencies>density_matrix</dependencies> + <![CDATA[ + dE1_dz = i*eta*conj(r13) -Lt[E1] ; + dE2_dz = i*eta*conj(r23) -Lt[E2] ; + dE3_dz = i*eta*conj(r23) -Lt[E3] ; + ]]> + </operators> + </integrate> + </sequence> + + + + + <!-- The output to generate --> + <output format="binary" filename="Nlevels_no_dopler_with_z.xsil"> + <group> + <sampling basis="t(1000)" initial_sample="yes"> + <dependencies>E_field</dependencies> + <moments>I1_out I2_out I3_out</moments> + <![CDATA[ + I1_out = mod2(E1); + I2_out = mod2(E2); + I3_out = mod2(E3); + ]]> + </sampling> + </group> + + <group> + <sampling basis="t(100)" initial_sample="yes"> + <dependencies>density_matrix</dependencies> + <moments> + r11_out r22_out r33_out + r12_re_out r12_im_out r13_re_out r13_im_out + r23_re_out r23_im_out + </moments> + <![CDATA[ + // populations output + r11_out = r11.Re(); + r22_out = r22.Re(); + r33_out = r33.Re(); + // coherences output + r12_re_out = r12.Re(); + r12_im_out = r12.Im(); + r13_re_out = r13.Re(); + r13_im_out = r13.Im(); + r23_re_out = r23.Re(); + r23_im_out = r23.Im(); + ]]> + </sampling> + </group> + </output> + + +<info> +Script compiled with XMDS2 version 2.0 "Shiny!" (HEAD) +See http://www.xmds.org for more information. + +Variables that can be specified on the command line: + Command line argument E1o = 1.570796e+04 + Command line argument E2o = 3.769911e+07 + Command line argument E3o = 0.000000e+00 + Command line argument d1 = 0.000000e+00 + Command line argument da = 0.000000e+00 + Command line argument delta = 6.283185e+03 +</info> + +<XSIL Name="moment_group_1"> + <Param Name="n_independent">2</Param> + <Array Name="variables" Type="Text"> + <Dim>5</Dim> + <Stream><Metalink Format="Text" Delimiter=" \n"/> +z t I1_out I2_out I3_out + </Stream> + </Array> + <Array Name="data" Type="double"> + <Dim>201</Dim> + <Dim>1000</Dim> + <Dim>5</Dim> + <Stream><Metalink Format="Binary" UnsignedLong="uint32" precision="double" Type="Remote" Encoding="LittleEndian"/> +Nlevels_no_dopler_with_z_mg0.dat + </Stream> + </Array> +</XSIL> + +<XSIL Name="moment_group_2"> + <Param Name="n_independent">2</Param> + <Array Name="variables" Type="Text"> + <Dim>11</Dim> + <Stream><Metalink Format="Text" Delimiter=" \n"/> +z t r11_out r22_out r33_out r12_re_out r12_im_out r13_re_out r13_im_out r23_re_out r23_im_out + </Stream> + </Array> + <Array Name="data" Type="double"> + <Dim>201</Dim> + <Dim>100</Dim> + <Dim>11</Dim> + <Stream><Metalink Format="Binary" UnsignedLong="uint32" precision="double" Type="Remote" Encoding="LittleEndian"/> +Nlevels_no_dopler_with_z_mg1.dat + </Stream> + </Array> +</XSIL> +</simulation> diff --git a/xmds2/Shahriar_system/Readme b/xmds2/Shahriar_system/Readme new file mode 100644 index 0000000..c380a31 --- /dev/null +++ b/xmds2/Shahriar_system/Readme @@ -0,0 +1,7 @@ +Usual EIT only two fields probe and pump +./Shahriar_system.run --E2o 30e6 --E3o 0 --d1 0 --da 0 --delta 0 + +Raman (far detuned) EIT only two fields probe and pump +!./Shahriar_system.run --E2o 30e6 --E3o 0 --d1 50e6 --da 50e6 --delta 0 + + diff --git a/xmds2/Shahriar_system/Shahriar_system.xmds b/xmds2/Shahriar_system/Shahriar_system.xmds index 0109168..0d30a32 100644 --- a/xmds2/Shahriar_system/Shahriar_system.xmds +++ b/xmds2/Shahriar_system/Shahriar_system.xmds @@ -3,30 +3,29 @@ <name>Shahriar_system</name> - <author>Eugeniy Mikhailov</author> - <author>Simon Rochester</author> + <author>Eugeniy Mikhailov, Simon Rochester</author> <description> License GPL. - Solving 4 level atom in N-field configuration, + Solving 3 level atom in double drive configuration + after Shahriar paper about white cavity with field propagation along spatial axis Z - no Doppler broadening + no Doppler broadening. - For master equations look "Four-level 'N-scheme' in bare and quasi-dressed states pictures" - by T. Abi-Salloum, S. Meiselman, J.P. Davis and F.A. Narducci - Journal of Modern Optics, 56: 18, 1926 -- 1932, (2009). + All fields detuned from upper level i.e. Raman configuration - Present calculation matches Fig.3 (b) from the above paper. - Note that I need to double all Rabi frequencies to match the figure. - * -------- |4> - * \ - * \ E3 -------- |3> - * \ / \ - * \ E2 / \ - * \ / \ E1 - * ------- |2> \ - * \ + * + * ..... + * / .... + * / .... \ + * / / \ + * / /-------- |3> + * E3 / \ + * / E2 \ + * / / \ E1 + * ------ |2> \ + * \ * ------- |1> * @@ -55,30 +54,36 @@ // repopulation rate (atoms flying in/out the laser beam) in [1/s] const double gt=0.01/2 *(2*M_PI*1e6); - // Natural linewidth of j's level in [1/s] - const double G3=2*2.7 *(2*M_PI*1e6); - const double G4=2*3.0 *(2*M_PI*1e6); + // Natural linewidth of the upper level [1/s] + const double G=2*6 *(2*M_PI*1e6); + + // incoherent pumping rate from level |1> to |3> in [1/s] + const double gp=2*.0 *(2*M_PI*1e6); // total decay of i-th level branching ratios. Rij branching of i-th level to j-th - const double R41=0.5, R42=0.5; const double R31=0.5, R32=0.5; complex E1c, E2c, E3c; // Complex conjugated Rabi frequencies - complex r21, r31, r41, r32, r42, r43, r44; // density matrix elements + complex r21, r31, r32; // density matrix elements ]]> </globals> <benchmark /> <arguments> <!-- Rabi frequency divided by 2 in [1/s] --> + <!--probe--> <argument name="E1o" type="real" default_value="0.0025*(2*M_PI*1e6)" /> - <argument name="E2o" type="real" default_value="6*(2*M_PI*1e6)" /> - <argument name="E3o" type="real" default_value="0.0*(2*M_PI*1e6)" /> + <!--pump fields--> + <argument name="E2o" type="real" default_value="1.0*(2*M_PI*1e6)" /> + <argument name="E3o" type="real" default_value="1.0*(2*M_PI*1e6)" /> <!-- Fields detuning in [1/s] --> - <argument name="delta1" type="real" default_value="0.0" /> - <argument name="delta2" type="real" default_value="0.0" /> - <argument name="delta3" type="real" default_value="0.0" /> + <!-- probe field detuning--> + <argument name="d1" type="real" default_value="12*(2*M_PI*1e6)" /> + <!-- averaged detuning of pump fields i.e. mid point --> + <argument name="da" type="real" default_value="12*(2*M_PI*1e6)" /> + <!-- detuning of pump fields with respect to each other --> + <argument name="delta" type="real" default_value="6*(2*M_PI*1e6)" /> </arguments> <bing /> <fftw plan="patient" /> @@ -109,13 +114,10 @@ </vector> <vector name="density_matrix" type="complex" initial_space="t"> - <!--<components>r11 r22 r33 r44 r12 r13 r14 r23 r24 r34 r21 r31 r41 r32 r42 r43</components>--> - <!--<components>r11 r22 r33 r44 r12 r13 r14 r23 r24 r34</components>--> - <components>r11 r22 r33 r12 r13 r14 r23 r24 r34 r44</components> + <components>r11 r22 r33 r12 r13 r23 </components> <!-- note one of the level population is redundant since - r11+r22+r33+r44=1 - so r11 is missing + r11+r22+r33=1 --> <initialisation> <![CDATA[ @@ -128,17 +130,28 @@ // TODO: Fix above. Make the equation of motion for r11 // and express other level, let's say r44 // through population normalization - r11 = 1; r22 = 0; r33 = 0; r44 = 0; - r12 = 0; r13 = 0; r14 = 0; - r23 = 0; r24 = 0; - r34 = 0; + r11 = 1; r22 = 0; r33 = 0; + r12 = 0; r13 = 0; + r23 = 0; ]]> </initialisation> </vector> + <vector name="pump_detunings" type="complex" initial_space="t"> + <components> d dc </components> + <!--dc is probably redundant since it is just complex conjugate of d--> + <initialisation> + <![CDATA[ + d = exp( i*t*delta ); + dc = conj(d); + ]]> + </initialisation> + </vector> + + <sequence> <!--For this set of conditions ARK45 is faster than ARK89--> - <integrate algorithm="ARK45" tolerance="1e-5" interval="7e-2"> + <integrate algorithm="ARK45" tolerance="1e-5" interval="4e-2"> <!--SIC algorithm seems to be much slower and needs fine 'z' step tuning and much finer time grid--> <!--For example I had to quadruple the time grid from 1000 to 4000 when increased z distance from 0.02 to 0.04--> @@ -147,13 +160,12 @@ <operators> <operator kind="cross_propagation" algorithm="SI" propagation_dimension="t"> <integration_vectors>density_matrix</integration_vectors> - <dependencies>E_field</dependencies> + <dependencies>E_field pump_detunings</dependencies> <boundary_condition kind="left"> <![CDATA[ - r11 = 1; r22 = 0; r33 = 0; r44 = 0; - r12 = 0; r13 = 0; r14 = 0; - r23 = 0; r24 = 0; - r34 = 0; + r11 = 1; r22 = 0; r33 = 0; + r12 = 0; r13 = 0; + r23 = 0; ]]> </boundary_condition> <![CDATA[ @@ -163,23 +175,16 @@ r21=conj(r12); r31=conj(r13); - r41=conj(r14); r32=conj(r23); - r42=conj(r24); - r43=conj(r34); - //r44=1- r11 - r22 - r33; // Equations of motions according to Simon's mathematica code - dr11_dt = gt/2. - gt*r11 + G3*r33*R31 + G4*r44*R41 + i*(-(E1*r13) + E1c*r31); - dr12_dt = -(gt*r12) + i*((-delta1 + delta2)*r12 - E2*r13 - E3*r14 + E1c*r32); - dr13_dt = -((G3 + 2*gt)*r13)/2. + i*(-(delta1*r13) - E1c*r11 - E2c*r12 + E1c*r33); - dr14_dt = -((G4 + 2*gt)*r14)/2. + i*(-((delta1 - delta2 + delta3)*r14) - E3c*r12 + E1c*r34); - dr22_dt = gt/2. - gt*r22 + G3*r33*R32 + G4*r44*R42 + i*(-(E2*r23) - E3*r24 + E2c*r32 + E3c*r42); - dr23_dt = -((G3 + 2*gt)*r23)/2. + i*(-(delta2*r23) - E1c*r21 - E2c*r22 + E2c*r33 + E3c*r43); - dr24_dt = -((G4 + 2*gt)*r24)/2. + i*(-(delta3*r24) - E3c*r22 + E2c*r34 + E3c*r44); - dr33_dt = -((G3 + gt)*r33) + i*(E1*r13 + E2*r23 - E1c*r31 - E2c*r32); - dr34_dt = -((G3 + G4 + 2*gt)*r34)/2. + i*((delta2 - delta3)*r34 + E1*r14 + E2*r24 - E3c*r32); - dr44_dt = -((G4 + gt)*r44) + i*(E3*r24 - E3c*r42); + dr11_dt = gt - 2*(gp + gt)*r11 - E1*i*r13 + E1c*i*r31 + G*r33; + dr12_dt = (-gp - 2*gt - d1*i + da*i)*r12 - i*(E2*d + E3*dc)*r13 + E1c*i*r32; + dr13_dt = -(E1c*i*r11) - i*(E3c*d + E2c*dc)*r12 + (-G - gp - 2*gt - d1*i)*r13 + E1c*i*r33; + dr22_dt = gt - 2*gt*r22 - i*(E2*d + E3*dc)*r23 + i*(E3c*d + E2c*dc)*r32 + G*r33; + dr23_dt = -(E1c*i*r21) - i*(E3c*d + E2c*dc)*r22 + (-G - 2*gt - da*i)*r23 + i*(E3c*d + E2c*dc)*r33; + dr33_dt = 2*gp*r11 + E1*i*r13 + i*(E2*d + E3*dc)*r23 - E1c*i*r31 - i*(E3c*d + E2c*dc)*r32 - 2*(G + gt)*r33; + ]]> </operator> <operator kind="ex" constant="yes"> @@ -193,17 +198,14 @@ <![CDATA[ dE1_dz = i*eta*conj(r13) -Lt[E1] ; dE2_dz = i*eta*conj(r23) -Lt[E2] ; - dE3_dz = i*eta*conj(r24) -Lt[E3] ; + dE3_dz = i*eta*conj(r23) -Lt[E3] ; ]]> </operators> </integrate> </sequence> - - - <!-- The output to generate --> - <output format="binary" filename="Nlevels_no_dopler_with_z.xsil"> + <output format="binary" filename="Shahriar_system.xsil"> <group> <sampling basis="t(1000)" initial_sample="yes"> <dependencies>E_field</dependencies> @@ -220,30 +222,22 @@ <sampling basis="t(100)" initial_sample="yes"> <dependencies>density_matrix</dependencies> <moments> - r11_out r22_out r33_out r44_out - r12_re_out r12_im_out r13_re_out r13_im_out r14_re_out r14_im_out - r23_re_out r23_im_out r24_re_out r24_im_out - r34_re_out r34_im_out + r11_out r22_out r33_out + r12_re_out r12_im_out r13_re_out r13_im_out + r23_re_out r23_im_out </moments> <![CDATA[ // populations output r11_out = r11.Re(); r22_out = r22.Re(); r33_out = r33.Re(); - r44_out = r44.Re(); // coherences output r12_re_out = r12.Re(); r12_im_out = r12.Im(); r13_re_out = r13.Re(); r13_im_out = r13.Im(); - r14_re_out = r14.Re(); - r14_im_out = r14.Im(); r23_re_out = r23.Re(); r23_im_out = r23.Im(); - r24_re_out = r24.Re(); - r24_im_out = r24.Im(); - r34_re_out = r34.Re(); - r34_im_out = r34.Im(); ]]> </sampling> </group> diff --git a/xmds2/Shahriar_system/pp.m b/xmds2/Shahriar_system/pp.m new file mode 100644 index 0000000..fcb7e2a --- /dev/null +++ b/xmds2/Shahriar_system/pp.m @@ -0,0 +1,106 @@ +Shahriar_system + +%% field propagation +t_1=t_1*1e6; % time now measured in uS +figure(1) +subplot(1,3,1); imagesc(z_1, t_1, I1_out_1); colorbar +xlabel('z') +ylabel('t (uS)') +zlabel('I_1') +title('I_1') +subplot(1,3,2); imagesc(z_1, t_1, I2_out_1); colorbar +xlabel('z') +ylabel('t (uS)') +zlabel('I_2') +title('I_2') +subplot(1,3,3); imagesc(z_1, t_1, I3_out_1); colorbar +xlabel('z') +ylabel('t (uS)') +zlabel('I_3') +title('I_3') + + + + +%% fields before and after the cell +figure(2) +subplot(1,3,1); +plot( ... + t_1,I1_out_1(:,1),'-;before;', ... + t_1,I1_out_1(:,end), '-;after;' ... + ) +xlabel('t') +ylabel('I_1') +title('I_1 propagation') +subplot(1,3,2); +plot( ... + t_1,I2_out_1(:,1),'-;before;', ... + t_1,I2_out_1(:,end), '-;after;' ... + ) +xlabel('t') +ylabel('I_2') +title('I_2 propagation') +subplot(1,3,3); +plot( ... + t_1,I3_out_1(:,1),'-;before;', ... + t_1,I3_out_1(:,end), '-;after;' ... + ) +xlabel('t') +ylabel('I_3') +title('I_3 propagation') + +%return; + +%% all density matrix elements in one plot +% diagonal populations, +% upper triangle real part of coherences, +% lower diagonal imaginary part of coherences +figure(3) +subplot(3,3,1); imagesc (z_2, t_2, r11_out_2); caxis([0,1]); colorbar +xlabel('z') +ylabel('t') +zlabel('rho_{11}') +title('rho_{11}') +subplot(3,3,5); imagesc (z_2, t_2, r22_out_2); caxis([0,1]); colorbar +xlabel('z') +ylabel('t') +zlabel('rho_{22}') +title('rho_{22}') +subplot(3,3,9); imagesc (z_2, t_2, r33_out_2); caxis([0,1]); colorbar +xlabel('z') +ylabel('t') +zlabel('rho_{33}') +title('rho_{33}') +% real parts of coherences +subplot(3,3,2); imagesc(z_2, t_2, r12_re_out_2); colorbar +xlabel('z') +ylabel('t') +zlabel('Real(rho_{12})') +title('Real(rho_{12})') +subplot(3,3,3); imagesc(z_2, t_2, r13_re_out_2); colorbar +xlabel('z') +ylabel('t') +zlabel('Real(rho_{13})') +title('Real(rho_{13})') +subplot(3,3,6); imagesc(z_2, t_2, r23_re_out_2); colorbar +xlabel('z') +ylabel('t') +zlabel('Real(rho_{23})') +title('Real(rho_{23})') +% imaginary parts of coherences +subplot(3,3,4); imagesc(z_2, t_2, r12_im_out_2); colorbar +xlabel('z') +ylabel('t') +zlabel('Imag(rho_{12})') +title('Imag(rho_{12})') +subplot(3,3,7); imagesc(z_2, t_2, r13_im_out_2); colorbar +xlabel('z') +ylabel('t') +zlabel('Imag(rho_{13})') +title('Imag(rho_{13})') +subplot(3,3,8); imagesc(z_2, t_2, r23_im_out_2); colorbar +xlabel('z') +ylabel('t') +zlabel('Imag(rho_{23})') +title('Imag(rho_{23})') + |