diff options
-rwxr-xr-x | mathemathica_fwm/RbXMDSSetup.nb | 4649 |
1 files changed, 2327 insertions, 2322 deletions
diff --git a/mathemathica_fwm/RbXMDSSetup.nb b/mathemathica_fwm/RbXMDSSetup.nb index 801b4c4..3339dc7 100755 --- a/mathemathica_fwm/RbXMDSSetup.nb +++ b/mathemathica_fwm/RbXMDSSetup.nb @@ -1,2322 +1,2327 @@ -Notebook[{
-
-Cell[CellGroupData[{
-Cell["Find evolution equations", "Section"],
-
-Cell["Load the package.", "Text"],
-
-Cell[BoxData[
- RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->2058623809],
-
-Cell["Use density matrix variables with explict time dependence.", "Text"],
-
-Cell[BoxData[
- RowBox[{"SetOptions", "[",
- RowBox[{"DensityMatrix", ",",
- RowBox[{"TimeDependence", "\[Rule]", "True"}]}], "]"}]], "Input"],
-
-Cell["\<\
-Pull quantum numbers and other basic info about the states from a database.\
-\>", "Text",
- CellID->429217524],
-
-Cell[BoxData[
- RowBox[{"s12data", "=",
- RowBox[{"AtomicData", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{"\"\<Rb\>\"", ",", "87", ",",
- RowBox[{"{",
- RowBox[{"\"\<Kr\>\"", ",",
- RowBox[{"{",
- RowBox[{"5", ",", "\"\<s\>\""}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "\"\<S\>\"", ",",
- FractionBox["1", "2"]}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{
- "Energy", ",", "J", ",", "L", ",", "S", ",", "NuclearSpin", ",",
- "NaturalWidth", ",", "Parity"}], "}"}]}], "]"}]}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"p12data", "=",
- RowBox[{"Append", "[",
- RowBox[{
- RowBox[{"AtomicData", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{"\"\<Rb\>\"", ",", "87", ",",
- RowBox[{"{",
- RowBox[{"\"\<Kr\>\"", ",",
- RowBox[{"{",
- RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "\"\<P\>\"", ",",
- FractionBox["1", "2"]}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"J", ",", "L", ",", "S", ",", "NuclearSpin", ",", "Parity"}],
- "}"}]}], "]"}], ",",
- RowBox[{
- RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}]}],
- "]"}]}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"p32data", "=",
- RowBox[{"Append", "[",
- RowBox[{
- RowBox[{"AtomicData", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{"\"\<Rb\>\"", ",", "87", ",",
- RowBox[{"{",
- RowBox[{"\"\<Kr\>\"", ",",
- RowBox[{"{",
- RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "\"\<P\>\"", ",",
- FractionBox["3", "2"]}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"J", ",", "L", ",", "S", ",", "NuclearSpin", ",", "Parity"}],
- "}"}]}], "]"}], ",",
- RowBox[{
- RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}]}],
- "]"}]}]], "Input"],
-
-Cell["\<\
-Using the quantum numbers, create a list of all hyperfine and Zeeman \
-sublevels of the J states, which are labeled 0, 1, and 2 for reference. This \
-list will be passed to the functions from the ADM package that create the DM \
-evolution equations.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"system0", "=",
- RowBox[{"Sublevels", "[",
- RowBox[{"{",
- RowBox[{
- RowBox[{"AtomicState", "[",
- RowBox[{"0", ",", "s12data"}], "]"}], ",",
- RowBox[{"AtomicState", "[",
- RowBox[{"1", ",", "p12data"}], "]"}], ",",
- RowBox[{"AtomicState", "[",
- RowBox[{"2", ",", "p32data"}], "]"}]}], "}"}], "]"}]}], ";"}]], "Input",
- CellID->433132487],
-
-Cell[TextData[{
- "For simplicity, we delete some excited states from the system, leaving only \
-",
- Cell[BoxData[
- FormBox[
- RowBox[{
- RowBox[{
- SubscriptBox["P",
- RowBox[{"1", "/", "2"}]], " ", "F"}], "=", "1"}], TraditionalForm]]],
- " and ",
- Cell[BoxData[
- FormBox[
- RowBox[{
- RowBox[{
- SubscriptBox["P",
- RowBox[{"3", "/", "2"}]], " ", "F"}], "=", "2"}], TraditionalForm]]],
- "."
-}], "Text"],
-
-Cell[BoxData[
- RowBox[{"system", "=",
- RowBox[{"DeleteStates", "[",
- RowBox[{"system0", ",",
- RowBox[{
- RowBox[{"(",
- RowBox[{
- RowBox[{"Label", "\[Equal]", "1"}], "&&",
- RowBox[{"F", "\[NotEqual]", "1"}]}], ")"}], "||",
- RowBox[{"(",
- RowBox[{
- RowBox[{"Label", "\[Equal]", "2"}], "&&",
- RowBox[{"F", "\[NotEqual]", "2"}]}], ")"}]}]}], "]"}]}]], "Input"],
-
-Cell[TextData[{
- "Define the optical field with four frequencies, ",
- Cell[BoxData[
- FormBox[
- StyleBox[
- SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
- ", ",
- Cell[BoxData[
- FormBox[
- StyleBox[
- SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
- ", ",
- Cell[BoxData[
- FormBox[
- StyleBox[
- SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
- ", and ",
- Cell[BoxData[
- FormBox[
- StyleBox[
- SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
- ". Here ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[CapitalOmega]", "1"], TraditionalForm]]],
- " and ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[CapitalOmega]", "1"], TraditionalForm]]],
- " are left-circularly polarized, and ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[CapitalOmega]", "3"], TraditionalForm]]],
- " and ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[CapitalOmega]", "4"], TraditionalForm]]],
- " are right-circularly polarized."
-}], "Text",
- CellID->133602844],
-
-Cell[BoxData[
- RowBox[{"SetOptions", "[",
- RowBox[{"OpticalField", ",",
- RowBox[{"PolarizationVector", "\[Rule]",
- RowBox[{"{",
- RowBox[{"1", ",", "0", ",", "0"}], "}"}]}], ",",
- RowBox[{"CartesianCoordinates", "\[Rule]",
- RowBox[{"{",
- RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "]"}]], "Input"],
-
-Cell[TextData[{
- "Parameters for the OpticalField function are {frequency, wavenumber}, \
-{electric amplitude, phase}, {rotation angle (relative to \
-PolarizationVector), ellipticity}. Here ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[CapitalOmega]", "i"], TraditionalForm]]],
- " are the Rabi frequencies defined in terms of the dipole reduced matrix \
-elements."
-}], "Text"],
-
-Cell[BoxData[
- RowBox[{"field", "=",
- RowBox[{
- RowBox[{"OpticalField", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- SubscriptBox["\[Omega]", "1"], ",",
- SubscriptBox["k", "1"]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "1"], "/",
- RowBox[{"ReducedME", "[",
- RowBox[{"0", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "1"}], "]"}]}], ",",
- SubscriptBox["\[Phi]", "1"]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"0", ",",
- RowBox[{"\[Pi]", "/", "4"}]}], "}"}]}], "]"}], "+",
- "\[IndentingNewLine]",
- RowBox[{"OpticalField", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- SubscriptBox["\[Omega]", "2"], ",",
- SubscriptBox["k", "2"]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "2"], "/",
- RowBox[{"ReducedME", "[",
- RowBox[{"0", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "1"}], "]"}]}], ",",
- SubscriptBox["\[Phi]", "2"]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"0", ",",
- RowBox[{"\[Pi]", "/", "4"}]}], "}"}]}], "]"}], "+",
- "\[IndentingNewLine]",
- RowBox[{"OpticalField", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- SubscriptBox["\[Omega]", "3"], ",",
- SubscriptBox["k", "3"]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "3"], "/",
- RowBox[{"ReducedME", "[",
- RowBox[{"0", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}], ",",
- SubscriptBox["\[Phi]", "3"]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"0", ",",
- RowBox[{
- RowBox[{"-", "\[Pi]"}], "/", "4"}]}], "}"}]}], "]"}], "+",
- "\[IndentingNewLine]",
- RowBox[{"OpticalField", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- SubscriptBox["\[Omega]", "4"], ",",
- SubscriptBox["k", "4"]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "4"], "/",
- RowBox[{"ReducedME", "[",
- RowBox[{"0", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}], ",",
- SubscriptBox["\[Phi]", "4"]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"0", ",",
- RowBox[{
- RowBox[{"-", "\[Pi]"}], "/", "4"}]}], "}"}]}], "]"}]}]}]], "Input",
- CellID->534530029],
-
-Cell["\<\
-The Hamiltonian for the system subject to the optical field. Each field is \
-assumed to interact with only one transition\[LongDash]the replacement rule \
-(Cos[_]|Sin[_]) ReducedME[_,{Dipole,1},_]\[Rule]0 causes other terms to be \
-set to zero.\
-\>", "Text",
- CellID->462076121],
-
-Cell[BoxData[
- RowBox[{"MatrixForm", "[",
- RowBox[{"H", "=",
- RowBox[{
- RowBox[{"Expand", "@",
- RowBox[{"Hamiltonian", "[",
- RowBox[{"system", ",",
- RowBox[{"ElectricField", "\[Rule]", "field"}], ",",
- RowBox[{"MagneticField", "\[Rule]",
- RowBox[{"{",
- RowBox[{"0", ",", "0", ",",
- RowBox[{"\[CapitalOmega]L", "/", "BohrMagneton"}]}], "}"}]}]}],
- "]"}]}], "/.", " ",
- RowBox[{
- RowBox[{
- RowBox[{"(",
- RowBox[{
- RowBox[{"Cos", "[", "_", "]"}], "|",
- RowBox[{"Sin", "[", "_", "]"}]}], ")"}], " ",
- RowBox[{"ReducedME", "[",
- RowBox[{"_", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]",
- "0"}]}]}], "]"}]], "Input",
- CellID->494599775],
-
-Cell["\<\
-The level diagram for the system, showing optical couplings. Note that both \
-resonant and off-resonant (counter-rotating) couplings are shown, because we \
-have not yet performed the rotating-wave approximation.\
-\>", "Text",
- CellID->358620443],
-
-Cell[BoxData[
- RowBox[{"LevelDiagram", "[",
- RowBox[{"system", ",",
- RowBox[{"H", "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{"Energy", "[", "0", "]"}], "\[Rule]", "0"}], ",",
- RowBox[{
- RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", "2"}], ",",
- RowBox[{
- RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", "4"}], ",",
- RowBox[{
- RowBox[{"HyperfineA", "[", "_", "]"}], "\[Rule]", ".2"}], ",",
- RowBox[{
- RowBox[{"HyperfineB", "[", "_", "]"}], "\[Rule]", ".1"}], ",",
- RowBox[{"\[CapitalOmega]L", "\[Rule]", ".1"}]}], "}"}]}], ",",
- RowBox[{"ParityOffset", "\[Rule]", "False"}]}], "]"}]], "Input",
- CellID->167259034],
-
-Cell[TextData[{
- "Here we apply the rotating-wave approximation to the Hamiltonian. Here we \
-construct a list of frequency shifts for the list of Zeeman sublevels that \
-will have the effect of removing the optical frequencies from the \
-Hamiltonian. I.e., we hold ",
- Cell[BoxData[
- FormBox[
- RowBox[{
- RowBox[{
- SubscriptBox["S",
- RowBox[{"1", "/", "2"}]], "F"}], "=", "2"}], TraditionalForm]]],
- " fixed, shift ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["P",
- RowBox[{"1", "/", "2"}]], TraditionalForm]]],
- " down by ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Omega]", "1"], TraditionalForm]]],
- ", shift ",
- Cell[BoxData[
- FormBox[
- RowBox[{
- RowBox[{
- SubscriptBox["S",
- RowBox[{"1", "/", "2"}]], " ", "F"}], "=", "1"}], TraditionalForm]]],
- " down by ",
- Cell[BoxData[
- FormBox[
- RowBox[{
- SubscriptBox["\[Omega]", "1"], "-",
- SubscriptBox["\[Omega]", "2"]}], TraditionalForm]]],
- ", and shift ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["P",
- RowBox[{"3", "/", "2"}]], TraditionalForm]]],
- " down by ",
- Cell[BoxData[
- FormBox[
- RowBox[{
- SubscriptBox["\[Omega]", "1"], "-",
- SubscriptBox["\[Omega]", "2"], "+",
- SubscriptBox["\[Omega]", "3"]}], TraditionalForm]]],
- "."
-}], "Text",
- CellID->577766068],
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{
- RowBox[{"{",
- RowBox[{
- RowBox[{"Label", "[", "#", "]"}], ",",
- RowBox[{"F", "[", "#", "]"}]}], "}"}], "&"}], "/@",
- "system"}], "\[IndentingNewLine]",
- RowBox[{"shifts", "=",
- RowBox[{"%", "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{"{",
- RowBox[{"0", ",", "2"}], "}"}], "\[Rule]", "0"}], ",",
- RowBox[{
- RowBox[{"{",
- RowBox[{"1", ",", "_"}], "}"}], "\[Rule]",
- SubscriptBox["\[Omega]", "1"]}], ",",
- RowBox[{
- RowBox[{"{",
- RowBox[{"0", ",", "1"}], "}"}], "\[Rule]",
- RowBox[{
- SubscriptBox["\[Omega]", "1"], "-",
- SubscriptBox["\[Omega]", "2"]}]}], ",",
- RowBox[{
- RowBox[{"{",
- RowBox[{"2", ",", "_"}], "}"}], "\[Rule]",
- RowBox[{
- SubscriptBox["\[Omega]", "1"], "-",
- SubscriptBox["\[Omega]", "2"], "+",
- SubscriptBox["\[Omega]", "3"]}]}]}], "}"}]}]}]}], "Input"],
-
-Cell["\<\
-Make a unitary transformation matrix to implement the chosen frequency shifts.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{"MatrixForm", "[",
- RowBox[{"transmat", "=",
- RowBox[{"MatrixExp", "[",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ",
- RowBox[{"DiagonalMatrix", "[", "shifts", "]"}]}], "+",
- RowBox[{"\[ImaginaryI]", " ", "z", " ",
- RowBox[{"DiagonalMatrix", "[",
- RowBox[{"shifts", "/.",
- RowBox[{"\[Omega]", "\[Rule]", "k"}]}], "]"}]}]}], "]"}]}],
- "]"}]], "Input"],
-
-Cell[TextData[{
- "Write ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Omega]", "4"], TraditionalForm]]],
- " and ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["k", "4"], TraditionalForm]]],
- " in terms of the non-degenerate detuning and phase-mismatch parameters \
-\[Delta]\[Omega] and \[Delta]k, which we set here to zero for simplicity. We \
-then apply the transform matrix to the Hamiltonian and set off resonant terms \
-oscillating at harmonics of ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Omega]", "1"], TraditionalForm]]],
- ", ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Omega]", "2"], TraditionalForm]]],
- ", and ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Omega]", "3"], TraditionalForm]]],
- " to zero."
-}], "Text"],
-
-Cell[BoxData[
- RowBox[{"MatrixForm", "[",
- RowBox[{"H1", "=",
- RowBox[{"RotatingWaveApproximation", "[",
- RowBox[{"system", ",",
- RowBox[{
- RowBox[{"H", "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Omega]", "4"], "\[Rule]",
- RowBox[{
- SubscriptBox["\[Omega]", "1"], "-",
- SubscriptBox["\[Omega]", "2"], "+",
- SubscriptBox["\[Omega]", "3"], "-", "\[Delta]\[Omega]"}]}], ",",
- RowBox[{
- SubscriptBox["k", "4"], "\[Rule]",
- RowBox[{
- SubscriptBox["k", "1"], "-",
- SubscriptBox["k", "2"], "+",
- SubscriptBox["k", "3"], "-", "\[Delta]k"}]}]}], "}"}]}], "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{"\[Delta]\[Omega]", "\[Rule]", "0"}], ",",
- RowBox[{"\[Delta]k", "\[Rule]", "0"}]}], "}"}]}], ",",
- RowBox[{"{",
- RowBox[{
- SubscriptBox["\[Omega]", "1"], ",",
- SubscriptBox["\[Omega]", "2"], ",",
- SubscriptBox["\[Omega]", "3"]}], "}"}], ",",
- RowBox[{"TransformMatrix", "\[Rule]", "transmat"}]}], "]"}]}],
- "]"}]], "Input"],
-
-Cell[TextData[{
- "There are remaining fast-oscillating terms in the Hamiltonian at the \
-difference frequency between ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Omega]", "1"], TraditionalForm]]],
- " and ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Omega]", "2"], TraditionalForm]]],
- ", due to the fact that each optical field can interact with both \
-ground-state hyperfine levels. We set these terms to zero, which is \
-equivalent to assuming that each field interacts with only the ",
- Cell[BoxData[
- FormBox[
- RowBox[{"F", "=", "1"}], TraditionalForm]]],
- " or the ",
- Cell[BoxData[
- FormBox[
- RowBox[{"F", "=", "2"}], TraditionalForm]]],
- " ground-state hyperfine sublevel."
-}], "Text"],
-
-Cell[BoxData[
- RowBox[{"MatrixForm", "[",
- RowBox[{"H2", "=",
- RowBox[{"H1", "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"\[Phi]_", "-",
- RowBox[{"\[ImaginaryI]", " ", "t", " ",
- SubscriptBox["\[Omega]", "1"]}], "+",
- RowBox[{"\[ImaginaryI]", " ", "t", " ",
- SubscriptBox["\[Omega]", "2"]}]}]], "\[Rule]", "0"}], ",",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"\[Phi]_", "+",
- RowBox[{"\[ImaginaryI]", " ", "t", " ",
- SubscriptBox["\[Omega]", "1"]}], "-",
- RowBox[{"\[ImaginaryI]", " ", "t", " ",
- SubscriptBox["\[Omega]", "2"]}]}]], "\[Rule]", "0"}]}], "}"}]}]}],
- "]"}]], "Input"],
-
-Cell["\<\
-Find the frequencies at which each field is assumed to be resonant with its F\
-\[Rule]F\[CloseCurlyQuote] transition.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{"\[Omega]1res", "=",
- RowBox[{
- RowBox[{
- RowBox[{"Hamiltonian", "[",
- RowBox[{"{",
- RowBox[{"SelectState", "[",
- RowBox[{"system", ",", " ",
- RowBox[{
- RowBox[{"Label", "\[Equal]", "1"}], "&&",
- RowBox[{"F", "\[Equal]", "1"}]}]}], "]"}], "}"}], "]"}],
- "\[LeftDoubleBracket]",
- RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], "-",
- RowBox[{
- RowBox[{"Hamiltonian", "[",
- RowBox[{"{",
- RowBox[{"SelectState", "[",
- RowBox[{"system", ",", " ",
- RowBox[{
- RowBox[{"Label", "\[Equal]", "0"}], "&&",
- RowBox[{"F", "\[Equal]", "2"}]}]}], "]"}], "}"}], "]"}],
- "\[LeftDoubleBracket]",
- RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}]}]}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"\[Omega]2res", "=",
- RowBox[{
- RowBox[{
- RowBox[{"Hamiltonian", "[",
- RowBox[{"{",
- RowBox[{"SelectState", "[",
- RowBox[{"system", ",", " ",
- RowBox[{
- RowBox[{"Label", "\[Equal]", "1"}], "&&",
- RowBox[{"F", "\[Equal]", "1"}]}]}], "]"}], "}"}], "]"}],
- "\[LeftDoubleBracket]",
- RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], "-",
- RowBox[{
- RowBox[{"Hamiltonian", "[",
- RowBox[{"{",
- RowBox[{"SelectState", "[",
- RowBox[{"system", ",", " ",
- RowBox[{
- RowBox[{"Label", "\[Equal]", "0"}], "&&",
- RowBox[{"F", "\[Equal]", "1"}]}]}], "]"}], "}"}], "]"}],
- "\[LeftDoubleBracket]",
- RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}]}]}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"\[Omega]3res", "=",
- RowBox[{
- RowBox[{
- RowBox[{"Hamiltonian", "[",
- RowBox[{"{",
- RowBox[{"SelectState", "[",
- RowBox[{"system", ",", " ",
- RowBox[{
- RowBox[{"Label", "\[Equal]", "2"}], "&&",
- RowBox[{"F", "\[Equal]", "2"}]}]}], "]"}], "}"}], "]"}],
- "\[LeftDoubleBracket]",
- RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], "-",
- RowBox[{
- RowBox[{"Hamiltonian", "[",
- RowBox[{"{",
- RowBox[{"SelectState", "[",
- RowBox[{"system", ",", " ",
- RowBox[{
- RowBox[{"Label", "\[Equal]", "0"}], "&&",
- RowBox[{"F", "\[Equal]", "1"}]}]}], "]"}], "}"}], "]"}],
- "\[LeftDoubleBracket]",
- RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}]}]}]], "Input"],
-
-Cell[TextData[{
- "Rewrite the frequencies ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Omega]", "1"], TraditionalForm]]],
- ", ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Omega]", "2"], TraditionalForm]]],
- ", and ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Omega]", "3"], TraditionalForm]]],
- " in terms of a detuning ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Delta]", "1"], TraditionalForm]]],
- ", ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Delta]", "2"], TraditionalForm]]],
- ", or ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Delta]", "3"], TraditionalForm]]],
- " from resonance with the appropriate transition between ground-state and \
-excited state hyperfine levels, and subtract a constant term off of the \
-diagonal to simplify the appearance."
-}], "Text"],
-
-Cell[BoxData[
- RowBox[{"MatrixForm", "[",
- RowBox[{"Hrwa", "=",
- RowBox[{
- RowBox[{"(",
- RowBox[{"H2", "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Omega]", "1"], "\[Rule]",
- RowBox[{"\[Omega]1res", "+",
- SubscriptBox["\[Delta]", "1"]}]}], ",",
- RowBox[{
- SubscriptBox["\[Omega]", "2"], "\[Rule]",
- RowBox[{"\[Omega]2res", "+",
- SubscriptBox["\[Delta]", "2"]}]}], ",",
- RowBox[{
- SubscriptBox["\[Omega]", "3"], "\[Rule]",
- RowBox[{"\[Omega]3res", "+",
- SubscriptBox["\[Delta]", "3"]}]}]}], "}"}]}], ")"}], "-",
- RowBox[{
- FractionBox[
- RowBox[{"3", " ",
- RowBox[{"HyperfineA", "[", "0", "]"}]}], "4"],
- RowBox[{"IdentityMatrix", "[",
- RowBox[{"Length", "[", "system", "]"}], "]"}]}]}]}], "]"}]], "Input"],
-
-Cell["\<\
-The level diagram showing resonant (co-rotating) optical couplings. \
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{"diagram", "=",
- RowBox[{"LevelDiagram", "[",
- RowBox[{"system", ",",
- RowBox[{
- RowBox[{"Hrwa", "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Delta]", "1"], "\[Rule]",
- RowBox[{"-", "\[Omega]1res"}]}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "2"], "\[Rule]",
- RowBox[{"-", "\[Omega]2res"}]}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "3"], "\[Rule]",
- RowBox[{"-", "\[Omega]3res"}]}]}], "}"}]}], "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{"Energy", "[", "0", "]"}], "\[Rule]", "0"}], ",",
- RowBox[{
- RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", "2"}], ",",
- RowBox[{
- RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", "3"}], ",",
- RowBox[{
- RowBox[{"HyperfineA", "[", "_", "]"}], "\[Rule]", ".2"}], ",",
- RowBox[{
- RowBox[{"HyperfineB", "[", "_", "]"}], "\[Rule]", ".1"}], ",",
- RowBox[{"\[CapitalOmega]L", "\[Rule]", ".1"}]}], "}"}]}], ",",
- RowBox[{"ParityOffset", "\[Rule]", "False"}], ",",
- RowBox[{"Epilog", "\[Rule]",
- RowBox[{"{",
- RowBox[{
- RowBox[{"Text", "[",
- RowBox[{
- RowBox[{"Style", "[",
- RowBox[{
- "\"\<\!\(\*SuperscriptBox[\(\[VeryThinSpace]\), \
-\(2\)]\)\!\(\*SubscriptBox[\(S\), \(1/2\)]\)\>\"", ",",
- RowBox[{"SingleLetterItalics", "\[Rule]", "False"}]}], "]"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"-", "2.9"}], ",", "0"}], "}"}]}], "]"}], ",",
- RowBox[{"Text", "[",
- RowBox[{
- RowBox[{"Style", "[",
- RowBox[{
- "\"\<\!\(\*SuperscriptBox[\(\[VeryThinSpace]\), \
-\(2\)]\)\!\(\*SubscriptBox[\(P\), \(1/2\)]\)\>\"", ",",
- RowBox[{"SingleLetterItalics", "\[Rule]", "False"}]}], "]"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"-", "2.9"}], ",", "1.6"}], "}"}]}], "]"}], ",",
- RowBox[{"Text", "[",
- RowBox[{
- RowBox[{"Style", "[",
- RowBox[{
- "\"\<\!\(\*SuperscriptBox[\(\[VeryThinSpace]\), \
-\(2\)]\)\!\(\*SubscriptBox[\(P\), \(3/2\)]\)\>\"", ",",
- RowBox[{"SingleLetterItalics", "\[Rule]", "False"}]}], "]"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"-", "2.9"}], ",", "2.7"}], "}"}]}], "]"}]}], "}"}]}], ",",
- RowBox[{"ImageSize", "\[Rule]",
- RowBox[{"3.5", " ", "72"}]}], ",",
- RowBox[{"ImagePadding", "\[Rule]",
- RowBox[{"{",
- RowBox[{
- RowBox[{"{",
- RowBox[{"35", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"10", ",", "10"}], "}"}]}], "}"}]}]}], "]"}]}]], "Input",
- CellID->102096636],
-
-Cell[TextData[{
- Cell[BoxData[
- ButtonBox["IntrinsicRelaxation",
- BaseStyle->"Link",
- ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]],
- " and ",
- Cell[BoxData[
- ButtonBox["TransitRelaxation",
- BaseStyle->"Link",
- ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
- " supply the matrices describing relaxation due to spontaneous decay and \
-atomic transit, respectively. ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["\[Gamma]", "t"], TraditionalForm]]],
- " is the transit rate."
-}], "Text",
- CellID->610306692],
-
-Cell[BoxData[
- RowBox[{"MatrixForm", "[",
- RowBox[{"relax", "=",
- RowBox[{
- RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+",
- RowBox[{"TransitRelaxation", "[",
- RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
- CellID->645617687],
-
-Cell[TextData[{
- Cell[BoxData[
- ButtonBox["OpticalRepopulation",
- BaseStyle->"Link",
- ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
- " and ",
- Cell[BoxData[
- ButtonBox["TransitRepopulation",
- BaseStyle->"Link",
- ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
- " supply the matrices describing repopulation of the ground state due to \
-spontaneous decay and atomic transit."
-}], "Text",
- CellID->854192725],
-
-Cell[BoxData[
- RowBox[{"MatrixForm", "[",
- RowBox[{"repop", "=",
- RowBox[{
- RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
- RowBox[{"TransitRepopulation", "[",
- RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
- CellID->465762594],
-
-Cell["Here are the evolution equations.", "Text",
- CellID->314466782],
-
-Cell[BoxData[
- RowBox[{"TableForm", "[",
- RowBox[{"eqs0", "=",
- RowBox[{"LiouvilleEquation", "[",
- RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}]}],
- "]"}]], "Input"],
-
-Cell["\<\
-Here we pull useful numerical atomic data for Rb out of the database. These \
-numbers are in omega units, so that the unit \[OpenCurlyDoubleQuote]Hertz\
-\[CloseCurlyDoubleQuote] actually corresponds to rad/s.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{"atomicdata", "=",
- RowBox[{"Join", "[",
- RowBox[{
- RowBox[{"AtomicData", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{"\"\<Rb\>\"", ",", "87", ",",
- RowBox[{"{",
- RowBox[{"\"\<Kr\>\"", ",",
- RowBox[{"{",
- RowBox[{"5", ",", "\"\<s\>\""}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "\"\<S\>\"", ",",
- FractionBox["1", "2"]}], "}"}]}], "}"}], ",",
- RowBox[{"{", "HyperfineA", "}"}], ",",
- RowBox[{"Label", "\[Rule]", "0"}]}], "]"}], ",",
- RowBox[{"AtomicData", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{"\"\<Rb\>\"", ",", "87", ",",
- RowBox[{"{",
- RowBox[{"\"\<Kr\>\"", ",",
- RowBox[{"{",
- RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "\"\<P\>\"", ",",
- FractionBox["1", "2"]}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"HyperfineA", ",", "NaturalWidth"}], "}"}], ",",
- RowBox[{"Label", "\[Rule]", "1"}]}], "]"}], ",",
- RowBox[{"AtomicData", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{"\"\<Rb\>\"", ",", "87", ",",
- RowBox[{"{",
- RowBox[{"\"\<Kr\>\"", ",",
- RowBox[{"{",
- RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "\"\<P\>\"", ",",
- FractionBox["3", "2"]}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"HyperfineA", ",", "HyperfineB", ",", "NaturalWidth"}], "}"}],
- ",",
- RowBox[{"Label", "\[Rule]", "2"}]}], "]"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{"Wavelength", "[", "1", "]"}], "->",
- RowBox[{"1", "/",
- RowBox[{"Wavenumber", "[",
- RowBox[{"{",
- RowBox[{"\"\<Rb\>\"", ",", "87", ",",
- RowBox[{"{",
- RowBox[{"\"\<Kr\>\"", ",",
- RowBox[{"{",
- RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "\"\<P\>\"", ",",
- FractionBox["1", "2"]}], "}"}]}], "}"}], "]"}]}]}], ",",
- RowBox[{
- RowBox[{"Wavelength", "[", "2", "]"}], "->",
- RowBox[{"1", "/",
- RowBox[{"Wavenumber", "[",
- RowBox[{"{",
- RowBox[{"\"\<Rb\>\"", ",", "87", ",",
- RowBox[{"{",
- RowBox[{"\"\<Kr\>\"", ",",
- RowBox[{"{",
- RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "\"\<P\>\"", ",",
- FractionBox["3", "2"]}], "}"}]}], "}"}], "]"}]}]}]}], "}"}]}],
- "]"}]}]], "Input"],
-
-Cell[TextData[{
- "Here we find DM elements that are always identically zero, so we can remove \
-them from the evolution equations. We put in sample values for all of the \
-parameters, use the values for the atomic data from above, and set time \
-derivatives to zero with ",
- Cell[BoxData[
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"s1_", ",", "s2_"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Rule]", "0"}]]],
- " to find the steady state. "
-}], "Text"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"sol", "=",
- RowBox[{
- RowBox[{"NSolve", "[",
- RowBox[{
- RowBox[{"Evaluate", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"eqs0", "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Phi]", "_"], "\[Rule]", "1."}], ",",
- RowBox[{"\[Delta]k", "\[Rule]", "0"}], ",",
- RowBox[{"\[Delta]\[Omega]", "\[Rule]", "0"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "1"], "\[Rule]",
- SuperscriptBox["10", "11"]}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "2"], "\[Rule]",
- RowBox[{"2.", " ",
- SuperscriptBox["10", "10"]}]}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "_"], "\[Rule]",
- SuperscriptBox["10", "10"]}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "_"], "\[Rule]",
- RowBox[{"1.", " ",
- SuperscriptBox["10", "7"]}]}], ",",
- RowBox[{"\[Gamma]t", "\[Rule]", "10."}], ",",
- RowBox[{"\[CapitalOmega]L", "\[Rule]", ".1"}]}], "}"}]}], "/.",
- "atomicdata"}], "/.",
- RowBox[{"Hertz", "\[Rule]", "1"}]}], "/.",
- RowBox[{"Mega", "\[Rule]", "1"}]}], "/.",
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"s1_", ",", "s2_"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Rule]", "0"}]}],
- "]"}], ",",
- RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
- RowBox[{"[", "1", "]"}], "]"}]}], ";"}]], "Input"],
-
-Cell["\<\
-Find the position in the solution list of all of the DM elements that are \
-zero.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{"delpos", "=",
- RowBox[{"Position", "[",
- RowBox[{"sol", ",",
- RowBox[{"_", "\[Rule]",
- RowBox[{"0.", "+",
- RowBox[{"0.", " ", "\[ImaginaryI]"}]}]}]}], "]"}]}]], "Input"],
-
-Cell["\<\
-Find the list of DM elements that correspond to these zero positions.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"delvars", "=",
- RowBox[{"Extract", "[",
- RowBox[{
- RowBox[{"DMVariables", "[", "system", "]"}], ",", "delpos"}], "]"}]}],
- ";"}]], "Input"],
-
-Cell["Create a list of rules to set these DM elements to zero.", "Text"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"delreps", "=",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"(",
- RowBox[{"#", "\[Rule]", "0"}], ")"}], "&"}], "/@", "delvars"}],
- ")"}]}], ";"}]], "Input"],
-
-Cell["\<\
-Find the list of variables corresponding to nonzero DM elements.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{"vars", "=",
- RowBox[{"Delete", "[",
- RowBox[{
- RowBox[{"DMVariables", "[", "system", "]"}], ",", "delpos"}],
- "]"}]}]], "Input"],
-
-Cell["\<\
-Remove all of the zero elements from the evolution equations.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{"TableForm", "[",
- RowBox[{"eqs", "=",
- RowBox[{"Delete", "[",
- RowBox[{
- RowBox[{"eqs0", "/.", "delreps"}], ",", "delpos"}], "]"}]}],
- "]"}]], "Input"],
-
-Cell["Initial conditions for the time-dependent case.", "Text"],
-
-Cell[BoxData[
- RowBox[{"inits", "=",
- RowBox[{"Delete", "[",
- RowBox[{
- RowBox[{"InitialConditions", "[",
- RowBox[{"system", ",",
- RowBox[{"TransitRepopulation", "[",
- RowBox[{"system", ",", "1"}], "]"}], ",", "0"}], "]"}], ",",
- "delpos"}], "]"}]}]], "Input"],
-
-Cell[TextData[{
- "Find equations for the steady state by setting time derivatives to zero. We \
-also substitute in numerical values for natural widths in units of ",
- Cell[BoxData[
- FormBox[
- SuperscriptBox["10", "6"], TraditionalForm]]],
- " rad/s."
-}], "Text"],
-
-Cell[BoxData[
- RowBox[{"steadyeqs", "=",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"eqs", "/.",
- RowBox[{
- SubscriptBox["\[Phi]", "_"], "\[Rule]", "0"}]}], "/.", "atomicdata"}],
- "/.",
- RowBox[{"Hertz", "\[Rule]", "1"}]}], "/.",
- RowBox[{"Mega", "\[Rule]", "1"}]}], "/.",
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"s1_", ",", "s2_"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Rule]",
- "0"}]}]}]], "Input"],
-
-Cell[TextData[{
- "Here we find expressions for the fractional absorption (change in \
-electric-field amplitude) and phase shift of the probe light per unit path \
-length and unit atomic density, i.e., ",
- Cell[BoxData[
- FormBox[
- RowBox[{"{",
- RowBox[{
- FractionBox["1",
- SubscriptBox["\[ScriptCapitalE]", "0"]],
- FractionBox[
- SubscriptBox["d\[ScriptCapitalE]", "0"],
- RowBox[{
- SubscriptBox["n", "0"], " ", "d\[ScriptL]"}]]}]}], TraditionalForm]]],
- ",",
- Cell[BoxData[
- FormBox[
- FractionBox["d\[Phi]",
- RowBox[{
- SubscriptBox["n", "0"], " ", "d\[ScriptL]"}]], TraditionalForm]]],
- "}. These correspond to the imaginary and real parts of the index of \
-refraction, respectively. Since the probe light does not interact with the D2 \
-transition, we set DM elements involving the ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["P",
- RowBox[{"3", "/", "2"}]], TraditionalForm]]],
- " state to zero. We also set the vanishing DM elements found above to zero. \
-We find the expressions for arbitrary ellipticity and then set ellipticity to \
-\[Pi]/4 after simplification in order to avoid an artificial divide by zero \
-problem."
-}], "Text"],
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{
- RowBox[{"Observables", "[",
- RowBox[{"system", ",",
- RowBox[{"Energy", "[", "1", "]"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "2"], "/",
- RowBox[{"ReducedME", "[",
- RowBox[{"0", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "1"}], "]"}]}], ",",
- RowBox[{"{",
- RowBox[{"0", ",", "\[Epsilon]"}], "}"}]}], "]"}], "[",
- RowBox[{"[", "1", "]"}], "]"}], ";"}], "\n",
- RowBox[{"obs0", "=",
- RowBox[{
- RowBox[{"Simplify", "[",
- RowBox[{
- RowBox[{"%", "/.",
- RowBox[{
- RowBox[{
- RowBox[{"DMElementPattern", "[", "]"}], "/;",
- RowBox[{
- RowBox[{"Label2", "\[Equal]", "2"}], "||",
- RowBox[{"F1", "\[Equal]", "2"}]}]}], "\[Rule]", "0"}]}], "/.",
- "delreps"}], "]"}], "/.",
- RowBox[{"\[Epsilon]", "\[Rule]",
- RowBox[{"\[Pi]", "/", "4"}]}]}]}]}], "Input"],
-
-Cell["\<\
-Calculate linear probe absorption with weak probe light on resonance and no \
-pump to find reference level\
-\>", "Text"],
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{"params", "=",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "1"], "\[Rule]", "0"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "2"], "\[Rule]", ".00001"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "3"], "\[Rule]", "0"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "4"], "\[Rule]", "0"}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "2"], "\[Rule]", "0"}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "1"], "\[Rule]", "0"}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "3"], "\[Rule]", "0"}], ",",
- RowBox[{"\[Gamma]t", "\[Rule]", ".0001"}], ",",
- RowBox[{"\[CapitalOmega]L", "\[Rule]", "0"}]}], "}"}]}],
- ";"}], "\[IndentingNewLine]",
- RowBox[{"linabs", "=",
- RowBox[{
- RowBox[{
- RowBox[{"-",
- RowBox[{"obs0", "[",
- RowBox[{"[", "1", "]"}], "]"}]}], "/.",
- RowBox[{"Chop", "@",
- RowBox[{
- RowBox[{"NSolve", "[",
- RowBox[{
- RowBox[{"Evaluate", "[",
- RowBox[{"steadyeqs", "/.", "params"}], "]"}], ",", "vars"}], "]"}],
- "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}]}], "/.",
- "params"}]}]}], "Input"],
-
-Cell["\<\
-Divide fractional absorption and phase shift by the linear absorption per \
-unit length to find observables per absorption length.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{"obs", "=",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- RowBox[{"-", "1"}], ",", "1"}], "}"}],
- RowBox[{"obs0", "/", "linabs"}]}]}]], "Input"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell["Plot steady-state results", "Section"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"SetOptions", "[",
- RowBox[{"ListLinePlot", ",",
- RowBox[{"Frame", "\[Rule]", "True"}], ",",
- RowBox[{"Axes", "\[Rule]", "False"}], ",",
- RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ";"}]], "Input"],
-
-Cell["\<\
-Here we set parameters and plot the fractional absorption and phase shift of \
-the probe light per absorption length, corresponding to imaginary and real \
-parts of the index of refraction, respectively, as a function of probe \
-detuning.\
-\>", "Text"],
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{"params", "=",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "1"], "\[Rule]", "100."}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "2"], "\[Rule]", ".01"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "3"], "\[Rule]", "10."}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "4"], "\[Rule]", "0."}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "2"], "\[Rule]", "d"}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "1"], "\[Rule]", "0"}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "3"], "\[Rule]", "0"}], ",",
- RowBox[{"\[Gamma]t", "\[Rule]", ".1"}], ",",
- RowBox[{"\[CapitalOmega]L", "\[Rule]", "0."}]}], "}"}]}],
- ";"}], "\[IndentingNewLine]",
- RowBox[{
- RowBox[{"steadyeqs1", "=",
- RowBox[{"steadyeqs", "/.", "params"}]}], ";"}], "\[IndentingNewLine]",
- RowBox[{
- RowBox[{"table", "=",
- RowBox[{"Table", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"{",
- RowBox[{"d", ",", "obs"}], "}"}], "/.",
- RowBox[{"Chop", "@",
- RowBox[{
- RowBox[{"NSolve", "[",
- RowBox[{"steadyeqs1", ",", "vars"}], "]"}], "\[LeftDoubleBracket]",
- "1", "\[RightDoubleBracket]"}]}]}], "/.", "params"}], ",",
- RowBox[{"{",
- RowBox[{"d", ",",
- RowBox[{"-", "200"}], ",", "200", ",", "2"}], "}"}]}], "]"}]}],
- ";"}], "\[IndentingNewLine]",
- RowBox[{"ListLinePlot", "[",
- RowBox[{"Transpose", "[",
- RowBox[{"{",
- RowBox[{
- RowBox[{"table", "[",
- RowBox[{"[",
- RowBox[{"All", ",", "1"}], "]"}], "]"}], ",",
- RowBox[{"table", "[",
- RowBox[{"[",
- RowBox[{"All", ",", "2", ",", "1"}], "]"}], "]"}]}], "}"}], "]"}],
- "]"}], "\[IndentingNewLine]",
- RowBox[{"ListLinePlot", "[",
- RowBox[{"Transpose", "[",
- RowBox[{"{",
- RowBox[{
- RowBox[{"table", "[",
- RowBox[{"[",
- RowBox[{"All", ",", "1"}], "]"}], "]"}], ",",
- RowBox[{"table", "[",
- RowBox[{"[",
- RowBox[{"All", ",", "2", ",", "2"}], "]"}], "]"}]}], "}"}], "]"}],
- "]"}]}], "Input"],
-
-Cell["Plot atomic populations for a given set of parameters.", "Text"],
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{"params", "=",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "1"], "\[Rule]", "10"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "2"], "\[Rule]", ".01"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "3"], "\[Rule]", "1."}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "4"], "\[Rule]", "0."}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "2"], "\[Rule]", "0"}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "1"], "\[Rule]", "0"}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "3"], "\[Rule]", "0"}], ",",
- RowBox[{"\[Gamma]t", "\[Rule]", ".1"}], ",",
- RowBox[{"\[CapitalOmega]L", "\[Rule]", "0."}]}], "}"}]}],
- ";"}], "\[IndentingNewLine]",
- RowBox[{
- RowBox[{"steadyeqs1", "=",
- RowBox[{"steadyeqs", "/.", "params"}]}], ";"}], "\[IndentingNewLine]",
- RowBox[{
- RowBox[{"sol", "=",
- RowBox[{
- RowBox[{"Chop", "@",
- RowBox[{
- RowBox[{"NSolve", "[",
- RowBox[{"steadyeqs1", ",", "vars"}], "]"}], "\[LeftDoubleBracket]",
- "1", "\[RightDoubleBracket]"}]}], "/.", "params"}]}], ";"}], "\n",
- RowBox[{"LevelDiagram", "[",
- RowBox[{"system", ",",
- RowBox[{
- RowBox[{
- RowBox[{"Hrwa", "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Delta]", "1"], "\[Rule]",
- RowBox[{"-", "\[Omega]1res"}]}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "2"], "\[Rule]",
- RowBox[{"-", "\[Omega]2res"}]}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "3"], "\[Rule]",
- RowBox[{"-", "\[Omega]3res"}]}]}], "}"}]}], "/.", "params"}], "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{"Energy", "[", "0", "]"}], "\[Rule]", "0"}], ",",
- RowBox[{
- RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", "2"}], ",",
- RowBox[{
- RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", "3"}], ",",
- RowBox[{
- RowBox[{"HyperfineA", "[", "_", "]"}], "\[Rule]", ".2"}], ",",
- RowBox[{
- RowBox[{"HyperfineB", "[", "_", "]"}], "\[Rule]", ".1"}], ",",
- RowBox[{"\[CapitalOmega]L", "\[Rule]", "0"}]}], "}"}]}], ",",
- RowBox[{
- RowBox[{
- RowBox[{"DensityMatrix", "[", "system", "]"}], "/.", "sol"}], "/.",
- RowBox[{
- RowBox[{"DMElementPattern", "[", "]"}], "\[Rule]", "0"}]}], ",",
- RowBox[{"ParityOffset", "\[Rule]", "False"}], ",",
- RowBox[{"Epilog", "\[Rule]",
- RowBox[{"{",
- RowBox[{
- RowBox[{"Text", "[",
- RowBox[{
- RowBox[{"Style", "[",
- RowBox[{
- "\"\<\!\(\*SuperscriptBox[\(\[VeryThinSpace]\), \
-\(2\)]\)\!\(\*SubscriptBox[\(S\), \(1/2\)]\)\>\"", ",",
- RowBox[{"SingleLetterItalics", "\[Rule]", "False"}]}], "]"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"-", "2.9"}], ",", "0"}], "}"}]}], "]"}], ",",
- RowBox[{"Text", "[",
- RowBox[{
- RowBox[{"Style", "[",
- RowBox[{
- "\"\<\!\(\*SuperscriptBox[\(\[VeryThinSpace]\), \
-\(2\)]\)\!\(\*SubscriptBox[\(P\), \(1/2\)]\)\>\"", ",",
- RowBox[{"SingleLetterItalics", "\[Rule]", "False"}]}], "]"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"-", "2.9"}], ",", "1.6"}], "}"}]}], "]"}], ",",
- RowBox[{"Text", "[",
- RowBox[{
- RowBox[{"Style", "[",
- RowBox[{
- "\"\<\!\(\*SuperscriptBox[\(\[VeryThinSpace]\), \
-\(2\)]\)\!\(\*SubscriptBox[\(P\), \(3/2\)]\)\>\"", ",",
- RowBox[{"SingleLetterItalics", "\[Rule]", "False"}]}], "]"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"-", "2.9"}], ",", "2.7"}], "}"}]}], "]"}]}], "}"}]}], ",",
- RowBox[{"ImageSize", "\[Rule]",
- RowBox[{"3.5", " ", "72"}]}], ",",
- RowBox[{"ImagePadding", "\[Rule]",
- RowBox[{"{",
- RowBox[{
- RowBox[{"{",
- RowBox[{"35", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"10", ",", "10"}], "}"}]}], "}"}]}], ",",
- RowBox[{"PopulationStyle", "\[Rule]",
- RowBox[{"PointSize", "[", ".018", "]"}]}]}], "]"}]}], "Input"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell["\<\
-Eliminate conjugate DM variables\
-\>", "Section"],
-
-Cell[BoxData[{
- RowBox[{"delvars1", "=",
- RowBox[{"Intersection", "[",
- RowBox[{"vars", ",",
- RowBox[{"Cases", "[",
- RowBox[{"vars", ",",
- RowBox[{
- RowBox[{
- RowBox[{"DMElementPattern", "[", "]"}], "/;",
- RowBox[{"!",
- RowBox[{"OrderedQ", "[",
- RowBox[{"{",
- RowBox[{"State2", ",", "State1"}], "}"}], "]"}]}]}], "\[Rule]",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"State2", ",", "State1"}]], "[", "t", "]"}]}]}], "]"}]}],
- "]"}]}], "\[IndentingNewLine]",
- RowBox[{"delpos1", "=",
- RowBox[{"Flatten", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"Position", "[",
- RowBox[{"vars", ",", "#"}], "]"}], "&"}], "/@", "%"}], ",", "1"}],
- "]"}]}], "\[IndentingNewLine]",
- RowBox[{"vars1", "=",
- RowBox[{"Delete", "[",
- RowBox[{"vars", ",", "delpos1"}], "]"}]}]}], "Input"],
-
-Cell[BoxData[
- RowBox[{"delreps1", "=",
- RowBox[{"delvars1", "/.",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"s1_", ",", "s2_"}]], "[", "t", "]"}], "\[Rule]",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"s1", ",", "s2"}]], "[", "t", "]"}], "\[Rule]",
- RowBox[{"Conjugate", "[",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"s2", ",", "s1"}]], "[", "t", "]"}], "]"}]}],
- ")"}]}]}]}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"eqs1", "=",
- RowBox[{
- RowBox[{"Delete", "[",
- RowBox[{"eqs", ",", "delpos1"}], "]"}], "/.", "delreps1"}]}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"inits1", "=",
- RowBox[{"Delete", "[",
- RowBox[{"inits", ",", "delpos1"}], "]"}]}]], "Input"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell["Convert equations to XMDS form", "Section"],
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"Join", "[",
- RowBox[{"atomicdata", ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"rt6", "==",
- RowBox[{"N", "[",
- SqrtBox["6"], "]"}]}], ",",
- RowBox[{"rt3", "==",
- RowBox[{"N", "[",
- SqrtBox["3"], "]"}]}], ",",
- RowBox[{"rt2", "==",
- RowBox[{"N", "[",
- SqrtBox["2"], "]"}]}]}], "}"}]}], "]"}], "/.",
- RowBox[{"Mega", "\[Rule]",
- SuperscriptBox["10", "6"]}]}], "/.",
- RowBox[{"Hertz", "\[Rule]", "1"}]}], "/.",
- RowBox[{"Centimeter", "\[Rule]", "1"}]}], "/.",
- RowBox[{"Rule", "\[Rule]", "Equal"}]}], "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{"NaturalWidth", "\[Rule]", "g"}], ",",
- RowBox[{"HyperfineA", "\[Rule]", "ha"}], ",",
- RowBox[{"HyperfineB", "\[Rule]", "hb"}], ",",
- RowBox[{"Wavelength", "\[Rule]", "lambda"}]}],
- "}"}]}], "\[IndentingNewLine]",
- RowBox[{"StringReplace", "[",
- RowBox[{
- RowBox[{"StringJoin", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"ToString", "@",
- RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], "&"}], "/@",
- "%"}], "]"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",",
- RowBox[{
- RowBox[{"Shortest", "[",
- RowBox[{
- "\"\<dr(\>\"", "~~", "a__", "~~", "\"\<,\>\"", "~~", "b__", "~~",
- "\"\<)\>\""}], "]"}], ":>",
- RowBox[{"\"\<dr\>\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}],
- ",",
- RowBox[{
- RowBox[{"Shortest", "[",
- RowBox[{
- "\"\<r(\>\"", "~~", "a__", "~~", "\"\<,\>\"", "~~", "b__", "~~",
- "\"\<)\>\""}], "]"}], ":>",
- RowBox[{"\"\<r\>\"", "<>", "a", "<>", "b"}]}], ",",
- RowBox[{
- RowBox[{"\"\<ha(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<ha\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<hb(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<hb\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<lambda(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<lambda\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<g(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<g\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<W(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<E\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<Wc(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<Ec\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<d(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<d\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"],
-
-Cell[BoxData[
- RowBox[{"Export", "[",
- RowBox[{
- RowBox[{"ToFileName", "[",
- RowBox[{
- RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\<Constants.txt\>\""}],
- "]"}], ",", "%"}], "]"}]], "Input"],
-
-Cell["Convert equations to C form", "Text"],
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{
- RowBox[{"{",
- RowBox[{
- RowBox[{"Label", "[", "#", "]"}], ",",
- RowBox[{"F", "[", "#", "]"}], ",",
- RowBox[{"M", "[", "#", "]"}]}], "}"}], "&"}], "/@",
- "system"}], "\[IndentingNewLine]",
- RowBox[{"labelrep", "=",
- RowBox[{"Table", "[",
- RowBox[{
- RowBox[{
- RowBox[{"%", "[",
- RowBox[{"[", "i", "]"}], "]"}], "\[Rule]",
- RowBox[{"ToString", "@",
- RowBox[{"PaddedForm", "[",
- RowBox[{"i", ",", "2", ",",
- RowBox[{"NumberPadding", "\[Rule]",
- RowBox[{"{",
- RowBox[{"\"\<0\>\"", ",", "\"\<\>\""}], "}"}]}], ",",
- RowBox[{"NumberSigns", "\[Rule]",
- RowBox[{"{",
- RowBox[{"\"\<\>\"", ",", "\"\<\>\""}], "}"}]}]}], "]"}]}]}], ",",
- RowBox[{"{",
- RowBox[{"i", ",",
- RowBox[{"Length", "@", "%"}]}], "}"}]}], "]"}]}]}], "Input"],
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"Join", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- RowBox[{"rt6", "==",
- RowBox[{"N", "[",
- SqrtBox["6"], "]"}]}], ",",
- RowBox[{"rt3", "==",
- RowBox[{"N", "[",
- SqrtBox["3"], "]"}]}], ",",
- RowBox[{"rt2", "==",
- RowBox[{"N", "[",
- SqrtBox["2"], "]"}]}]}], "}"}], ",", "eqs1"}], "]"}], "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Delta]", "s_"], "\[Rule]",
- RowBox[{
- SubscriptBox["\[Delta]", "s"], "+",
- RowBox[{
- SubscriptBox["k", "s"], "v"}]}]}], ",",
- RowBox[{"\[Delta]\[Omega]", "\[Rule]",
- RowBox[{"\[Delta]\[Omega]", "+",
- RowBox[{"\[Delta]k", " ", "v"}]}]}]}], "}"}]}], "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{"NaturalWidth", "\[Rule]", "g"}], ",",
- RowBox[{"HyperfineA", "\[Rule]", "ha"}], ",",
- RowBox[{"HyperfineB", "\[Rule]", "hb"}], ",",
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"s1_", ",", "s2_"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[RuleDelayed]",
- RowBox[{"dr", "[",
- RowBox[{"s1", ",", "s2"}], "]"}]}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"s1_", ",", "s2_"}]], "[", "t", "]"}], "\[RuleDelayed]",
- RowBox[{"r", "[",
- RowBox[{"s1", ",", "s2"}], "]"}]}], ",",
- RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",",
- RowBox[{"\[CapitalOmega]L", "\[Rule]", "WL"}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "i_"], "\[Rule]",
- RowBox[{"d", "[", "i", "]"}]}], ",",
- RowBox[{
- SubscriptBox["k", "i_"], "\[Rule]",
- RowBox[{"k", "[", "i", "]"}]}], ",",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"a_.", "+",
- RowBox[{"\[ImaginaryI]", " ",
- SubscriptBox["\[Phi]", "i_"]}]}]], "\[Rule]",
- RowBox[{
- SuperscriptBox["\[ExponentialE]", "a"],
- RowBox[{
- RowBox[{"W", "[", "i", "]"}], "/",
- SubscriptBox["\[CapitalOmega]", "i"]}]}]}], ",",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"a_.", "-",
- RowBox[{"\[ImaginaryI]", " ",
- SubscriptBox["\[Phi]", "i_"]}]}]], "\[Rule]",
- RowBox[{
- SuperscriptBox["\[ExponentialE]", "a"],
- RowBox[{
- RowBox[{"Wc", "[", "i", "]"}], "/",
- SubscriptBox["\[CapitalOmega]", "i"]}]}]}]}], "}"}]}], "/.",
- "labelrep"}], "/.",
- RowBox[{
- RowBox[{"Power", "[",
- RowBox[{"E", ",", "b_"}], "]"}], "\[Rule]",
- RowBox[{"exp", "[", "b", "]"}]}]}], "/.",
- RowBox[{"Conjugate", "\[Rule]", "conj"}]}], "/.",
- RowBox[{
- RowBox[{"Complex", "[",
- RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]",
- RowBox[{"a", " ", "i"}]}]}], "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{"1", "/",
- SqrtBox["6"]}], "\[Rule]",
- RowBox[{"1", "/", "rt6"}]}], ",",
- RowBox[{
- RowBox[{"1", "/",
- SqrtBox["3"]}], "\[Rule]",
- RowBox[{"1", "/", "rt3"}]}], ",",
- RowBox[{
- RowBox[{"1", "/",
- SqrtBox["2"]}], "\[Rule]",
- RowBox[{"1", "/", "rt2"}]}]}], "}"}]}], "\[IndentingNewLine]",
- RowBox[{"StringReplace", "[",
- RowBox[{
- RowBox[{"StringJoin", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"ToString", "@",
- RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], "&"}], "/@",
- "%"}], "]"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",",
- RowBox[{
- RowBox[{"Shortest", "[",
- RowBox[{
- "\"\<dr(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__",
- "~~", "\"\<\\\")\>\""}], "]"}], ":>",
- RowBox[{"\"\<dr\>\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}],
- ",",
- RowBox[{
- RowBox[{"Shortest", "[",
- RowBox[{
- "\"\<r(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__",
- "~~", "\"\<\\\")\>\""}], "]"}], ":>",
- RowBox[{"\"\<r\>\"", "<>", "a", "<>", "b"}]}], ",",
- RowBox[{
- RowBox[{"\"\<ha(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<ha\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<hb(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<hb\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<g(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<g\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<W(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<E\>\"", "<>", "a", "<>", "\"\<a\>\""}]}], ",",
- RowBox[{
- RowBox[{"\"\<Wc(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<E\>\"", "<>", "a", "<>", "\"\<ac\>\""}]}], ",",
- RowBox[{
- RowBox[{"\"\<d(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<delta\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<k(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<Kvec\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"],
-
-Cell[BoxData[
- RowBox[{"Export", "[",
- RowBox[{
- RowBox[{"ToFileName", "[",
- RowBox[{
- RowBox[{"NotebookDirectory", "[", "]"}], ",",
- "\"\<RbEquations.txt\>\""}], "]"}], ",", "%"}], "]"}]], "Input"],
-
-Cell["Convert initial conditions to c form.", "Text"],
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"inits1", "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Delta]", "s_"], "\[Rule]",
- RowBox[{
- SubscriptBox["\[Delta]", "s"], "+",
- RowBox[{
- SubscriptBox["k", "s"], "v"}]}]}], ",",
- RowBox[{"\[Delta]\[Omega]", "\[Rule]",
- RowBox[{"\[Delta]\[Omega]", "+",
- RowBox[{"\[Delta]k", " ", "v"}]}]}]}], "}"}]}], "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{"NaturalWidth", "\[Rule]", "g"}], ",",
- RowBox[{"HyperfineA", "\[Rule]", "ha"}], ",",
- RowBox[{"HyperfineB", "\[Rule]", "hb"}], ",",
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"s1_", ",", "s2_"}]], "\[Prime]",
- MultilineFunction->None], "[", "t_", "]"}], "\[RuleDelayed]",
- RowBox[{"dr", "[",
- RowBox[{"s1", ",", "s2"}], "]"}]}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"s1_", ",", "s2_"}]], "[", "t_", "]"}], "\[RuleDelayed]",
- RowBox[{"r", "[",
- RowBox[{"s1", ",", "s2"}], "]"}]}], ",",
- RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",",
- RowBox[{
- SubscriptBox["\[Delta]", "i_"], "\[Rule]",
- RowBox[{"d", "[", "i", "]"}]}], ",",
- RowBox[{
- SubscriptBox["k", "i_"], "\[Rule]",
- RowBox[{"k", "[", "i", "]"}]}], ",",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"a_.", "+",
- RowBox[{"\[ImaginaryI]", " ",
- SubscriptBox["\[Phi]", "i_"]}]}]], "\[Rule]",
- RowBox[{
- SuperscriptBox["\[ExponentialE]", "a"],
- RowBox[{
- RowBox[{"W", "[", "i", "]"}], "/",
- SubscriptBox["\[CapitalOmega]", "i"]}]}]}], ",",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"a_.", "-",
- RowBox[{"\[ImaginaryI]", " ",
- SubscriptBox["\[Phi]", "i_"]}]}]], "\[Rule]",
- RowBox[{
- SuperscriptBox["\[ExponentialE]", "a"],
- RowBox[{
- RowBox[{"Wc", "[", "i", "]"}], "/",
- SubscriptBox["\[CapitalOmega]", "i"]}]}]}]}], "}"}]}], "/.",
- "labelrep"}], "/.",
- RowBox[{
- RowBox[{"Power", "[",
- RowBox[{"E", ",", "b_"}], "]"}], "\[Rule]",
- RowBox[{"exp", "[", "b", "]"}]}]}], "/.",
- RowBox[{
- RowBox[{"Complex", "[",
- RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]",
- RowBox[{"a", " ", "i"}]}]}], "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{"1", "/",
- SqrtBox["6"]}], "\[Rule]",
- RowBox[{"1", "/", "rt6"}]}], ",",
- RowBox[{
- RowBox[{"1", "/",
- SqrtBox["3"]}], "\[Rule]",
- RowBox[{"1", "/", "rt3"}]}], ",",
- RowBox[{
- RowBox[{"1", "/",
- SqrtBox["2"]}], "\[Rule]",
- RowBox[{"1", "/", "rt2"}]}]}], "}"}]}], "\[IndentingNewLine]",
- RowBox[{"StringReplace", "[",
- RowBox[{
- RowBox[{"StringJoin", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"ToString", "@",
- RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], "&"}], "/@",
- "%"}], "]"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",",
- RowBox[{
- RowBox[{"Shortest", "[",
- RowBox[{
- "\"\<dr(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__",
- "~~", "\"\<\\\")\>\""}], "]"}], ":>",
- RowBox[{"\"\<dr\>\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}],
- ",",
- RowBox[{
- RowBox[{"Shortest", "[",
- RowBox[{
- "\"\<r(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__",
- "~~", "\"\<\\\")\>\""}], "]"}], ":>",
- RowBox[{"\"\<complex r\>\"", "<>", "a", "<>", "b"}]}], ",",
- RowBox[{
- RowBox[{"\"\<ha(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<ha\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<hb(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<hb\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<g(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<g\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<W(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<E\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<Wc(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<Ec\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<d(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<d\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<k(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<k\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"],
-
-Cell[BoxData[
- RowBox[{"Export", "[",
- RowBox[{
- RowBox[{"ToFileName", "[",
- RowBox[{
- RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\<RbInits.txt\>\""}],
- "]"}], ",", "%"}], "]"}]], "Input"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell["Find propagation equations", "Section"],
-
-Cell["Here we find the propagation equations.", "Text"],
-
-Cell["\<\
-First, for each field 1--4, extract the list of sublevels that the field is \
-assumed to interact with.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{"transitioncriteria", "=",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"Label", "\[Equal]", "0"}], "&&",
- RowBox[{"F", "\[Equal]", "2"}]}], "||",
- RowBox[{
- RowBox[{"Label", "\[Equal]", "1"}], "&&",
- RowBox[{"F", "\[Equal]", "1"}]}]}], ",",
- RowBox[{
- RowBox[{
- RowBox[{"Label", "\[Equal]", "0"}], "&&",
- RowBox[{"F", "\[Equal]", "1"}]}], "||",
- RowBox[{
- RowBox[{"Label", "\[Equal]", "1"}], "&&",
- RowBox[{"F", "\[Equal]", "1"}]}]}], ",",
- RowBox[{
- RowBox[{
- RowBox[{"Label", "\[Equal]", "0"}], "&&",
- RowBox[{"F", "\[Equal]", "1"}]}], "||",
- RowBox[{
- RowBox[{"Label", "\[Equal]", "2"}], "&&",
- RowBox[{"F", "\[Equal]", "2"}]}]}], ",",
- RowBox[{
- RowBox[{
- RowBox[{"Label", "\[Equal]", "0"}], "&&",
- RowBox[{"F", "\[Equal]", "2"}]}], "||",
- RowBox[{
- RowBox[{"Label", "\[Equal]", "2"}], "&&",
- RowBox[{"F", "\[Equal]", "2"}]}]}]}], "}"}]}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"subsys", "=",
- RowBox[{"Table", "[",
- RowBox[{
- RowBox[{"SelectStates", "[",
- RowBox[{"system", ",",
- RowBox[{"transitioncriteria", "[",
- RowBox[{"[", "k", "]"}], "]"}]}], "]"}], ",",
- RowBox[{"{",
- RowBox[{"k", ",",
- RowBox[{"Length", "[", "transitioncriteria", "]"}]}], "}"}]}],
- "]"}]}]], "Input"],
-
-Cell["\<\
-The reduced matrix elements corresponding to the transition for each field.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"rmes", "=",
- RowBox[{"{",
- RowBox[{
- RowBox[{"ReducedME", "[",
- RowBox[{"0", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "1"}], "]"}], ",", " ",
- RowBox[{"ReducedME", "[",
- RowBox[{"0", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "1"}], "]"}], ",", " ",
- RowBox[{"ReducedME", "[",
- RowBox[{"0", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], ",", " ",
- RowBox[{"ReducedME", "[",
- RowBox[{"0", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}], "}"}]}],
- ";"}]], "Input"],
-
-Cell[TextData[{
- "The first-order wave equation is given in terms of the rotating-frame \
-density matrix by\n\t",
- Cell[BoxData[
- FormBox[
- RowBox[{
- RowBox[{
- FractionBox[
- RowBox[{"\[PartialD]",
- SubscriptBox[
- StyleBox["E",
- FontWeight->"Bold",
- FontSlant->"Plain"], "0"]}],
- RowBox[{"\[PartialD]", "z"}]], "+",
- RowBox[{
- FractionBox["1", "c"],
- FractionBox[
- RowBox[{"\[PartialD]",
- SubscriptBox[
- StyleBox["E",
- FontWeight->"Bold",
- FontSlant->"Plain"], "0"]}],
- RowBox[{"\[PartialD]", "t"}]]}]}], "=",
- RowBox[{
- FractionBox[
- RowBox[{"4", "\[Pi]", " ", "\[ImaginaryI]", " ", "\[Omega]", " ", "n"}],
- "c"],
- RowBox[{
- UnderscriptBox["\[Sum]",
- RowBox[{"m", "<", "n"}]],
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"n", ",", "m"}]],
- SubscriptBox[
- StyleBox["d",
- FontWeight->"Bold",
- FontSlant->"Plain"],
- RowBox[{"m", ",", "n"}]], " "}]}]}]}], TraditionalForm]]]
-}], "Text"],
-
-Cell[TextData[{
- "First we calculate the right-hand side. Here are the covariant spherical \
-components of ",
- Cell[BoxData[
- FormBox[
- RowBox[{
- UnderscriptBox["\[Sum]",
- RowBox[{"m", "<", "n"}]],
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"n", ",", "m"}]],
- SubscriptBox[
- StyleBox["d",
- FontWeight->"Bold",
- FontSlant->"Plain"],
- RowBox[{"m", ",", "n"}]]}]}], TraditionalForm]]],
- " for each of the four transitions, in terms of the reduced dipole matrix \
-element ||d||."
-}], "Text"],
-
-Cell[BoxData[
- RowBox[{"polarizationcomponents1", "=",
- RowBox[{
- RowBox[{"Table", "[",
- RowBox[{
- RowBox[{"Sum", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"DensityMatrix", "[",
- RowBox[{
- "subsys", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}],
- "]"}], "\[LeftDoubleBracket]",
- RowBox[{"n", ",", "m"}], "\[RightDoubleBracket]"}],
- RowBox[{"WignerEckart", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- "subsys", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}],
- "\[LeftDoubleBracket]", "m", "\[RightDoubleBracket]"}], ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",",
- RowBox[{
- RowBox[{
- "subsys", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}],
- "\[LeftDoubleBracket]", "n", "\[RightDoubleBracket]"}]}], "]"}]}],
- ",",
- RowBox[{"{",
- RowBox[{"n", ",",
- RowBox[{"Length", "[",
- RowBox[{
- "subsys", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}],
- "]"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ",",
- RowBox[{"{",
- RowBox[{"k", ",",
- RowBox[{"Length", "[", "subsys", "]"}]}], "}"}]}], "]"}], "/.",
- "delreps"}]}]], "Input"],
-
-Cell[TextData[{
- "Multiply through by ",
- Cell[BoxData[
- FormBox[
- RowBox[{
- RowBox[{"4", "\[Pi]", " ", "\[ImaginaryI]", " ", "\[Omega]", " ", "n"}],
- " ", "||", "d", "||"}], TraditionalForm]]],
- ", and rewrite ",
- Cell[BoxData[
- FormBox[
- RowBox[{"||", "d",
- SuperscriptBox["||", "2"]}], TraditionalForm]]],
- " in terms of the natural width \[CapitalGamma] of the transition."
-}], "Text"],
-
-Cell[BoxData[
- RowBox[{"polarizationcomponents2", "=",
- RowBox[{"Table", "[",
- RowBox[{
- RowBox[{"Expand", "[",
- RowBox[{"ExpandDipoleRME", "[",
- RowBox[{
- RowBox[{
- "subsys", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}], ",",
- RowBox[{
- RowBox[{
- RowBox[{"4", "\[Pi]", " ", "\[ImaginaryI]", " ",
- RowBox[{"Energy", "[",
- RowBox[{"Last", "[",
- RowBox[{
- "rmes", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}],
- "]"}], "]"}], " ", "n0", " ",
- RowBox[{
- "rmes", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}], " ",
- RowBox[{
- "polarizationcomponents1", "\[LeftDoubleBracket]", "k",
- "\[RightDoubleBracket]"}]}], "/.", "delreps"}], "/.",
- "delreps1"}]}], "]"}], "]"}], ",",
- RowBox[{"{",
- RowBox[{"k", ",",
- RowBox[{"Length", "[", "subsys", "]"}]}], "}"}]}], "]"}]}]], "Input"],
-
-Cell[TextData[{
- "Make the substitution ",
- Cell[BoxData[
- FormBox[
- RowBox[{
- SubscriptBox["\[Eta]", "s"], "=",
- FractionBox[
- RowBox[{"3",
- SubsuperscriptBox["\[Lambda]", "s", "2"],
- SubscriptBox["\[CapitalGamma]", "s"], "n"}],
- RowBox[{"4", "\[Pi]"}]]}], TraditionalForm]]],
- "."
-}], "Text"],
-
-Cell[BoxData[
- RowBox[{"polarizationcomponents3", "=",
- RowBox[{
- RowBox[{
- RowBox[{"polarizationcomponents2", "/.",
- RowBox[{
- RowBox[{"Energy", "[", "s_", "]"}], "\[Rule]",
- RowBox[{"2",
- RowBox[{"\[Pi]", "/",
- RowBox[{"\[Lambda]", "[", "s", "]"}]}]}]}]}], "/.",
- RowBox[{
- RowBox[{"NaturalWidth", "[", "s_", "]"}], "\[Rule]",
- RowBox[{"4", "\[VeryThinSpace]", "\[Pi]", " ",
- RowBox[{
- RowBox[{"\[Eta]", "[", "s", "]"}], "/",
- RowBox[{"(",
- RowBox[{"n0", " ",
- SuperscriptBox[
- RowBox[{"\[Lambda]", "[", "s", "]"}], "2"], "3"}], ")"}]}]}]}]}], "//",
- "Simplify"}]}]], "Input"],
-
-Cell["\<\
-Cartesian components of the amplitude of each of the 4 fields.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{"fieldcomponents1", "=",
- RowBox[{"Table", "[",
- RowBox[{
- RowBox[{"field", "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["k", "_"], "\[Rule]", "0"}], ",",
- RowBox[{"t", "\[Rule]", "0"}], ",",
- RowBox[{
- SubscriptBox["\[Phi]", "_"], "\[Rule]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "s_"], "/;",
- RowBox[{"i", "\[NotEqual]", "s"}]}], "\[Rule]", "0"}]}], "}"}]}],
- ",",
- RowBox[{"{",
- RowBox[{"i", ",", "4"}], "}"}]}], "]"}]}]], "Input"],
-
-Cell["\<\
-Convert to covariant spherical components and multiply by ||d||.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{"fieldcomponents2", "=",
- RowBox[{
- RowBox[{
- RowBox[{"ToCovariant", "/@", "fieldcomponents1"}], " ", "rmes"}], "/.",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "s_"], "->",
- RowBox[{
- SubscriptBox["\[CapitalOmega]", "s"], "[", "z", "]"}]}]}]}]], "Input"],
-
-Cell["\<\
-Find propagation equations using the spherical components of the polarization \
-and fields. Here we leave out the time-derivative term, which we will add in \
-below.\
-\>", "Text"],
-
-Cell[BoxData[
- RowBox[{"propeqs", "=",
- RowBox[{
- RowBox[{
- RowBox[{"Solve", "[",
- RowBox[{
- RowBox[{
- RowBox[{"D", "[",
- RowBox[{"fieldcomponents2", ",", "z"}], "]"}], "==",
- RowBox[{"Simplify", "@", "polarizationcomponents3"}]}], ",",
- RowBox[{"Table", "[",
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[CapitalOmega]", "i"], "\[Prime]",
- MultilineFunction->None], "[", "z", "]"}], ",",
- RowBox[{"{",
- RowBox[{"i", ",", "4"}], "}"}]}], "]"}]}], "]"}], "[",
- RowBox[{"[", "1", "]"}], "]"}], "/.",
- RowBox[{"Rule", "\[Rule]", "Equal"}]}]}]], "Input"],
-
-Cell["Convert propagation equations to c form.", "Text"],
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"propeqs", "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{"\[Eta]", "\[Rule]", "eta"}], ",",
- RowBox[{"NaturalWidth", "\[Rule]", "g"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"s1_", ",", "s2_"}]], "[", "t", "]"}], "\[RuleDelayed]",
- RowBox[{"r", "[",
- RowBox[{"s1", ",", "s2"}], "]"}]}], ",",
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[CapitalOmega]", "i_"], "\[Prime]",
- MultilineFunction->None], "[", "z", "]"}], "\[Rule]",
- RowBox[{"dW", "[", "i", "]"}]}]}], "}"}]}], "/.", "labelrep"}], "/.",
- RowBox[{
- RowBox[{"Complex", "[",
- RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]",
- RowBox[{"a", " ", "i"}]}]}], "/.",
- RowBox[{"Conjugate", "\[Rule]", "conj"}]}], "/.",
- RowBox[{
- RowBox[{"a", ":",
- RowBox[{"Power", "[",
- RowBox[{
- RowBox[{"_", "?", "NumericQ"}], ",", "_"}], "]"}]}], "\[RuleDelayed]",
- RowBox[{"N", "[", "a", "]"}]}]}], "//",
- "Simplify"}], "\[IndentingNewLine]",
- RowBox[{"StringJoin", "[",
- RowBox[{"Table", "[",
- RowBox[{
- RowBox[{
- RowBox[{"ToString", "@",
- RowBox[{"CForm", "[",
- RowBox[{"%", "[",
- RowBox[{"[", "j", "]"}], "]"}], "]"}]}], "<>", "\"\< - Lt[E\>\"", "<>",
- RowBox[{"ToString", "@", "j"}], "<>", "\"\<];\\n\>\""}], ",",
- RowBox[{"{",
- RowBox[{"j", ",", "4"}], "}"}]}], "]"}], "]"}], "\[IndentingNewLine]",
- RowBox[{"StringReplace", "[",
- RowBox[{"%", ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",",
- RowBox[{
- RowBox[{"\"\<eta(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<eta\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"Shortest", "[",
- RowBox[{
- "\"\<dr(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__",
- "~~", "\"\<\\\")\>\""}], "]"}], ":>",
- RowBox[{"\"\<dr\>\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}],
- ",",
- RowBox[{
- RowBox[{"Shortest", "[",
- RowBox[{
- "\"\<r(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__",
- "~~", "\"\<\\\")\>\""}], "]"}], ":>",
- RowBox[{"\"\<r\>\"", "<>", "a", "<>", "b"}]}], ",",
- RowBox[{
- RowBox[{"\"\<ha(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<ha\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<hb(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<hb\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<g(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<g\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<dW(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<dE\>\"", "<>", "a", "<>", "\"\<_dz\>\""}]}], ",",
- RowBox[{
- RowBox[{"\"\<Wc(\>\"", "~~", "a_", "~~", "\"\<)\>\""}],
- "\[RuleDelayed]",
- RowBox[{"\"\<Ec\>\"", "<>", "a"}]}], ",",
- RowBox[{
- RowBox[{"\"\<d(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]",
- RowBox[{"\"\<d\>\"", "<>", "a"}]}]}], "}"}]}],
- "]"}], "\[IndentingNewLine]",
- RowBox[{"Export", "[",
- RowBox[{
- RowBox[{"ToFileName", "[",
- RowBox[{
- RowBox[{"NotebookDirectory", "[", "]"}], ",",
- "\"\<RbPropEquations.txt\>\""}], "]"}], ",", "%"}], "]"}]}], "Input"]
-}, Open ]]
-},
-WindowSize->{1331, 890},
-WindowMargins->{{0, Automatic}, {Automatic, 3}},
-PrivateNotebookOptions->{"FileOutlineCache"->False},
-ShowSelection->True,
-FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)",
-StyleDefinitions->"Default.nb"
-]
-
+Notebook[{ + +Cell[CellGroupData[{ +Cell["Find evolution equations", "Section"], + +Cell["Load the package.", "Text"], + +Cell[BoxData[ + RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input", + CellGroupingRules->{GroupTogetherGrouping, 10001.}, + CellID->2058623809], + +Cell["Use density matrix variables with explict time dependence.", "Text"], + +Cell[BoxData[ + RowBox[{"SetOptions", "[", + RowBox[{"DensityMatrix", ",", + RowBox[{"TimeDependence", "\[Rule]", "True"}]}], "]"}]], "Input"], + +Cell["\<\ +Pull quantum numbers and other basic info about the states from a database.\ +\>", "Text", + CellID->429217524], + +Cell[BoxData[ + RowBox[{"s12data", "=", + RowBox[{"AtomicData", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\<Rb\>\"", ",", "87", ",", + RowBox[{"{", + RowBox[{"\"\<Kr\>\"", ",", + RowBox[{"{", + RowBox[{"5", ",", "\"\<s\>\""}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "\"\<S\>\"", ",", + FractionBox["1", "2"]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "Energy", ",", "J", ",", "L", ",", "S", ",", "NuclearSpin", ",", + "NaturalWidth", ",", "Parity"}], "}"}]}], "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"p12data", "=", + RowBox[{"Append", "[", + RowBox[{ + RowBox[{"AtomicData", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\<Rb\>\"", ",", "87", ",", + RowBox[{"{", + RowBox[{"\"\<Kr\>\"", ",", + RowBox[{"{", + RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "\"\<P\>\"", ",", + FractionBox["1", "2"]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"J", ",", "L", ",", "S", ",", "NuclearSpin", ",", "Parity"}], + "}"}]}], "]"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}]}], + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"p32data", "=", + RowBox[{"Append", "[", + RowBox[{ + RowBox[{"AtomicData", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\<Rb\>\"", ",", "87", ",", + RowBox[{"{", + RowBox[{"\"\<Kr\>\"", ",", + RowBox[{"{", + RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "\"\<P\>\"", ",", + FractionBox["3", "2"]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"J", ",", "L", ",", "S", ",", "NuclearSpin", ",", "Parity"}], + "}"}]}], "]"}], ",", + RowBox[{ + RowBox[{"BranchingRatio", "[", "0", "]"}], "\[Rule]", "1"}]}], + "]"}]}]], "Input"], + +Cell["\<\ +Using the quantum numbers, create a list of all hyperfine and Zeeman \ +sublevels of the J states, which are labeled 0, 1, and 2 for reference. This \ +list will be passed to the functions from the ADM package that create the DM \ +evolution equations.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"system0", "=", + RowBox[{"Sublevels", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"AtomicState", "[", + RowBox[{"0", ",", "s12data"}], "]"}], ",", + RowBox[{"AtomicState", "[", + RowBox[{"1", ",", "p12data"}], "]"}], ",", + RowBox[{"AtomicState", "[", + RowBox[{"2", ",", "p32data"}], "]"}]}], "}"}], "]"}]}], ";"}]], "Input", + CellID->433132487], + +Cell[TextData[{ + "For simplicity, we delete some excited states from the system, leaving only \ +", + Cell[BoxData[ + FormBox[ + RowBox[{ + RowBox[{ + SubscriptBox["P", + RowBox[{"1", "/", "2"}]], " ", "F"}], "=", "1"}], TraditionalForm]]], + " and ", + Cell[BoxData[ + FormBox[ + RowBox[{ + RowBox[{ + SubscriptBox["P", + RowBox[{"3", "/", "2"}]], " ", "F"}], "=", "2"}], TraditionalForm]]], + "." +}], "Text"], + +Cell[BoxData[ + RowBox[{"system", "=", + RowBox[{"DeleteStates", "[", + RowBox[{"system0", ",", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"Label", "\[Equal]", "1"}], "&&", + RowBox[{"F", "\[NotEqual]", "1"}]}], ")"}], "||", + RowBox[{"(", + RowBox[{ + RowBox[{"Label", "\[Equal]", "2"}], "&&", + RowBox[{"F", "\[NotEqual]", "2"}]}], ")"}]}]}], "]"}]}]], "Input"], + +Cell[TextData[{ + "Define the optical field with four frequencies, ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]], + ", ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]], + ", ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]], + ", and ", + Cell[BoxData[ + FormBox[ + StyleBox[ + SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]], + ". Here ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[CapitalOmega]", "1"], TraditionalForm]]], + " and ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[CapitalOmega]", "1"], TraditionalForm]]], + " are left-circularly polarized, and ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[CapitalOmega]", "3"], TraditionalForm]]], + " and ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[CapitalOmega]", "4"], TraditionalForm]]], + " are right-circularly polarized." +}], "Text", + CellID->133602844], + +Cell[BoxData[ + RowBox[{"SetOptions", "[", + RowBox[{"OpticalField", ",", + RowBox[{"PolarizationVector", "\[Rule]", + RowBox[{"{", + RowBox[{"1", ",", "0", ",", "0"}], "}"}]}], ",", + RowBox[{"CartesianCoordinates", "\[Rule]", + RowBox[{"{", + RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "]"}]], "Input"], + +Cell[TextData[{ + "Parameters for the OpticalField function are {frequency, wavenumber}, \ +{electric amplitude, phase}, {rotation angle (relative to \ +PolarizationVector), ellipticity}. Here ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[CapitalOmega]", "i"], TraditionalForm]]], + " are the Rabi frequencies defined in terms of the dipole reduced matrix \ +elements." +}], "Text"], + +Cell[BoxData[ + RowBox[{"field", "=", + RowBox[{ + RowBox[{"OpticalField", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + SubscriptBox["\[Omega]", "1"], ",", + SubscriptBox["k", "1"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], "/", + RowBox[{"ReducedME", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "1"}], "]"}]}], ",", + SubscriptBox["\[Phi]", "1"]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"\[Pi]", "/", "4"}]}], "}"}]}], "]"}], "+", + "\[IndentingNewLine]", + RowBox[{"OpticalField", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + SubscriptBox["\[Omega]", "2"], ",", + SubscriptBox["k", "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", "2"], "/", + RowBox[{"ReducedME", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "1"}], "]"}]}], ",", + SubscriptBox["\[Phi]", "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"\[Pi]", "/", "4"}]}], "}"}]}], "]"}], "+", + "\[IndentingNewLine]", + RowBox[{"OpticalField", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + SubscriptBox["\[Omega]", "3"], ",", + SubscriptBox["k", "3"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", "3"], "/", + RowBox[{"ReducedME", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}], ",", + SubscriptBox["\[Phi]", "3"]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", "\[Pi]"}], "/", "4"}]}], "}"}]}], "]"}], "+", + "\[IndentingNewLine]", + RowBox[{"OpticalField", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + SubscriptBox["\[Omega]", "4"], ",", + SubscriptBox["k", "4"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", "4"], "/", + RowBox[{"ReducedME", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}], ",", + SubscriptBox["\[Phi]", "4"]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", "\[Pi]"}], "/", "4"}]}], "}"}]}], "]"}]}]}]], "Input", + CellID->534530029], + +Cell["\<\ +The Hamiltonian for the system subject to the optical field. Each field is \ +assumed to interact with only one transition\[LongDash]the replacement rule \ +(Cos[_]|Sin[_]) ReducedME[_,{Dipole,1},_]\[Rule]0 causes other terms to be \ +set to zero.\ +\>", "Text", + CellID->462076121], + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"H", "=", + RowBox[{ + RowBox[{"Expand", "@", + RowBox[{"Hamiltonian", "[", + RowBox[{"system", ",", + RowBox[{"ElectricField", "\[Rule]", "field"}], ",", + RowBox[{"MagneticField", "\[Rule]", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{"\[CapitalOmega]L", "/", "BohrMagneton"}]}], "}"}]}]}], + "]"}]}], "/.", " ", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"Cos", "[", "_", "]"}], "|", + RowBox[{"Sin", "[", "_", "]"}]}], ")"}], " ", + RowBox[{"ReducedME", "[", + RowBox[{"_", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]", + "0"}]}]}], "]"}]], "Input", + CellID->494599775], + +Cell["\<\ +The level diagram for the system, showing optical couplings. Note that both \ +resonant and off-resonant (counter-rotating) couplings are shown, because we \ +have not yet performed the rotating-wave approximation.\ +\>", "Text", + CellID->358620443], + +Cell[BoxData[ + RowBox[{"LevelDiagram", "[", + RowBox[{"system", ",", + RowBox[{"H", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"Energy", "[", "0", "]"}], "\[Rule]", "0"}], ",", + RowBox[{ + RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", "2"}], ",", + RowBox[{ + RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", "4"}], ",", + RowBox[{ + RowBox[{"HyperfineA", "[", "_", "]"}], "\[Rule]", ".2"}], ",", + RowBox[{ + RowBox[{"HyperfineB", "[", "_", "]"}], "\[Rule]", ".1"}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", ".1"}]}], "}"}]}], ",", + RowBox[{"ParityOffset", "\[Rule]", "False"}]}], "]"}]], "Input", + CellID->167259034], + +Cell[TextData[{ + "Here we apply the rotating-wave approximation to the Hamiltonian. Here we \ +construct a list of frequency shifts for the list of Zeeman sublevels that \ +will have the effect of removing the optical frequencies from the \ +Hamiltonian. I.e., we hold ", + Cell[BoxData[ + FormBox[ + RowBox[{ + RowBox[{ + SubscriptBox["S", + RowBox[{"1", "/", "2"}]], "F"}], "=", "2"}], TraditionalForm]]], + " fixed, shift ", + Cell[BoxData[ + FormBox[ + SubscriptBox["P", + RowBox[{"1", "/", "2"}]], TraditionalForm]]], + " down by ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Omega]", "1"], TraditionalForm]]], + ", shift ", + Cell[BoxData[ + FormBox[ + RowBox[{ + RowBox[{ + SubscriptBox["S", + RowBox[{"1", "/", "2"}]], " ", "F"}], "=", "1"}], TraditionalForm]]], + " down by ", + Cell[BoxData[ + FormBox[ + RowBox[{ + SubscriptBox["\[Omega]", "1"], "-", + SubscriptBox["\[Omega]", "2"]}], TraditionalForm]]], + ", and shift ", + Cell[BoxData[ + FormBox[ + SubscriptBox["P", + RowBox[{"3", "/", "2"}]], TraditionalForm]]], + " down by ", + Cell[BoxData[ + FormBox[ + RowBox[{ + SubscriptBox["\[Omega]", "1"], "-", + SubscriptBox["\[Omega]", "2"], "+", + SubscriptBox["\[Omega]", "3"]}], TraditionalForm]]], + "." +}], "Text", + CellID->577766068], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Label", "[", "#", "]"}], ",", + RowBox[{"F", "[", "#", "]"}]}], "}"}], "&"}], "/@", + "system"}], "\[IndentingNewLine]", + RowBox[{"shifts", "=", + RowBox[{"%", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "2"}], "}"}], "\[Rule]", "0"}], ",", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "_"}], "}"}], "\[Rule]", + SubscriptBox["\[Omega]", "1"]}], ",", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "1"}], "}"}], "\[Rule]", + RowBox[{ + SubscriptBox["\[Omega]", "1"], "-", + SubscriptBox["\[Omega]", "2"]}]}], ",", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "_"}], "}"}], "\[Rule]", + RowBox[{ + SubscriptBox["\[Omega]", "1"], "-", + SubscriptBox["\[Omega]", "2"], "+", + SubscriptBox["\[Omega]", "3"]}]}]}], "}"}]}]}]}], "Input"], + +Cell["\<\ +Make a unitary transformation matrix to implement the chosen frequency shifts.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"transmat", "=", + RowBox[{"MatrixExp", "[", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", + RowBox[{"DiagonalMatrix", "[", "shifts", "]"}]}], "+", + RowBox[{"\[ImaginaryI]", " ", "z", " ", + RowBox[{"DiagonalMatrix", "[", + RowBox[{"shifts", "/.", + RowBox[{"\[Omega]", "\[Rule]", "k"}]}], "]"}]}]}], "]"}]}], + "]"}]], "Input"], + +Cell[TextData[{ + "Write ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Omega]", "4"], TraditionalForm]]], + " and ", + Cell[BoxData[ + FormBox[ + SubscriptBox["k", "4"], TraditionalForm]]], + " in terms of the non-degenerate detuning and phase-mismatch parameters \ +\[Delta]\[Omega] and \[Delta]k, which we set here to zero for simplicity. We \ +then apply the transform matrix to the Hamiltonian and set off resonant terms \ +oscillating at harmonics of ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Omega]", "1"], TraditionalForm]]], + ", ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Omega]", "2"], TraditionalForm]]], + ", and ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Omega]", "3"], TraditionalForm]]], + " to zero." +}], "Text"], + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"H1", "=", + RowBox[{"RotatingWaveApproximation", "[", + RowBox[{"system", ",", + RowBox[{ + RowBox[{"H", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[Omega]", "4"], "\[Rule]", + RowBox[{ + SubscriptBox["\[Omega]", "1"], "-", + SubscriptBox["\[Omega]", "2"], "+", + SubscriptBox["\[Omega]", "3"], "-", "\[Delta]\[Omega]"}]}], ",", + RowBox[{ + SubscriptBox["k", "4"], "\[Rule]", + RowBox[{ + SubscriptBox["k", "1"], "-", + SubscriptBox["k", "2"], "+", + SubscriptBox["k", "3"], "-", "\[Delta]k"}]}]}], "}"}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Delta]\[Omega]", "\[Rule]", "0"}], ",", + RowBox[{"\[Delta]k", "\[Rule]", "0"}]}], "}"}]}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[Omega]", "1"], ",", + SubscriptBox["\[Omega]", "2"], ",", + SubscriptBox["\[Omega]", "3"]}], "}"}], ",", + RowBox[{"TransformMatrix", "\[Rule]", "transmat"}]}], "]"}]}], + "]"}]], "Input"], + +Cell[TextData[{ + "There are remaining fast-oscillating terms in the Hamiltonian at the \ +difference frequency between ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Omega]", "1"], TraditionalForm]]], + " and ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Omega]", "2"], TraditionalForm]]], + ", due to the fact that each optical field can interact with both \ +ground-state hyperfine levels. We set these terms to zero, which is \ +equivalent to assuming that each field interacts with only the ", + Cell[BoxData[ + FormBox[ + RowBox[{"F", "=", "1"}], TraditionalForm]]], + " or the ", + Cell[BoxData[ + FormBox[ + RowBox[{"F", "=", "2"}], TraditionalForm]]], + " ground-state hyperfine sublevel." +}], "Text"], + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"H2", "=", + RowBox[{"H1", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[Phi]_", "-", + RowBox[{"\[ImaginaryI]", " ", "t", " ", + SubscriptBox["\[Omega]", "1"]}], "+", + RowBox[{"\[ImaginaryI]", " ", "t", " ", + SubscriptBox["\[Omega]", "2"]}]}]], "\[Rule]", "0"}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"\[Phi]_", "+", + RowBox[{"\[ImaginaryI]", " ", "t", " ", + SubscriptBox["\[Omega]", "1"]}], "-", + RowBox[{"\[ImaginaryI]", " ", "t", " ", + SubscriptBox["\[Omega]", "2"]}]}]], "\[Rule]", "0"}]}], "}"}]}]}], + "]"}]], "Input"], + +Cell["\<\ +Find the frequencies at which each field is assumed to be resonant with its F\ +\[Rule]F\[CloseCurlyQuote] transition.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{"\[Omega]1res", "=", + RowBox[{ + RowBox[{ + RowBox[{"Hamiltonian", "[", + RowBox[{"{", + RowBox[{"SelectState", "[", + RowBox[{"system", ",", " ", + RowBox[{ + RowBox[{"Label", "\[Equal]", "1"}], "&&", + RowBox[{"F", "\[Equal]", "1"}]}]}], "]"}], "}"}], "]"}], + "\[LeftDoubleBracket]", + RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], "-", + RowBox[{ + RowBox[{"Hamiltonian", "[", + RowBox[{"{", + RowBox[{"SelectState", "[", + RowBox[{"system", ",", " ", + RowBox[{ + RowBox[{"Label", "\[Equal]", "0"}], "&&", + RowBox[{"F", "\[Equal]", "2"}]}]}], "]"}], "}"}], "]"}], + "\[LeftDoubleBracket]", + RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"\[Omega]2res", "=", + RowBox[{ + RowBox[{ + RowBox[{"Hamiltonian", "[", + RowBox[{"{", + RowBox[{"SelectState", "[", + RowBox[{"system", ",", " ", + RowBox[{ + RowBox[{"Label", "\[Equal]", "1"}], "&&", + RowBox[{"F", "\[Equal]", "1"}]}]}], "]"}], "}"}], "]"}], + "\[LeftDoubleBracket]", + RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], "-", + RowBox[{ + RowBox[{"Hamiltonian", "[", + RowBox[{"{", + RowBox[{"SelectState", "[", + RowBox[{"system", ",", " ", + RowBox[{ + RowBox[{"Label", "\[Equal]", "0"}], "&&", + RowBox[{"F", "\[Equal]", "1"}]}]}], "]"}], "}"}], "]"}], + "\[LeftDoubleBracket]", + RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"\[Omega]3res", "=", + RowBox[{ + RowBox[{ + RowBox[{"Hamiltonian", "[", + RowBox[{"{", + RowBox[{"SelectState", "[", + RowBox[{"system", ",", " ", + RowBox[{ + RowBox[{"Label", "\[Equal]", "2"}], "&&", + RowBox[{"F", "\[Equal]", "2"}]}]}], "]"}], "}"}], "]"}], + "\[LeftDoubleBracket]", + RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], "-", + RowBox[{ + RowBox[{"Hamiltonian", "[", + RowBox[{"{", + RowBox[{"SelectState", "[", + RowBox[{"system", ",", " ", + RowBox[{ + RowBox[{"Label", "\[Equal]", "0"}], "&&", + RowBox[{"F", "\[Equal]", "1"}]}]}], "]"}], "}"}], "]"}], + "\[LeftDoubleBracket]", + RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}]}]}]], "Input"], + +Cell[TextData[{ + "Rewrite the frequencies ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Omega]", "1"], TraditionalForm]]], + ", ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Omega]", "2"], TraditionalForm]]], + ", and ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Omega]", "3"], TraditionalForm]]], + " in terms of a detuning ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Delta]", "1"], TraditionalForm]]], + ", ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Delta]", "2"], TraditionalForm]]], + ", or ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Delta]", "3"], TraditionalForm]]], + " from resonance with the appropriate transition between ground-state and \ +excited state hyperfine levels, and subtract a constant term off of the \ +diagonal to simplify the appearance." +}], "Text"], + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"Hrwa", "=", + RowBox[{ + RowBox[{"(", + RowBox[{"H2", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[Omega]", "1"], "\[Rule]", + RowBox[{"\[Omega]1res", "+", + SubscriptBox["\[Delta]", "1"]}]}], ",", + RowBox[{ + SubscriptBox["\[Omega]", "2"], "\[Rule]", + RowBox[{"\[Omega]2res", "+", + SubscriptBox["\[Delta]", "2"]}]}], ",", + RowBox[{ + SubscriptBox["\[Omega]", "3"], "\[Rule]", + RowBox[{"\[Omega]3res", "+", + SubscriptBox["\[Delta]", "3"]}]}]}], "}"}]}], ")"}], "-", + RowBox[{ + FractionBox[ + RowBox[{"3", " ", + RowBox[{"HyperfineA", "[", "0", "]"}]}], "4"], + RowBox[{"IdentityMatrix", "[", + RowBox[{"Length", "[", "system", "]"}], "]"}]}]}]}], "]"}]], "Input"], + +Cell["\<\ +The level diagram showing resonant (co-rotating) optical couplings. \ +\>", "Text"], + +Cell[BoxData[ + RowBox[{"diagram", "=", + RowBox[{"LevelDiagram", "[", + RowBox[{"system", ",", + RowBox[{ + RowBox[{"Hrwa", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[Delta]", "1"], "\[Rule]", + RowBox[{"-", "\[Omega]1res"}]}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "2"], "\[Rule]", + RowBox[{"-", "\[Omega]2res"}]}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "3"], "\[Rule]", + RowBox[{"-", "\[Omega]3res"}]}]}], "}"}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"Energy", "[", "0", "]"}], "\[Rule]", "0"}], ",", + RowBox[{ + RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", "2"}], ",", + RowBox[{ + RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", "3"}], ",", + RowBox[{ + RowBox[{"HyperfineA", "[", "_", "]"}], "\[Rule]", ".2"}], ",", + RowBox[{ + RowBox[{"HyperfineB", "[", "_", "]"}], "\[Rule]", ".1"}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", ".1"}]}], "}"}]}], ",", + RowBox[{"ParityOffset", "\[Rule]", "False"}], ",", + RowBox[{"Epilog", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"Text", "[", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + "\"\<\!\(\*SuperscriptBox[\(\[VeryThinSpace]\), \ +\(2\)]\)\!\(\*SubscriptBox[\(S\), \(1/2\)]\)\>\"", ",", + RowBox[{"SingleLetterItalics", "\[Rule]", "False"}]}], "]"}], ",", + + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.9"}], ",", "0"}], "}"}]}], "]"}], ",", + RowBox[{"Text", "[", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + "\"\<\!\(\*SuperscriptBox[\(\[VeryThinSpace]\), \ +\(2\)]\)\!\(\*SubscriptBox[\(P\), \(1/2\)]\)\>\"", ",", + RowBox[{"SingleLetterItalics", "\[Rule]", "False"}]}], "]"}], ",", + + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.9"}], ",", "1.6"}], "}"}]}], "]"}], ",", + RowBox[{"Text", "[", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + "\"\<\!\(\*SuperscriptBox[\(\[VeryThinSpace]\), \ +\(2\)]\)\!\(\*SubscriptBox[\(P\), \(3/2\)]\)\>\"", ",", + RowBox[{"SingleLetterItalics", "\[Rule]", "False"}]}], "]"}], ",", + + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.9"}], ",", "2.7"}], "}"}]}], "]"}]}], "}"}]}], ",", + RowBox[{"ImageSize", "\[Rule]", + RowBox[{"3.5", " ", "72"}]}], ",", + RowBox[{"ImagePadding", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"35", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"10", ",", "10"}], "}"}]}], "}"}]}]}], "]"}]}]], "Input", + CellID->102096636], + +Cell[TextData[{ + Cell[BoxData[ + ButtonBox["IntrinsicRelaxation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]], + " and ", + Cell[BoxData[ + ButtonBox["TransitRelaxation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]], + " supply the matrices describing relaxation due to spontaneous decay and \ +atomic transit, respectively. ", + Cell[BoxData[ + FormBox[ + SubscriptBox["\[Gamma]", "t"], TraditionalForm]]], + " is the transit rate." +}], "Text", + CellID->610306692], + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"relax", "=", + RowBox[{ + RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+", + RowBox[{"TransitRelaxation", "[", + RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", + CellID->645617687], + +Cell[TextData[{ + Cell[BoxData[ + ButtonBox["OpticalRepopulation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]], + " and ", + Cell[BoxData[ + ButtonBox["TransitRepopulation", + BaseStyle->"Link", + ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]], + " supply the matrices describing repopulation of the ground state due to \ +spontaneous decay and atomic transit." +}], "Text", + CellID->854192725], + +Cell[BoxData[ + RowBox[{"MatrixForm", "[", + RowBox[{"repop", "=", + RowBox[{ + RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+", + RowBox[{"TransitRepopulation", "[", + RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input", + CellID->465762594], + +Cell["Here are the evolution equations.", "Text", + CellID->314466782], + +Cell[BoxData[ + RowBox[{"TableForm", "[", + RowBox[{"eqs0", "=", + RowBox[{"LiouvilleEquation", "[", + RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}]}], + "]"}]], "Input"], + +Cell["\<\ +Here we pull useful numerical atomic data for Rb out of the database. These \ +numbers are in omega units, so that the unit \[OpenCurlyDoubleQuote]Hertz\ +\[CloseCurlyDoubleQuote] actually corresponds to rad/s.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{"atomicdata", "=", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"AtomicData", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\<Rb\>\"", ",", "87", ",", + RowBox[{"{", + RowBox[{"\"\<Kr\>\"", ",", + RowBox[{"{", + RowBox[{"5", ",", "\"\<s\>\""}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "\"\<S\>\"", ",", + FractionBox["1", "2"]}], "}"}]}], "}"}], ",", + RowBox[{"{", "HyperfineA", "}"}], ",", + RowBox[{"Label", "\[Rule]", "0"}]}], "]"}], ",", + RowBox[{"AtomicData", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\<Rb\>\"", ",", "87", ",", + RowBox[{"{", + RowBox[{"\"\<Kr\>\"", ",", + RowBox[{"{", + RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "\"\<P\>\"", ",", + FractionBox["1", "2"]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"HyperfineA", ",", "NaturalWidth"}], "}"}], ",", + RowBox[{"Label", "\[Rule]", "1"}]}], "]"}], ",", + RowBox[{"AtomicData", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\<Rb\>\"", ",", "87", ",", + RowBox[{"{", + RowBox[{"\"\<Kr\>\"", ",", + RowBox[{"{", + RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "\"\<P\>\"", ",", + FractionBox["3", "2"]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"HyperfineA", ",", "HyperfineB", ",", "NaturalWidth"}], "}"}], + ",", + RowBox[{"Label", "\[Rule]", "2"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"Wavelength", "[", "1", "]"}], "->", + RowBox[{"1", "/", + RowBox[{"Wavenumber", "[", + RowBox[{"{", + RowBox[{"\"\<Rb\>\"", ",", "87", ",", + RowBox[{"{", + RowBox[{"\"\<Kr\>\"", ",", + RowBox[{"{", + RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "\"\<P\>\"", ",", + FractionBox["1", "2"]}], "}"}]}], "}"}], "]"}]}]}], ",", + RowBox[{ + RowBox[{"Wavelength", "[", "2", "]"}], "->", + RowBox[{"1", "/", + RowBox[{"Wavenumber", "[", + RowBox[{"{", + RowBox[{"\"\<Rb\>\"", ",", "87", ",", + RowBox[{"{", + RowBox[{"\"\<Kr\>\"", ",", + RowBox[{"{", + RowBox[{"5", ",", "\"\<p\>\""}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "\"\<P\>\"", ",", + FractionBox["3", "2"]}], "}"}]}], "}"}], "]"}]}]}]}], "}"}]}], + "]"}]}]], "Input"], + +Cell[TextData[{ + "Here we find DM elements that are always identically zero, so we can remove \ +them from the evolution equations. We put in sample values for all of the \ +parameters, use the values for the atomic data from above, and set time \ +derivatives to zero with ", + Cell[BoxData[ + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"s1_", ",", "s2_"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Rule]", "0"}]]], + " to find the steady state. " +}], "Text"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"sol", "=", + RowBox[{ + RowBox[{"NSolve", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"eqs0", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[Phi]", "_"], "\[Rule]", "1."}], ",", + RowBox[{"\[Delta]k", "\[Rule]", "0"}], ",", + RowBox[{"\[Delta]\[Omega]", "\[Rule]", "0"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], "\[Rule]", + SuperscriptBox["10", "11"]}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "2"], "\[Rule]", + RowBox[{"2.", " ", + SuperscriptBox["10", "10"]}]}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "_"], "\[Rule]", + SuperscriptBox["10", "10"]}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "_"], "\[Rule]", + RowBox[{"1.", " ", + SuperscriptBox["10", "7"]}]}], ",", + RowBox[{"\[Gamma]t", "\[Rule]", "10."}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", ".1"}]}], "}"}]}], "/.", + "atomicdata"}], "/.", + RowBox[{"Hertz", "\[Rule]", "1"}]}], "/.", + RowBox[{"Mega", "\[Rule]", "1"}]}], "/.", + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"s1_", ",", "s2_"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Rule]", "0"}]}], + "]"}], ",", + RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";"}]], "Input"], + +Cell["\<\ +Find the position in the solution list of all of the DM elements that are \ +zero.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{"delpos", "=", + RowBox[{"Position", "[", + RowBox[{"sol", ",", + RowBox[{"_", "\[Rule]", + RowBox[{"0.", "+", + RowBox[{"0.", " ", "\[ImaginaryI]"}]}]}]}], "]"}]}]], "Input"], + +Cell["\<\ +Find the list of DM elements that correspond to these zero positions.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"delvars", "=", + RowBox[{"Extract", "[", + RowBox[{ + RowBox[{"DMVariables", "[", "system", "]"}], ",", "delpos"}], "]"}]}], + ";"}]], "Input"], + +Cell["Create a list of rules to set these DM elements to zero.", "Text"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"delreps", "=", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"#", "\[Rule]", "0"}], ")"}], "&"}], "/@", "delvars"}], + ")"}]}], ";"}]], "Input"], + +Cell["\<\ +Find the list of variables corresponding to nonzero DM elements.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{"vars", "=", + RowBox[{"Delete", "[", + RowBox[{ + RowBox[{"DMVariables", "[", "system", "]"}], ",", "delpos"}], + "]"}]}]], "Input"], + +Cell["\<\ +Remove all of the zero elements from the evolution equations.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{"TableForm", "[", + RowBox[{"eqs", "=", + RowBox[{"Delete", "[", + RowBox[{ + RowBox[{"eqs0", "/.", "delreps"}], ",", "delpos"}], "]"}]}], + "]"}]], "Input"], + +Cell["Initial conditions for the time-dependent case.", "Text"], + +Cell[BoxData[ + RowBox[{"inits", "=", + RowBox[{"Delete", "[", + RowBox[{ + RowBox[{"InitialConditions", "[", + RowBox[{"system", ",", + RowBox[{"TransitRepopulation", "[", + RowBox[{"system", ",", "1"}], "]"}], ",", "0"}], "]"}], ",", + "delpos"}], "]"}]}]], "Input"], + +Cell[TextData[{ + "Find equations for the steady state by setting time derivatives to zero. We \ +also substitute in numerical values for natural widths in units of ", + Cell[BoxData[ + FormBox[ + SuperscriptBox["10", "6"], TraditionalForm]]], + " rad/s." +}], "Text"], + +Cell[BoxData[ + RowBox[{"steadyeqs", "=", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"eqs", "/.", + RowBox[{ + SubscriptBox["\[Phi]", "_"], "\[Rule]", "0"}]}], "/.", "atomicdata"}], + "/.", + RowBox[{"Hertz", "\[Rule]", "1"}]}], "/.", + RowBox[{"Mega", "\[Rule]", "1"}]}], "/.", + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"s1_", ",", "s2_"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[Rule]", + "0"}]}]}]], "Input"], + +Cell[TextData[{ + "Here we find expressions for the fractional absorption (change in \ +electric-field amplitude) and phase shift of the probe light per unit path \ +length and unit atomic density, i.e., ", + Cell[BoxData[ + FormBox[ + RowBox[{"{", + RowBox[{ + FractionBox["1", + SubscriptBox["\[ScriptCapitalE]", "0"]], + FractionBox[ + SubscriptBox["d\[ScriptCapitalE]", "0"], + RowBox[{ + SubscriptBox["n", "0"], " ", "d\[ScriptL]"}]]}]}], TraditionalForm]]], + ",", + Cell[BoxData[ + FormBox[ + FractionBox["d\[Phi]", + RowBox[{ + SubscriptBox["n", "0"], " ", "d\[ScriptL]"}]], TraditionalForm]]], + "}. These correspond to the imaginary and real parts of the index of \ +refraction, respectively. Since the probe light does not interact with the D2 \ +transition, we set DM elements involving the ", + Cell[BoxData[ + FormBox[ + SubscriptBox["P", + RowBox[{"3", "/", "2"}]], TraditionalForm]]], + " state to zero. We also set the vanishing DM elements found above to zero. \ +We find the expressions for arbitrary ellipticity and then set ellipticity to \ +\[Pi]/4 after simplification in order to avoid an artificial divide by zero \ +problem." +}], "Text"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Observables", "[", + RowBox[{"system", ",", + RowBox[{"Energy", "[", "1", "]"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "2"], "/", + RowBox[{"ReducedME", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "1"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"0", ",", "\[Epsilon]"}], "}"}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}], ";"}], "\n", + RowBox[{"obs0", "=", + RowBox[{ + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{"%", "/.", + RowBox[{ + RowBox[{ + RowBox[{"DMElementPattern", "[", "]"}], "/;", + RowBox[{ + RowBox[{"Label2", "\[Equal]", "2"}], "||", + RowBox[{"F1", "\[Equal]", "2"}]}]}], "\[Rule]", "0"}]}], "/.", + "delreps"}], "]"}], "/.", + RowBox[{"\[Epsilon]", "\[Rule]", + RowBox[{"\[Pi]", "/", "4"}]}]}]}]}], "Input"], + +Cell["\<\ +Calculate linear probe absorption with weak probe light on resonance and no \ +pump to find reference level\ +\>", "Text"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"params", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], "\[Rule]", "0"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "2"], "\[Rule]", ".00001"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "3"], "\[Rule]", "0"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "4"], "\[Rule]", "0"}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "2"], "\[Rule]", "0"}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "1"], "\[Rule]", "0"}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "3"], "\[Rule]", "0"}], ",", + RowBox[{"\[Gamma]t", "\[Rule]", ".0001"}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", "0"}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"linabs", "=", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"obs0", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "/.", + RowBox[{"Chop", "@", + RowBox[{ + RowBox[{"NSolve", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{"steadyeqs", "/.", "params"}], "]"}], ",", "vars"}], "]"}], + "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}]}], "/.", + "params"}]}]}], "Input"], + +Cell["\<\ +Divide fractional absorption and phase shift by the linear absorption per \ +unit length to find observables per absorption length.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{"obs", "=", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1"}], ",", "1"}], "}"}], + RowBox[{"obs0", "/", "linabs"}]}]}]], "Input"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Plot steady-state results", "Section"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"SetOptions", "[", + RowBox[{"ListLinePlot", ",", + RowBox[{"Frame", "\[Rule]", "True"}], ",", + RowBox[{"Axes", "\[Rule]", "False"}], ",", + RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ";"}]], "Input"], + +Cell["\<\ +Here we set parameters and plot the fractional absorption and phase shift of \ +the probe light per absorption length, corresponding to imaginary and real \ +parts of the index of refraction, respectively, as a function of probe \ +detuning.\ +\>", "Text"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"params", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], "\[Rule]", "100."}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "2"], "\[Rule]", ".01"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "3"], "\[Rule]", "10."}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "4"], "\[Rule]", "0."}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "2"], "\[Rule]", "d"}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "1"], "\[Rule]", "0"}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "3"], "\[Rule]", "0"}], ",", + RowBox[{"\[Gamma]t", "\[Rule]", ".1"}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", "0."}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"steadyeqs1", "=", + RowBox[{"steadyeqs", "/.", "params"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"table", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"d", ",", "obs"}], "}"}], "/.", + RowBox[{"Chop", "@", + RowBox[{ + RowBox[{"NSolve", "[", + RowBox[{"steadyeqs1", ",", "vars"}], "]"}], "\[LeftDoubleBracket]", + "1", "\[RightDoubleBracket]"}]}]}], "/.", "params"}], ",", + RowBox[{"{", + RowBox[{"d", ",", + RowBox[{"-", "200"}], ",", "200", ",", "2"}], "}"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"ListLinePlot", "[", + RowBox[{"Transpose", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"table", "[", + RowBox[{"[", + RowBox[{"All", ",", "1"}], "]"}], "]"}], ",", + RowBox[{"table", "[", + RowBox[{"[", + RowBox[{"All", ",", "2", ",", "1"}], "]"}], "]"}]}], "}"}], "]"}], + "]"}], "\[IndentingNewLine]", + RowBox[{"ListLinePlot", "[", + RowBox[{"Transpose", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"table", "[", + RowBox[{"[", + RowBox[{"All", ",", "1"}], "]"}], "]"}], ",", + RowBox[{"table", "[", + RowBox[{"[", + RowBox[{"All", ",", "2", ",", "2"}], "]"}], "]"}]}], "}"}], "]"}], + "]"}]}], "Input"], + +Cell["Plot atomic populations for a given set of parameters.", "Text"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"params", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], "\[Rule]", "10"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "2"], "\[Rule]", ".01"}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "3"], "\[Rule]", "1."}], ",", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "4"], "\[Rule]", "0."}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "2"], "\[Rule]", "0"}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "1"], "\[Rule]", "0"}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "3"], "\[Rule]", "0"}], ",", + RowBox[{"\[Gamma]t", "\[Rule]", ".1"}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", "0."}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"steadyeqs1", "=", + RowBox[{"steadyeqs", "/.", "params"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"sol", "=", + RowBox[{ + RowBox[{"Chop", "@", + RowBox[{ + RowBox[{"NSolve", "[", + RowBox[{"steadyeqs1", ",", "vars"}], "]"}], "\[LeftDoubleBracket]", + "1", "\[RightDoubleBracket]"}]}], "/.", "params"}]}], ";"}], "\n", + RowBox[{"LevelDiagram", "[", + RowBox[{"system", ",", + RowBox[{ + RowBox[{ + RowBox[{"Hrwa", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[Delta]", "1"], "\[Rule]", + RowBox[{"-", "\[Omega]1res"}]}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "2"], "\[Rule]", + RowBox[{"-", "\[Omega]2res"}]}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "3"], "\[Rule]", + RowBox[{"-", "\[Omega]3res"}]}]}], "}"}]}], "/.", "params"}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"Energy", "[", "0", "]"}], "\[Rule]", "0"}], ",", + RowBox[{ + RowBox[{"Energy", "[", "1", "]"}], "\[Rule]", "2"}], ",", + RowBox[{ + RowBox[{"Energy", "[", "2", "]"}], "\[Rule]", "3"}], ",", + RowBox[{ + RowBox[{"HyperfineA", "[", "_", "]"}], "\[Rule]", ".2"}], ",", + RowBox[{ + RowBox[{"HyperfineB", "[", "_", "]"}], "\[Rule]", ".1"}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", "0"}]}], "}"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"DensityMatrix", "[", "system", "]"}], "/.", "sol"}], "/.", + RowBox[{ + RowBox[{"DMElementPattern", "[", "]"}], "\[Rule]", "0"}]}], ",", + RowBox[{"ParityOffset", "\[Rule]", "False"}], ",", + RowBox[{"Epilog", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"Text", "[", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + "\"\<\!\(\*SuperscriptBox[\(\[VeryThinSpace]\), \ +\(2\)]\)\!\(\*SubscriptBox[\(S\), \(1/2\)]\)\>\"", ",", + RowBox[{"SingleLetterItalics", "\[Rule]", "False"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.9"}], ",", "0"}], "}"}]}], "]"}], ",", + RowBox[{"Text", "[", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + "\"\<\!\(\*SuperscriptBox[\(\[VeryThinSpace]\), \ +\(2\)]\)\!\(\*SubscriptBox[\(P\), \(1/2\)]\)\>\"", ",", + RowBox[{"SingleLetterItalics", "\[Rule]", "False"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.9"}], ",", "1.6"}], "}"}]}], "]"}], ",", + RowBox[{"Text", "[", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + "\"\<\!\(\*SuperscriptBox[\(\[VeryThinSpace]\), \ +\(2\)]\)\!\(\*SubscriptBox[\(P\), \(3/2\)]\)\>\"", ",", + RowBox[{"SingleLetterItalics", "\[Rule]", "False"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.9"}], ",", "2.7"}], "}"}]}], "]"}]}], "}"}]}], ",", + + RowBox[{"ImageSize", "\[Rule]", + RowBox[{"3.5", " ", "72"}]}], ",", + RowBox[{"ImagePadding", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"35", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"10", ",", "10"}], "}"}]}], "}"}]}], ",", + RowBox[{"PopulationStyle", "\[Rule]", + RowBox[{"PointSize", "[", ".018", "]"}]}]}], "]"}]}], "Input"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Eliminate conjugate DM variables", "Section"], + +Cell[BoxData[{ + RowBox[{"delvars1", "=", + RowBox[{"Intersection", "[", + RowBox[{"vars", ",", + RowBox[{"Cases", "[", + RowBox[{"vars", ",", + RowBox[{ + RowBox[{ + RowBox[{"DMElementPattern", "[", "]"}], "/;", + RowBox[{"!", + RowBox[{"OrderedQ", "[", + RowBox[{"{", + RowBox[{"State2", ",", "State1"}], "}"}], "]"}]}]}], "\[Rule]", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"State2", ",", "State1"}]], "[", "t", "]"}]}]}], "]"}]}], + "]"}]}], "\[IndentingNewLine]", + RowBox[{"delpos1", "=", + RowBox[{"Flatten", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Position", "[", + RowBox[{"vars", ",", "#"}], "]"}], "&"}], "/@", "%"}], ",", "1"}], + "]"}]}], "\[IndentingNewLine]", + RowBox[{"vars1", "=", + RowBox[{"Delete", "[", + RowBox[{"vars", ",", "delpos1"}], "]"}]}]}], "Input"], + +Cell[BoxData[ + RowBox[{"delreps1", "=", + RowBox[{"delvars1", "/.", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"s1_", ",", "s2_"}]], "[", "t", "]"}], "\[Rule]", + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"s1", ",", "s2"}]], "[", "t", "]"}], "\[Rule]", + RowBox[{"Conjugate", "[", + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"s2", ",", "s1"}]], "[", "t", "]"}], "]"}]}], + ")"}]}]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"eqs1", "=", + RowBox[{ + RowBox[{"Delete", "[", + RowBox[{"eqs", ",", "delpos1"}], "]"}], "/.", "delreps1"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"inits1", "=", + RowBox[{"Delete", "[", + RowBox[{"inits", ",", "delpos1"}], "]"}]}]], "Input"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Convert equations to XMDS form", "Section"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Join", "[", + RowBox[{"atomicdata", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"rt6", "==", + RowBox[{"N", "[", + SqrtBox["6"], "]"}]}], ",", + RowBox[{"rt3", "==", + RowBox[{"N", "[", + SqrtBox["3"], "]"}]}], ",", + RowBox[{"rt2", "==", + RowBox[{"N", "[", + SqrtBox["2"], "]"}]}]}], "}"}]}], "]"}], "/.", + RowBox[{"Mega", "\[Rule]", + SuperscriptBox["10", "6"]}]}], "/.", + RowBox[{"Hertz", "\[Rule]", "1"}]}], "/.", + RowBox[{"Centimeter", "\[Rule]", "1"}]}], "/.", + RowBox[{"Rule", "\[Rule]", "Equal"}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"NaturalWidth", "\[Rule]", "g"}], ",", + RowBox[{"HyperfineA", "\[Rule]", "ha"}], ",", + RowBox[{"HyperfineB", "\[Rule]", "hb"}], ",", + RowBox[{"Wavelength", "\[Rule]", "lambda"}]}], + "}"}]}], "\[IndentingNewLine]", + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{"StringJoin", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"ToString", "@", + RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], "&"}], "/@", + "%"}], "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",", + RowBox[{ + RowBox[{"Shortest", "[", + RowBox[{ + "\"\<dr(\>\"", "~~", "a__", "~~", "\"\<,\>\"", "~~", "b__", "~~", + "\"\<)\>\""}], "]"}], ":>", + RowBox[{"\"\<dr\>\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}], + ",", + RowBox[{ + RowBox[{"Shortest", "[", + RowBox[{ + "\"\<r(\>\"", "~~", "a__", "~~", "\"\<,\>\"", "~~", "b__", "~~", + "\"\<)\>\""}], "]"}], ":>", + RowBox[{"\"\<r\>\"", "<>", "a", "<>", "b"}]}], ",", + RowBox[{ + RowBox[{"\"\<ha(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<ha\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<hb(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<hb\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<lambda(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<lambda\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<g(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<g\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<W(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<E\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<Wc(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<Ec\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<d(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<d\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"], + +Cell[BoxData[ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"ToFileName", "[", + RowBox[{ + RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\<Constants.txt\>\""}], + "]"}], ",", "%"}], "]"}]], "Input"], + +Cell["Convert equations to C form", "Text"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Label", "[", "#", "]"}], ",", + RowBox[{"F", "[", "#", "]"}], ",", + RowBox[{"M", "[", "#", "]"}]}], "}"}], "&"}], "/@", + "system"}], "\[IndentingNewLine]", + RowBox[{"labelrep", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"%", "[", + RowBox[{"[", "i", "]"}], "]"}], "\[Rule]", + RowBox[{"ToString", "@", + RowBox[{"PaddedForm", "[", + RowBox[{"i", ",", "2", ",", + RowBox[{"NumberPadding", "\[Rule]", + RowBox[{"{", + RowBox[{"\"\<0\>\"", ",", "\"\<\>\""}], "}"}]}], ",", + RowBox[{"NumberSigns", "\[Rule]", + RowBox[{"{", + RowBox[{"\"\<\>\"", ",", "\"\<\>\""}], "}"}]}]}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "%"}]}], "}"}]}], "]"}]}]}], "Input"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"rt6", "==", + RowBox[{"N", "[", + SqrtBox["6"], "]"}]}], ",", + RowBox[{"rt3", "==", + RowBox[{"N", "[", + SqrtBox["3"], "]"}]}], ",", + RowBox[{"rt2", "==", + RowBox[{"N", "[", + SqrtBox["2"], "]"}]}]}], "}"}], ",", "eqs1"}], "]"}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[Delta]", "s_"], "\[Rule]", + RowBox[{ + SubscriptBox["\[Delta]", "s"], "+", + RowBox[{ + SubscriptBox["k", "s"], "v"}]}]}], ",", + RowBox[{"\[Delta]\[Omega]", "\[Rule]", + RowBox[{"\[Delta]\[Omega]", "+", + RowBox[{"\[Delta]k", " ", "v"}]}]}]}], "}"}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"NaturalWidth", "\[Rule]", "g"}], ",", + RowBox[{"HyperfineA", "\[Rule]", "ha"}], ",", + RowBox[{"HyperfineB", "\[Rule]", "hb"}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"s1_", ",", "s2_"}]], "\[Prime]", + MultilineFunction->None], "[", "t", "]"}], "\[RuleDelayed]", + RowBox[{"dr", "[", + RowBox[{"s1", ",", "s2"}], "]"}]}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"s1_", ",", "s2_"}]], "[", "t", "]"}], "\[RuleDelayed]", + RowBox[{"r", "[", + RowBox[{"s1", ",", "s2"}], "]"}]}], ",", + RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",", + RowBox[{"\[CapitalOmega]L", "\[Rule]", "WL"}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "i_"], "\[Rule]", + RowBox[{"d", "[", "i", "]"}]}], ",", + RowBox[{ + SubscriptBox["k", "i_"], "\[Rule]", + RowBox[{"k", "[", "i", "]"}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"a_.", "+", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "i_"]}]}]], "\[Rule]", + RowBox[{ + SuperscriptBox["\[ExponentialE]", "a"], + RowBox[{ + RowBox[{"W", "[", "i", "]"}], "/", + SubscriptBox["\[CapitalOmega]", "i"]}]}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"a_.", "-", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "i_"]}]}]], "\[Rule]", + RowBox[{ + SuperscriptBox["\[ExponentialE]", "a"], + RowBox[{ + RowBox[{"Wc", "[", "i", "]"}], "/", + SubscriptBox["\[CapitalOmega]", "i"]}]}]}]}], "}"}]}], "/.", + "labelrep"}], "/.", + RowBox[{ + RowBox[{"Power", "[", + RowBox[{"E", ",", "b_"}], "]"}], "\[Rule]", + RowBox[{"exp", "[", "b", "]"}]}]}], "/.", + RowBox[{"Conjugate", "\[Rule]", "conj"}]}], "/.", + RowBox[{ + RowBox[{"Complex", "[", + RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]", + RowBox[{"a", " ", "i"}]}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"1", "/", + SqrtBox["6"]}], "\[Rule]", + RowBox[{"1", "/", "rt6"}]}], ",", + RowBox[{ + RowBox[{"1", "/", + SqrtBox["3"]}], "\[Rule]", + RowBox[{"1", "/", "rt3"}]}], ",", + RowBox[{ + RowBox[{"1", "/", + SqrtBox["2"]}], "\[Rule]", + RowBox[{"1", "/", "rt2"}]}]}], "}"}]}], "\[IndentingNewLine]", + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{"StringJoin", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"ToString", "@", + RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], "&"}], "/@", + "%"}], "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",", + RowBox[{ + RowBox[{"Shortest", "[", + RowBox[{ + "\"\<dr(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__", + "~~", "\"\<\\\")\>\""}], "]"}], ":>", + RowBox[{"\"\<dr\>\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}], + ",", + RowBox[{ + RowBox[{"Shortest", "[", + RowBox[{ + "\"\<r(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__", + "~~", "\"\<\\\")\>\""}], "]"}], ":>", + RowBox[{"\"\<r\>\"", "<>", "a", "<>", "b"}]}], ",", + RowBox[{ + RowBox[{"\"\<ha(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<ha\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<hb(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<hb\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<g(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<g\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<W(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<E\>\"", "<>", "a", "<>", "\"\<a\>\""}]}], ",", + RowBox[{ + RowBox[{"\"\<Wc(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<E\>\"", "<>", "a", "<>", "\"\<ac\>\""}]}], ",", + RowBox[{ + RowBox[{"\"\<d(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<delta\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<k(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<Kvec\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input"], + +Cell[BoxData[ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"ToFileName", "[", + RowBox[{ + RowBox[{"NotebookDirectory", "[", "]"}], ",", + "\"\<RbEquations.txt\>\""}], "]"}], ",", "%"}], "]"}]], "Input"], + +Cell["Convert initial conditions to c form.", "Text"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"inits1", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["\[Delta]", "s_"], "\[Rule]", + RowBox[{ + SubscriptBox["\[Delta]", "s"], "+", + RowBox[{ + SubscriptBox["k", "s"], "v"}]}]}], ",", + RowBox[{"\[Delta]\[Omega]", "\[Rule]", + RowBox[{"\[Delta]\[Omega]", "+", + RowBox[{"\[Delta]k", " ", "v"}]}]}]}], "}"}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"NaturalWidth", "\[Rule]", "g"}], ",", + RowBox[{"HyperfineA", "\[Rule]", "ha"}], ",", + RowBox[{"HyperfineB", "\[Rule]", "hb"}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[Rho]", + RowBox[{"s1_", ",", "s2_"}]], "\[Prime]", + MultilineFunction->None], "[", "t_", "]"}], "\[RuleDelayed]", + RowBox[{"dr", "[", + RowBox[{"s1", ",", "s2"}], "]"}]}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"s1_", ",", "s2_"}]], "[", "t_", "]"}], "\[RuleDelayed]", + RowBox[{"r", "[", + RowBox[{"s1", ",", "s2"}], "]"}]}], ",", + RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",", + RowBox[{ + SubscriptBox["\[Delta]", "i_"], "\[Rule]", + RowBox[{"d", "[", "i", "]"}]}], ",", + RowBox[{ + SubscriptBox["k", "i_"], "\[Rule]", + RowBox[{"k", "[", "i", "]"}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"a_.", "+", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "i_"]}]}]], "\[Rule]", + RowBox[{ + SuperscriptBox["\[ExponentialE]", "a"], + RowBox[{ + RowBox[{"W", "[", "i", "]"}], "/", + SubscriptBox["\[CapitalOmega]", "i"]}]}]}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"a_.", "-", + RowBox[{"\[ImaginaryI]", " ", + SubscriptBox["\[Phi]", "i_"]}]}]], "\[Rule]", + RowBox[{ + SuperscriptBox["\[ExponentialE]", "a"], + RowBox[{ + RowBox[{"Wc", "[", "i", "]"}], "/", + SubscriptBox["\[CapitalOmega]", "i"]}]}]}]}], "}"}]}], "/.", + "labelrep"}], "/.", + RowBox[{ + RowBox[{"Power", "[", + RowBox[{"E", ",", "b_"}], "]"}], "\[Rule]", + RowBox[{"exp", "[", "b", "]"}]}]}], "/.", + RowBox[{ + RowBox[{"Complex", "[", + RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]", + RowBox[{"a", " ", "i"}]}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"1", "/", + SqrtBox["6"]}], "\[Rule]", + RowBox[{"1", "/", "rt6"}]}], ",", + RowBox[{ + RowBox[{"1", "/", + SqrtBox["3"]}], "\[Rule]", + RowBox[{"1", "/", "rt3"}]}], ",", + RowBox[{ + RowBox[{"1", "/", + SqrtBox["2"]}], "\[Rule]", + RowBox[{"1", "/", "rt2"}]}]}], "}"}]}], "\[IndentingNewLine]", + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{"StringJoin", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"ToString", "@", + RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], "&"}], "/@", + "%"}], "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",", + RowBox[{ + RowBox[{"Shortest", "[", + RowBox[{ + "\"\<dr(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__", + "~~", "\"\<\\\")\>\""}], "]"}], ":>", + RowBox[{"\"\<dr\>\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}], + ",", + RowBox[{ + RowBox[{"Shortest", "[", + RowBox[{ + "\"\<r(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__", + "~~", "\"\<\\\")\>\""}], "]"}], ":>", + RowBox[{"\"\<r\>\"", "<>", "a", "<>", "b"}]}], ",", + RowBox[{ + RowBox[{"\"\<ha(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<ha\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<hb(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<hb\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<g(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<g\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<W(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<E\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<Wc(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<Ec\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<d(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<d\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<k(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<k\>\"", "<>", "a"}]}]}], "}"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.557577072451949*^9, 3.557577074196031*^9}}], + +Cell[BoxData[ + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"ToFileName", "[", + RowBox[{ + RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\<RbInits.txt\>\""}], + "]"}], ",", "%"}], "]"}]], "Input"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Find propagation equations", "Section"], + +Cell["Here we find the propagation equations.", "Text"], + +Cell["\<\ +First, for each field 1--4, extract the list of sublevels that the field is \ +assumed to interact with.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{"transitioncriteria", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Label", "\[Equal]", "0"}], "&&", + RowBox[{"F", "\[Equal]", "2"}]}], "||", + RowBox[{ + RowBox[{"Label", "\[Equal]", "1"}], "&&", + RowBox[{"F", "\[Equal]", "1"}]}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"Label", "\[Equal]", "0"}], "&&", + RowBox[{"F", "\[Equal]", "1"}]}], "||", + RowBox[{ + RowBox[{"Label", "\[Equal]", "1"}], "&&", + RowBox[{"F", "\[Equal]", "1"}]}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"Label", "\[Equal]", "0"}], "&&", + RowBox[{"F", "\[Equal]", "1"}]}], "||", + RowBox[{ + RowBox[{"Label", "\[Equal]", "2"}], "&&", + RowBox[{"F", "\[Equal]", "2"}]}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"Label", "\[Equal]", "0"}], "&&", + RowBox[{"F", "\[Equal]", "2"}]}], "||", + RowBox[{ + RowBox[{"Label", "\[Equal]", "2"}], "&&", + RowBox[{"F", "\[Equal]", "2"}]}]}]}], "}"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{"subsys", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"SelectStates", "[", + RowBox[{"system", ",", + RowBox[{"transitioncriteria", "[", + RowBox[{"[", "k", "]"}], "]"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"Length", "[", "transitioncriteria", "]"}]}], "}"}]}], + "]"}]}]], "Input"], + +Cell["\<\ +The reduced matrix elements corresponding to the transition for each field.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"rmes", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"ReducedME", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "1"}], "]"}], ",", " ", + RowBox[{"ReducedME", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "1"}], "]"}], ",", " ", + RowBox[{"ReducedME", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], ",", " ", + RowBox[{"ReducedME", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}], "}"}]}], + ";"}]], "Input"], + +Cell[TextData[{ + "The first-order wave equation is given in terms of the rotating-frame \ +density matrix by\n\t", + Cell[BoxData[ + FormBox[ + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"\[PartialD]", + SubscriptBox[ + StyleBox["E", + FontWeight->"Bold", + FontSlant->"Plain"], "0"]}], + RowBox[{"\[PartialD]", "z"}]], "+", + RowBox[{ + FractionBox["1", "c"], + FractionBox[ + RowBox[{"\[PartialD]", + SubscriptBox[ + StyleBox["E", + FontWeight->"Bold", + FontSlant->"Plain"], "0"]}], + RowBox[{"\[PartialD]", "t"}]]}]}], "=", + RowBox[{ + FractionBox[ + RowBox[{"4", "\[Pi]", " ", "\[ImaginaryI]", " ", "\[Omega]", " ", "n"}], + "c"], + RowBox[{ + UnderscriptBox["\[Sum]", + RowBox[{"m", "<", "n"}]], + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"n", ",", "m"}]], + SubscriptBox[ + StyleBox["d", + FontWeight->"Bold", + FontSlant->"Plain"], + RowBox[{"m", ",", "n"}]], " "}]}]}]}], TraditionalForm]]] +}], "Text"], + +Cell[TextData[{ + "First we calculate the right-hand side. Here are the covariant spherical \ +components of ", + Cell[BoxData[ + FormBox[ + RowBox[{ + UnderscriptBox["\[Sum]", + RowBox[{"m", "<", "n"}]], + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"n", ",", "m"}]], + SubscriptBox[ + StyleBox["d", + FontWeight->"Bold", + FontSlant->"Plain"], + RowBox[{"m", ",", "n"}]]}]}], TraditionalForm]]], + " for each of the four transitions, in terms of the reduced dipole matrix \ +element ||d||." +}], "Text"], + +Cell[BoxData[ + RowBox[{"polarizationcomponents1", "=", + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"DensityMatrix", "[", + RowBox[{ + "subsys", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}], + "]"}], "\[LeftDoubleBracket]", + RowBox[{"n", ",", "m"}], "\[RightDoubleBracket]"}], + RowBox[{"WignerEckart", "[", + RowBox[{ + RowBox[{ + RowBox[{ + "subsys", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}], + "\[LeftDoubleBracket]", "m", "\[RightDoubleBracket]"}], ",", + RowBox[{"{", + RowBox[{"Dipole", ",", "1"}], "}"}], ",", + RowBox[{ + RowBox[{ + "subsys", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}], + "\[LeftDoubleBracket]", "n", "\[RightDoubleBracket]"}]}], "]"}]}], + ",", + RowBox[{"{", + RowBox[{"n", ",", + RowBox[{"Length", "[", + RowBox[{ + "subsys", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}], + "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"Length", "[", "subsys", "]"}]}], "}"}]}], "]"}], "/.", + "delreps"}]}]], "Input"], + +Cell[TextData[{ + "Multiply through by ", + Cell[BoxData[ + FormBox[ + RowBox[{ + RowBox[{"4", "\[Pi]", " ", "\[ImaginaryI]", " ", "\[Omega]", " ", "n"}], + " ", "||", "d", "||"}], TraditionalForm]]], + ", and rewrite ", + Cell[BoxData[ + FormBox[ + RowBox[{"||", "d", + SuperscriptBox["||", "2"]}], TraditionalForm]]], + " in terms of the natural width \[CapitalGamma] of the transition." +}], "Text"], + +Cell[BoxData[ + RowBox[{"polarizationcomponents2", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Expand", "[", + RowBox[{"ExpandDipoleRME", "[", + RowBox[{ + RowBox[{ + "subsys", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}], ",", + + RowBox[{ + RowBox[{ + RowBox[{"4", "\[Pi]", " ", "\[ImaginaryI]", " ", + RowBox[{"Energy", "[", + RowBox[{"Last", "[", + RowBox[{ + "rmes", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}], + "]"}], "]"}], " ", "n0", " ", + RowBox[{ + "rmes", "\[LeftDoubleBracket]", "k", "\[RightDoubleBracket]"}], " ", + RowBox[{ + "polarizationcomponents1", "\[LeftDoubleBracket]", "k", + "\[RightDoubleBracket]"}]}], "/.", "delreps"}], "/.", + "delreps1"}]}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"Length", "[", "subsys", "]"}]}], "}"}]}], "]"}]}]], "Input"], + +Cell[TextData[{ + "Make the substitution ", + Cell[BoxData[ + FormBox[ + RowBox[{ + SubscriptBox["\[Eta]", "s"], "=", + FractionBox[ + RowBox[{"3", + SubsuperscriptBox["\[Lambda]", "s", "2"], + SubscriptBox["\[CapitalGamma]", "s"], "n"}], + RowBox[{"4", "\[Pi]"}]]}], TraditionalForm]]], + "." +}], "Text"], + +Cell[BoxData[ + RowBox[{"polarizationcomponents3", "=", + RowBox[{ + RowBox[{ + RowBox[{"polarizationcomponents2", "/.", + RowBox[{ + RowBox[{"Energy", "[", "s_", "]"}], "\[Rule]", + RowBox[{"2", + RowBox[{"\[Pi]", "/", + RowBox[{"\[Lambda]", "[", "s", "]"}]}]}]}]}], "/.", + RowBox[{ + RowBox[{"NaturalWidth", "[", "s_", "]"}], "\[Rule]", + RowBox[{"4", "\[VeryThinSpace]", "\[Pi]", " ", + RowBox[{ + RowBox[{"\[Eta]", "[", "s", "]"}], "/", + RowBox[{"(", + RowBox[{"n0", " ", + SuperscriptBox[ + RowBox[{"\[Lambda]", "[", "s", "]"}], "2"], "3"}], ")"}]}]}]}]}], "//", + "Simplify"}]}]], "Input"], + +Cell["\<\ +Cartesian components of the amplitude of each of the 4 fields.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{"fieldcomponents1", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"field", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["k", "_"], "\[Rule]", "0"}], ",", + RowBox[{"t", "\[Rule]", "0"}], ",", + RowBox[{ + SubscriptBox["\[Phi]", "_"], "\[Rule]", "0"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[CapitalOmega]", "s_"], "/;", + RowBox[{"i", "\[NotEqual]", "s"}]}], "\[Rule]", "0"}]}], "}"}]}], + ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}]}], "]"}]}]], "Input"], + +Cell["\<\ +Convert to covariant spherical components and multiply by ||d||.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{"fieldcomponents2", "=", + RowBox[{ + RowBox[{ + RowBox[{"ToCovariant", "/@", "fieldcomponents1"}], " ", "rmes"}], "/.", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "s_"], "->", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "s"], "[", "z", "]"}]}]}]}]], "Input"], + +Cell["\<\ +Find propagation equations using the spherical components of the polarization \ +and fields. Here we leave out the time-derivative term, which we will add in \ +below.\ +\>", "Text"], + +Cell[BoxData[ + RowBox[{"propeqs", "=", + RowBox[{ + RowBox[{ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"D", "[", + RowBox[{"fieldcomponents2", ",", "z"}], "]"}], "==", + RowBox[{"Simplify", "@", "polarizationcomponents3"}]}], ",", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[CapitalOmega]", "i"], "\[Prime]", + MultilineFunction->None], "[", "z", "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}]}], "]"}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}], "/.", + RowBox[{"Rule", "\[Rule]", "Equal"}]}]}]], "Input"], + +Cell["Convert propagation equations to c form.", "Text"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"propeqs", "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Eta]", "\[Rule]", "eta"}], ",", + RowBox[{"NaturalWidth", "\[Rule]", "g"}], ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", + RowBox[{"s1_", ",", "s2_"}]], "[", "t", "]"}], "\[RuleDelayed]", + RowBox[{"r", "[", + RowBox[{"s1", ",", "s2"}], "]"}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[CapitalOmega]", "i_"], "\[Prime]", + MultilineFunction->None], "[", "z", "]"}], "\[Rule]", + RowBox[{"dW", "[", "i", "]"}]}]}], "}"}]}], "/.", "labelrep"}], "/.", + RowBox[{ + RowBox[{"Complex", "[", + RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]", + RowBox[{"a", " ", "i"}]}]}], "/.", + RowBox[{"Conjugate", "\[Rule]", "conj"}]}], "/.", + RowBox[{ + RowBox[{"a", ":", + RowBox[{"Power", "[", + RowBox[{ + RowBox[{"_", "?", "NumericQ"}], ",", "_"}], "]"}]}], "\[RuleDelayed]", + + RowBox[{"N", "[", "a", "]"}]}]}], "//", + "Simplify"}], "\[IndentingNewLine]", + RowBox[{"StringJoin", "[", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"ToString", "@", + RowBox[{"CForm", "[", + RowBox[{"%", "[", + RowBox[{"[", "j", "]"}], "]"}], "]"}]}], "<>", "\"\< - Lt[E\>\"", "<>", + RowBox[{"ToString", "@", "j"}], "<>", "\"\<];\\n\>\""}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}], "]"}], "\[IndentingNewLine]", + RowBox[{"StringReplace", "[", + RowBox[{"%", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",", + RowBox[{ + RowBox[{"\"\<eta(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<eta\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"Shortest", "[", + RowBox[{ + "\"\<dr(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__", + "~~", "\"\<\\\")\>\""}], "]"}], ":>", + RowBox[{"\"\<dr\>\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}], + ",", + RowBox[{ + RowBox[{"Shortest", "[", + RowBox[{ + "\"\<r(\\\"\>\"", "~~", "a__", "~~", "\"\<\\\",\\\"\>\"", "~~", "b__", + "~~", "\"\<\\\")\>\""}], "]"}], ":>", + RowBox[{"\"\<r\>\"", "<>", "a", "<>", "b"}]}], ",", + RowBox[{ + RowBox[{"\"\<ha(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<ha\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<hb(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<hb\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<g(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<g\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<dW(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<dE\>\"", "<>", "a", "<>", "\"\<_dz\>\""}]}], ",", + RowBox[{ + RowBox[{"\"\<Wc(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], + "\[RuleDelayed]", + RowBox[{"\"\<Ec\>\"", "<>", "a"}]}], ",", + RowBox[{ + RowBox[{"\"\<d(\>\"", "~~", "a_", "~~", "\"\<)\>\""}], "\[RuleDelayed]", + RowBox[{"\"\<d\>\"", "<>", "a"}]}]}], "}"}]}], + "]"}], "\[IndentingNewLine]", + RowBox[{"Export", "[", + RowBox[{ + RowBox[{"ToFileName", "[", + RowBox[{ + RowBox[{"NotebookDirectory", "[", "]"}], ",", + "\"\<RbPropEquations.txt\>\""}], "]"}], ",", "%"}], "]"}]}], "Input"] +}, Open ]] +}, +WindowSize->{956, 980}, +WindowMargins->{{Automatic, 0}, {26, Automatic}}, +PrivateNotebookOptions->{"FileOutlineCache"->False}, +ShowSelection->True, +FrontEndVersion->"8.0 for Linux x86 (32-bit) (February 23, 2011)", +StyleDefinitions->"Default.nb" +] + |